i

MODORE 4

USER’S
GUIDE

) |
q ;f

¥ commaodore

COMPUTER

USER'S MANUAL STATEMENT

“This equipment generates and uses radio frequency energy and if not
installed and used properly, that is, in strict accordance with the
manufacturer’s irstructions, may cause interference to radio and
television reception. It has been type tested and found to comply with
the limits for a Class B computing device in accordance with the
specifications in Subpart J of Part 15 of FCC rules, which are designed
to provide reasonable protection against such interference in a
residential installation. However, there is no guarantee that
interference will not occur in a particular installation. If this equipment
does cause interference to radio or television reception, which can be
determined by turning the equipment off and on, the user is
encouraged to try to correct the interference by one or more of the
following measures:

— reorient the receiving antenna
— relocate the computer with respect to the receiver
— move the computer away from the receiver

— plug the computer into a different outlet so that computer and
receiver are on different branch circuits.

“If necessary, the user should consult the dealer or an experienced
radio/television technician for additional suggestions. The user may
find the following booklet prepared by the Federal Communications
Commission helpful: ‘How to Identify and Resolve Radio-TV
Interference Problems.” This booklet is available from the U.S.
Geovernment Printing Office, Washington, D.C. 20402, Stoc< Ne.
004-000-00345-4. "

' e

b e ey W e e e e

COMMODORE 64 X
USER’S GUIDE

Published by
Commodore Business Machines, Inc.
and

Howard W. Sams & Co., Inc.

FIRST EDITION
SECOND PRINTING—1982

Copyright [€) 1982 by Commodore 3usiness Machines, Inc.
All rights raserved.

This manual is copyrichted and contains propriztary information. No pan of 1his publica-
fion may be reproduced, stored in o refrieval sys em, or trensmitted in any form er by any
mears, elecironic, mechonical, phatocopying, recording or otherwise, without the prior
written permission of COMMODORE BUSINESS MACHINES, Inc.

TABLE OF CONTENTS

INTRODUCTION . . . vii
Lo SETUF: ot im0t v soo o Meins st B et i]
® Unpacking and Connecting the Commodare 64 2

L BTI7S 1] {721 o A S Qo {1 P e g 3

& Optional Connections:, iy e siainveiianswai s s 6

® Cperatian: 5 @i pse s ool PUia e i SR AR 8

O Color Adjustment . ciendume s desieiiaee i s e s 11

2. GETTING STARTED 13
O KEBGATH s ammie s S0 vendEs A ssi e £ 14

8 Bock to: Mormial vissasonsoaie ssosg s s 17

® |oading and Saving Pragrams ea il 18

® PRINT and Calculations _ ceinieinainiiinrans 22

& Pracedaner i e Tir e Bt AT PR RS SRS 27

& ‘Combining: Things (e ssemen i Sk SOFpainmE Tk S 28

3. BEGINNING BASIC PROGRAMMING 31
0 The NeXE SE D s o i s e s 32

[] [cr DT S RS S PR 33

W BT TR mssnms o miewrmim s e s iotals SRS St Fy e wimsi 34
ONOFAblES ..cve viwmemanmmnrs crsmeain wraresoys s s 34

® |F .. .THEN.. _..... e el Bl e 37
®EOR NEXT LOBES .eamns vomeemasis 18hG smaie g Sy 39

4, ADVANCED BASIC i 41
& Intradiuelion s vomssmaren sErrEnaE LEIE e OTRE G s 42

& Simple Animation: -« cese i vamme e wmae Swiiewms v s 43
Nested LOpps sxeevvamm o T S SR 44

W TN BT i i Aot s Bt S s 0 e NI v A 45
WCEEET s s e e s o Sy S8 S S e N R N 47

® Random Numbkers and Other Functions v an 48
SEGUBSEING GEME - oivwwimen s v mmeam e Gns.cs e s 50

LR (o1 | 0 O O UG R 52

Rand om Grap Rl s oy s 5 e e a vttt b e g crn o e mpime 53
CHRE and AST FunCiions v ioe i oo e e s 53

5. ADVANCED COLOR AND GRAPHIC COMMANDS .. 55

N Color AN BREPRICE o i s s sl e o o e e 56
W ERINTING COlotE cw v eom o ammomssiam moaaas: s e st 56
® Color CHR Codes . v v svnvswmmmmmies ik ke 38
W PEEKE ARG POREL. ivovemnmmnm v mii e et s s i aes 60
B SEEEEN GPAPRIEE ..ovov v o oo o oy a5 e 62
® Screen Memory Map v vn i iinenn i ionee e ann 62
® Color Memory MOpoviviiniieeeein i ieinennans 64
® More Bouncing Balls L 65
6. SPRITEGRAPHICSccoiiviiiiciiiiiiiioiiainnn 67
® Irtroduction Fo- Qpriles: v it ssvidims wa slvas i v s ae 68
8. Sprite Crebldn v o v ise s e g im s i aivei e 69
® Additional Notes on Spritesooiii i, 75
® Binary Arithmeficocnnvan e o swmnesiness s onia 76
7. CREATING SOUNDcoiiiiiiiieininenns 79
® Using Sound it You're Not o
Computer Programmerueinininnnnnnnnn 80
® Structure of @ Seund Program 80
® Sumple Sound Programi. .. v seaiensann e ivadiaiens 80
® Making Music on Your Commodore 64 81
® |mportant Sound Settings ... ittt i e 83
® Playing a Song on tha Commeodore é4 88
® Creating Sound EHects: s v vaaiiiiaiae i s s asios 89
® Sample Sound Effects To Trycvieiiiinn o 90
8. ADVANCED DATA HANDLING 91
® READ and DATA iiirs it ivnimesnrnrsarainrasans 92
T o I B L e 94
® Subscripted Variables 95
One-Dimensional Arraysot ie i e e e 04
Averages Revisitedo viviivenirorrineiinnnns 97
® DIMENSION ottt eransa i insaranaasnnsanesnosnsa 98
® Simulated Dice Roll With Arrayso vv i o 99
® Two-Dimensional Arraysot 100

APPENDICES .ivaamu sienes snsusn e ms sy avueyias swsn s 105

InreaBetion: ;i aidnim: SR e B ey T e L e 106
A: COMMODORE 64 ACCESSORIES AND SOFTWARE 107
B: ADVANCED CASSETTE OPERATION, 110
C: COMMODORE 64 BASIC v v vi v viveiren o vannnannnas 112
D: ABBREVIATICNS FOR BASIC KEYWORDS 130
E: SCREEN DISPLAY CODES ..o o mamn st am 132
F: ASCI and CHRS CODES .. vt it it e ie vt cnmeennns 135
G: SCREEN AND COLOR MEMORY MAPS 138
H: DERIVING MATHEMATICAL FUNCTIONS 140
I: PINOUTS FOR INPUT/QUTPUT DEVICESivvvunnnnnn 141
Ji PROGRAMS TO TRY i vinn i din iouieaded yivaie 144
K: CONVERTING STANDARD BASIC PROGRAMS TO
COMMODORE 64 BASIC i iiei e 148
I ERROR MESSAGES: .o b damin svviiiiul wain s55d s 150
M MUSTE NOTE VAEUES - cvvamasn i sovmmmommamns iwias 152
Ny BIBLIGGERAPHY: «wovn s v, o S 6 5 5 | sl i s 156
O: SPRITE REGISTER IWAP w.omvmi ot wam arviaias 5o | i s s mas 159
P: COMMODORE 64 SOUND CONTROL SETTINGS 162
INBEX: ..ccomnromanmnsmsmemesmaes Eras B sebes s s 165

production, the COMMODORE 64 allows you to connect your audio out-
put to almost eny high-quality amplification system.

While we’re on the subject of connecting the COMMODORE 64 to
other pieces of equipment . . . your system can be expandad by adding
accessories, known as peripherals, as your compuling needs grow.
Some of your options include items like o DAIASSETTE® recorder ar as
many as 5, VIC 1541 disk drive storage units for the programs you make
andlor play. If you already have o VIC 1540 disk drive your dealer can
update 't for use with the COMMODORE 64. You can add o VIC dot
matrix printer o give you printed copies of your programs, letters, in-
voices, etc. . . If you want to connect up with larger cemputers and their
massive data bases then just plug in a VICMODEM cartridge, and get
the services of hundreds of specialists and a variety of informetion net
works through your home or business telephone. Finally if you're one of
those people interested in the wide variety of applications software
available in CP/M**, the COMMODORE 64 can be fitted with a plug-in
Z-80 microprocessor.

Just as important as all the available hardware is the fact that this
USER’S GUIDE will help you develop your understanding of camputers.
It won't ‘ell you everything there is to know cbout computers, but it will
refer you to a wide variety of publications for more detailed information
about the topics presentad. Commodore wants you to really enjoy your
new COMMODORE 64. And to have fun, remember: programming is
not the kind of thing you can learn in a day. Be patient with yourself as
you go through the USER’S GUIDE. But before you start, take a few
minutes ‘o fill out and mail in the owner/registration card that came with
your computer. It will ensure that your COMMODORE 64 is properly
registered with Commodore Headquarters and that you receive the mosr
up-to-date information regarding future enhancements for your ma-
chine. Welcome to a whole new world of fun!l

NOTE:

Many programs are under develapmernt while this manual is heing
produced. Please check with your local Commodore dealer and with
Commodore User's Magazines anc Clubs, which will keep you up to
date on the wealth of applications programs being written for the

Commodore 64, woarldwide.

“DATASSETTE Is o registered frademark of Cormmodore Business Machines, Inc.
** CP/M is © registered trademark of Digital Research Inc. Specifications subject to
change

INTRODUCTION

Congratulations, on your purchese of one of the best compurers in the
world. You are row the proud owner of the COMMODORE 64. Com-
modore is known as The Friendly Computer company, and port of
being friendly is giving you easy tc read, easy to use and easy to
understand instruction manuals. The COMMODORE 64 USER’'S GUIDE is
dasigned to give you all tha information you need tc properly set up your
equipment, get acquainted with operating the COMMODORE 64, and
give you o simple, fun start a° learning to make your own programs.

For those of you who don't want tc bother lzarning how fo program,
we've put all the information you need to use Cemmodore programs or
other prepackaged programs and/or game cartridges (third party
software) right up front. This means you don’t have to hunt through rhe
entfire boox to get started.

Now let’s ook af some of the exciting features that are just waiting for
you inside your COMMODORE 64. First, when it comes to graphics
you've got the mos! udvanced picture maker in the microcomputer in-
dustry. We call i+ SPRITE GRAPHICS, ond it allows you to design your
own pictures in 4 different colors, just like the ones you see on arcade
type video games. Not only that, the SPRITE EDITOR let's you animote as
many as 8 different picture levels at one time. The SPRITE EDITOR will
soon be available as a soffware program that you can load directly into
your COMMODORE é4. You can move your creations anywhere on the
screen, even pass ona imnge in front of or behind another. Your COM-
MODORE 64 even provides automatic collision detection which instructs
the computer to take the action you want when the sprites hit each
other.

Next, the COMMODORE 64 has built-in music and sound effects that
rival many well known music synthesizers. This part of your computer
gives you 3 independent voices, each with a full ¢ octave “piaro-fype”
range. In addition you get 4 different waveforms (sawtooth, fricngle,
variable pulse, cnd noise), a programmable ADSR (attack, dzcay, sus-
tain, relecse) envelope generator and a programmable high, low, and
bandpass filter for the voices, and variable resonance and volume con-
trals. If you want your music to play back with professional sound re-

vii

CHAPTER

SETUP

Unpacking and Connecting the
Commodore 64

Instellation

Optional Connections
Operation

Color Adjustment

UNPACKING AND CONNECTING THE
COMMODORE 64

The follawing step-by-step instructions show you how to connsct the
Commodore 64 fo your television set, sound syslemn, or monitor and
make sure everything is working properly.

Before attaching anything to the computer, check the contents of the
Commodore 64 container. Besides this manual, you should find the fol-
lowing items:

1. Commodorc 64

2. Power supply (black box with an AC plug and supply cord)
3. Videzo cable

4. TV Switchbox (small silver box with short antenna leads).

If any items are missing check back with your dealer ‘mmediately for
a replacement.

First, let's take a lock at the arrangement of the various connections
on the computer and how each functions.

SIDE PANEL CONNECTIONS

1. Power Socket. The free end cf the cable from the power supply is
attached here to supply power to the Commodore 64,

2, Power Switch. Turns on power ‘o the Commodore 64,

3. Game Ports. Each game connector can accept o joystick or game
controller paddle, while the lightpen can only be plugged into the
game port closest to the front of your computer.

REAR CONNECTIONS

4. Cartridge Slot. The rectangular slot to the left accepts program or
game carfridges.

5. Channel Selecter. Use this switch to selact which TV channel the
computer’s picture will be displayed on.

6. TV Connector. This connecter supplies both the picture and sound 1o
your television set.

7. Audio & Video Output. This connector supplies direct audio, which
can be connected to a high quality sound system, and a “compos-
ite” video signal, which can be fed into a television “monitor.”

8. Serial Port. You can arach a printer or single disk drive directly 1o
the Commodore 64 through this connector.

CONTROL CONTRCL
PORT ¢ PORT 2

k mm“ﬁ'r
£ ol d

GAMC FPOWCR POWER
PORTS SWITCH SOCKET

<-Ch. 3 Ch 4>

P AR

CARTRIDGE CHANNEL AUDIO/VIDED SERIAL CASSETTE USER
SLotT SELECTOR L‘-DNN._GTOR CONNECTOR PORT INTERFACE PORT

9. Cassette Interface. A DATASSETTE recarder can be attached to the
computer so you can save information entzred for use at a loter

time.

10. User Port. Vorious interface cartridges can be attached to the user
port, such as the VICMODEM, or RS 232 communication cartridge.

INSTALLATION

CONNECTIONS TO YOUR TV

Connect the computer to your TV as shown on page 4.

1. Attach one end of the TV cable to the phono type TV signal jack at
the rear of the Commodore 64. Just push it in. Either end of the
cable can be used.

2, Connect the other end of the cable to the antenna switchbox. Just
push it in.

W

v
SWITCH BOX
s
0 T0 30C OHN

TV SIGNAL ANTENNA
JACH INPUT

I: POWER
SUPPLY

- If you have a VHF antenna, disconnect it from your TV set.

Connect your VHF antenna cable to the screw terminals labeled “an-
tenna input” on the switchbox. If your antenna cakle is the round
75-0hm coax type, use a 75-ohm to 300-ohm adapter {nol supplied)
to attach your antenna cable to the switchbox,

Connect the twin lead output cable of the ontenna switchbox to the
VHF antenne terminals of your TV set. If your set is one of the newar
types with a round 75-chm VHF connector, you will need a 300-ohm
to 75-ohm converter (nor supplied) to connect the switchbox to the
75-ohm VHF antenna input on the set.

. Set the TV's VHF tuner to the channel number indicated on the com-

puter’s channel selector switch (channel 3 move the switch to the left,
channel 4 move the switch to the right). If a strong lccal TV signal is
present on one of these channels, select the other channel to avoid
possible interference.

Plug the power supply cakble into the power socket on the side of the
Commodore 64. Just push it in. It is “keyed” to allow insertion in only
one direction, so you can’t connect the power cord the wrong way.
The power supply converts househald current inta the form the com-
puter uses.

75 OHM TO
300 OHM
ADAPTER ~~_

YOUR 75 OHM
GORX VHF ANTENNA

“M_‘_\

D 9
300 OHM 2

TO 75 OHM ENT
AASTRR j o

The Commodore 64 is now correctly cannected. No additional con-
nections are required to use the computer with your TV. The antenna
swilchbox will connect the computer tc the TV when the slide switch is in
the “computer” position. When the switch is in the “TV" positior your set
will operate normally.

H‘EE

0
TV SIGNAL t BACK DF YOUR TV
JACK >
I vl
UIF
@ @
VHF
1 COMPUTER
300 OHM
VHF :
INPUT ,
ANTENNA
SWITCH
BOX YOUR VHF
ANTENNA
(IF USED)

OPTIONAL CONNECTIONS

Since the Cemmodore 64 furnishes ¢ chanrel of high fidelity sound,
you may wish to play it through a quality amplifier to realize the best
sound possible. In addition, the Commodore 64 clso provides a stan-
dard “composite” video signal, which can be fed into a television
monitfor.

These options are made possible by the audialvideo autput jack an
the rear panel of the Commodore 64. The easiest way to gain access to
these signals is by using a standard 5-Pin DIN audio cable (not
supplied). This cable connects directly to the audio/vidzo connector on
the computer. Two of the four pins on the opposite end of the cable
contain the audio and video signals. Optionally, you can construct your
own cable, using the pinouts shown in Appendix | as a guide.

Normally, the BLACK connector of the DIN cable supplies the AUDIC
signal. This plug may be connected to the AUXILIARY input of an am-
plifier, or the AUDIO IN connector of a monitor or other video system,
such as o video cassette recorder (VCR).

The WHITE or RED connector usually supplies the direct VIDEO signal.
This plug is connected to the VIDEQ IN connector of the monitor or video
input section of some other video system, such as a VCR.

Depanding on the manufacturar of your DIN cable, the color coding
of the plugs may be different. Use the pinouts shown in Agpendix | to
matech up the proper plugs if you don’t ger an audio or video sigral
using the suggestad connections.

AUDIONIDED
OouTPUT

TO AUXILIARY
INPUT OR

TUNER INPUT TO VIDED 1N

TV MONITCR

AUDIO SYSTEM

If you purchased periphercl equipment, such as o VIC 1541 disk drive
or a VIC 1515 printer, you may wish to conrect it at this time. Refer to
the user's manuals supplied with any aodditional equipment for the
proper procedure for connecting it to the computer.

A completed system might look like this.

OPERATION

USING THE COMMODORE 64

1. Turn on the computer using the rocker switch on the right-side panel
when you're looking at the computer from the front.

2. After @ few moments the following will be displayed on the TV
screen:

ET 13 MODCRE 1 E LD
Bkl RAM SYSTEM HEIC EYTES FREE

RERDOY

B CURSOR SIGNALS

COMMODORE 64 IS
WAITING FOR YOUR
INPUT.

3. If your TV has a manual fine tuning knob, adjust the TV unftil you get
a clear picture.

4. You may also want to adjust the color and tint cantrols on the TV for
the best display. You can use the color adjustmen: precedurc de
scribed later to get everything sefup properly. When you first get @
picture, the screen should appear mostly dark blue, with o light
blue border and letters.

If you don't get the expeactad rasults, recheck the cables and connec-
tions. The accompanying chart will help you isolate any problem.

TROUBLESHOQTING CHART

Symptom Cause Remedy
Indicator Light Computer rgt Make sure power
not 'On" “On" switch is in "On"
position
Jswer cablz Check power socket
not plugged for loose or dis-
in connected powsar
cable.
Power supply Check connection
not plugged with wall outlet
in
Bad fuse in Take system to
computer authorized dealer
for replacemeant of
fuse
TV on wreng Check other
zhannel channel for
picture (3 or 4)
Incorrect ¥ Computer hooks up to
haokup VHF antenno terminals
Video cable Check TV aiutput
not plugged cable connection
in
Computer set Set computer for
for wrong same channel as TV
channel (3 or 4)

Symptom

Cause

Remedy

Random patern
on TV with
cartridge in
placa

Picture wirthout

color

Cartridge not
properly
inserted

Paorly tuned
TV

Reinsart
cartridge ofter
turning off pawer

Retune TV

Picture with

poor cclor

Bad cclor
adjustment
on TV

Adjust eslor/
hus/brightness
contrels on TV

Sound with
excess
background
noise

TV volume up
high

Adjust volume of
™

Picture OK,
but no sound

TV volume too
low

Aux. output
nat properly
conn ecled

Adjust volume of
™

Connect sound
jack to aux. input
an amplitier and

select oux. input

TIP: The COMMOQODORE 64 was designed to be used by everyone.
8ut we at Commodore recognize that computer users may, occasionally, run into
difficulties. To help answer your questions and give you some fun pregrammirg
ideas, Commodore has created several publications ta help you. You might also find
that it's a good idea to join o Commodore Users Club to help you meet some other
COMMODORE 64 owners who can help you gcin knowledge and experience.

CURSOR

The flashing square under READY is called the cursor and indicates
where what you type on the keyboard will be displayed on the screen.
As you type, the cursor will move chead one space, as the original
cursor position is replaced with the character you typed. Try typing on
the keyboard and watch as characters you type are displayed on the TV

screen.

COLOR ADJUSTMENT

There is a simple way ta get a pattarn of colors on the TV so you can
easily adjust the set. Even though you may not be familiar with the
operation of the computer right now, just follow along, and you'll see
how easy it is to use the Commodore 64.

First, look on the left side of the keyboard and locate the key marked
EE. This stands for ConTRol ond is used, in conjunction with other
keys, 1o instruct the computer to do a specific task.

= commodore

oW o

To use a control function, you hold down the [l key while depress
ing a second key.

Try this: hold the [[5E8 key while also depressing the Elkey. Then re-
lease both keys. Notning obvious should have hapsened, but if you
tcuch any key now, the screen will show Ihe cheracter displayed in re-
verse type, rather than normal type—Ilike the opening message or any-
thing you typed earlier.

Hold down the . What happens? If you did the above pro-
cedure correctly, you should sez a light blue bar move across the screen

and then move down to the next line as long os the [l is de-
pressed.

Now, ho'dwhile depressing any of the other numker keys. Each
of them has a color marked on the front. Anything displayed from this
point will be in that color. For example, hold [l and the [key and
release both. Now hold the IIEN .

Watch the display. The bar is now in yellow! In a like manner you can
change the bar to any of the other colors incicated on the number keys
by holding [B[I8 and the cppropriate key.

Change the bar to a few more different colors and then adjust the
color and tint controle on your TV sc the display metecnes the colors you
selected.

lhe display should appear something like this:

- FAM

READY RED BAR

@ GREEN BAR
BLUE BAR
B YELLOW BAR

At this point everything is properly adjusted and working correctly.
The following chapters will introduce you to the BASIC language. How-
ever, you can immediately start using some of the many prewritten ap-
plicatiens and games availakle for the Commodore 64 without knowing
anything about computer proegramming.

Each ot these packages contains detailed information about how to
Jse the program. It is suggested, though, that you read rhrough the first
few chapters of this manual to become more familiar with the basic
operation of your new system.

.
|
i CHAPTER 2

GETTING STARTED

Keyboard

Back to Normal

Leading and Saving Programs
PRINT cind Calculations
Precedence

Combining Things

13

KEYBOARD

Now that you've got everything set up and adjusted, please toke o
few moments to familiarize yourself with the keyboard which is your
most important means of communication with the Commodore 64.

You will find the keyboard similar 1o a standard typewriter keyboard
found in most areas. There are, however, a number of new keys which
control specialized functions. Whart follows is a brief description of the
various keys and how they funciion. The detalled operation of each key
will be covered in laoter sections.

The key signals the computer to look at the information thet
you typed and enters that information into memory.

The key works like that cn a standard typewriter. Many keys
are capable of displaying twa letters or symbols and two graphic char-
acters. In the “upper/lower case” made the key gives you stan-
dard upper case characters. In the “upper case/graphic” mode the

key will display the graphic character on the right hand side of

the front part of the key.
In the case of special YELLOW function keys, the key will give

you the function marked on the front of the key.
14

EDITING

No one is perfect, and the Commodore ¢4 takes thal into uccount. A
number of editing keys let you carrect typing mistakes and move infor-
mation around on the screen.

There are two keys marked XD (CuRSoR), one with up and down
arrows .the other with left and right arrows . You can
use these keys to move the cursor up and down or left and right. In the
unshifted maode, the keys will let you move the cursor down and to
the right. Using the key and m keys allows the curser to be
moved either up or to the lefi. The cursor keys have a special repeat
feature that keeps the cursor moving until you release the key.

If you hit the key, the cursor will move back a space, eras-
ing (DELeting) the previous character you typed. If you're in the micdle
of a line, the character 1o the lefr is delered and rhe characrers to the
right auvtomatically move together to close up the space.

A ElERed allows you ta INSerT information on a line. For
cxample, if you noticed a typing mistake in the beginning of a line—
perhaps you left out part of a name—you could use the key to
move back to the error and then hit JIEELIEN to insert a space. Then
just [type in the missing letter.

CLR/HOME

EILIITE positions the cursor at the “HOME” position of the screen,
which is the upper left-hard corner. A shifted will clear the
screen and place the cursor in the home positian.

operates as the name implies. It restores the computer to the
normal state it was in before you changed things with a program or
some command, A lot more will be scid on this in later chapters.

15

FUNCTION KEYS

The four function keys on the right side of the keyboard can be “pro-
grammed” to hardle a variety of functions. They can be defined in
many ways tc handle repetitive tasks.

The [EIEM key, which stands for ConTRoL, allows you ‘o set colors, and
perform other specialized functions. You hold the [[§E@key down while
depressing another designated key to get a control function. You had an
opportunity to try the key when you changed text colors to creats
different color bars during the setup procedure,

Normally, depressing the key will stop the execution of a
BASIC program. It signals the computer to STOP doing something. Using

16

the key in the shifred mcde wil cllow you te automatically
load a program from tape.

[& commopore key

The Commodore key performs a number of funcrions. First, it
allows you to move between the text and graphic display modes.

When the eomputer is first turned on, it is in the Upper Case/Graphic
mode, thet is, everything you type is in upper cose letters. As was men-
tioned, using the key in this mode will display the graphic cn the
right side of the keys.

If you hold down the [key and [E2IER key. the display will change
to upper and lower cose. Now, it you hold down the key and any
other key with a graphic symbol, the grophic shown on the left side of
the key will be displayzsd.

To get back into the upper case/graphic mode hold down the E <ey

and key again.
The zecond function of the E key is to allow you access to a second

set of eight text colors. By holding down the E key and any of the
number keys, any text now typed will be in the alterrate color available
from the key ycu depressed. Chapter 5 lists the text colers avalable
from each key.

BACK TO NORMAL

Now that you've had a charce to look over the keyboard, let's explore
some of the Commodore é4’s many capabilities.

If you still have the color bars on the screen from adjusting your TV
set, hold and EEEELE . The screen should clear and the cursor
will be positioned in the “home” spot (upper left-hand corner of the
screen).

Now, simultaneously hold E and the key. This sets the text color
back to light blue. There is one more step needed to get everything back
t0 narmal. Ho]dcnd m(Zero not Oh!). This sets the display mode
back ta normal. If you remember, we turned REVERSE type on with the
n to create the color bars (the color bars were actually reversed
spaces). If we were in the normal text mode during the cclor test, the
cursor would have moved, but just left blank spaces.

17

TIP: ‘]

Now that you've done thinas the hard way, there is @ simple way to reset the
machine to the normal display. First press the [EIEERED kev ond then press
the key. [MIBEE must always be held down in order to use the

e ey function.

Tais will clear the screen and return everything to normal. If there is g program in
the computer, it will be left untouched. This is o good sequerce 1o remember, espe-
ciully if you do a lol of progrumming.

If you wish o reset the machine as if it were turned off and then switched on
ogain, type, 5Y564759 and press . Be careful using *hiz command! It wil
wipe cut any program or information that is currently in the computer.

LOADING AND SAVING PROGRAMS

One of the most impartant features of the Commodore 64 is the ability
to save and load programs to end from cassetie tape or disk.

This capability allows you to save the programs you write for use at
later time, or purchase prewritten programs to use with the Commodore
64,

Moke surc that either the disk drive or datasstte unit is attached
properly.

LOADING PREPACKAGED PROGRAMS

For those of you interested in using only prepackaged programs
available on cartridges, cassette, or disk here’s all you have to do:

1. CARTRIDGES: The Commodore 64 computer has a line of programs
and games on cartridge. The programs offer a wide variety of business
and personal applications and the games are just like real arcade
games—not imitations. To load these games, first turn on your TV set.
Next turn OFF your Commodore 64. YOU MUST TURN OFF YOUR COM-
MODORE 64 BEFORE INSERTING OR REMOVING CARTRIDGES OR YOU
MAY DAMAGE THE CARTRIDGE AND/OR YOUR COMMODORE 64!
Third insert the cartridge. Now turn your Commodore 64 on. Finally type
the appropriote START key as is listed on the instruction sheet that comes
with each game.

2. CASSETTES: Use your DATASSETTE recorder and the ordinary audic cas-

settes that came as part of your prepackaged program. Make sure
the tape is completely rewound fo the beginning of the first side.
Then, just type LOAD. The computer will answer with PRESS PLAY ON
TAPE, so you respond by pressing play on your datasette machine. At
this point the computaer screen will go blank urtil the program is
fcund. The computer will say FOUND (FROGRAM NAME) on the
screen. Now you press down on the [€ KEY. This will actually
load the progrem into the computer. If you want to stop the loading

simply press the key.

3. DISK: Using your disk drive, carefully insert the preprogrammed disk
so that the label on the disk is focing up and is closest to you. Look
for a little notch on the disk (it might be covered with a little piece of
tape). If you're inserting the disk properly the natch will be on the left
side. Once the disk is inside close the protective gate by pushing down
on the lever. Now type LOAD “PROGRAM NAME”, 8 and hit the
key. The disk will make noise and your scresn will say:

SEARCHING FOR PROGRAM NAME
LOADIHNG

READY

When the READY comes on and the [is on, just type RUN, and
your prepackaged software is ready to use.

LOADING PROGRAMS FROM TAPE

Lloading a program back frem tape or disk is just as simple. For tape,
rewind the tape back to the beginning and type:

LOAD "PROGREAM NAME"

It you don‘t remember the program name, just type LOAD and the
first program on the tape will be loaded into memory.
After you press the computer will respond with:

19

PRESS PLAY ON THPE

After you depress the play key, the screen will blank, turning the
border color of the screen as the computer searches for the program.
When the program is found, the screen will display:

FOUNHD PROGRAM NAME

To actually LOAD the program, depress ‘he [key. To abandon the
LOADing procadurs, hit . If yau hit the Commodore key, the
screen will again turn the border color while the program is LOADed.
Afrer the LOADIng procedure is completed, the screen will return to the
normal state and the READY prompt will reappear.

LOADING PROGRAMS FROM DISK

loeding a program from disk follows the same format. Type:

.

LOAD "PROGRAM NAME" .8

The 8 is the code for the disk, so you're just letting the computer know
that you want the program loaded from the disk.

After you hit the disk will start whirring and the display
shows:

SEARRCHING FOR PROGRAM NAME
LOARDING

RERDY

10

NOTE:

\Wher you load a new program info the computer's memory, any in-
structions that were in the camputer previously will be erased. Make
sure you save a program you're working on before loading a new one.
Once a program has bean leaded, you can RUMN it, LIST it, or make
changes and re-save the new version.

SAVING PROGRAMS ON TAPE

After entering u program, if you wish to save it on tape, type:

SAVE "PROGRAM MAME"

“"PROGRAM NAME" can be up to 16 characters long. Afrer you hit
the computer will respond with:

HD RECORD OW TAFE

Press both the record and play keys on the datasette. The screen will
blank, turning the color of the border.

After the pregram is saved on tape, the READY proampt will reappear,
indiccting that you can start working an another program, or just turn
off the computer for a while.

SAVING PROGRAMS ON DISK

Saving o program on disk is even simpler. Type:

SAYE "FPROGREAM HAME" .S

21

The 8 ie the code for the disk, sc you're just letting the computer know
you want the program saved to disk.

After you press the disk will start te turn and the computer
will respond with:

SRVIMG "PROGRAM NAME"™

RERADY
n

PRINT AND CALCULATIONS

Now that you've gottern through a couple of the more difficult opera-
tions you need in order tc keep the programs you like, lets start making
some programs for you to save.

Try typing the fallawing exactly as shown:

FRIHT ™ MMODORE =4

COMMODODRE &4 TYPE THlS I_lNE AND
e ‘\-\ RETURN
— I e

READY

|| B COMPUTER TYPED

If you make a typing mistake, use the key to erase the char-
acter immediately to the left of the cursor. You can delete as many
charccters as necessary.

let's see whar went on in the example above. First, you instructed
(commanded) the computer to PRINT whatever wos inside the quote
muarks. By hitting you tcld the computer to do what you in-
structed and COMMODORE 64 was printec on the screen.

When you use the PRINT statement in this form, whetever is enclosed
in quotes is printed exactly as you typed it.

If the computer responded with:

PSYNTAX ERROR

ask yourself if you made a mistaxe in typing, or forgot the quote marks.

22

The computer is pracise and expects instructions to be given in a specific
form.

But don’t get worried; just remember to enter things as we present
them in the examples and yovll get clong great with the Commo-
dore &4,

Remember, you can’l hurl the compuler by lyping on il, und the besl
way to learn BASIC is to try different things and see what happens.

PRINT is one of the most useful and powerful commands in the BASIC
language. With it, you can display just about anything you wish, includ-
ing graphics and results of computalions.

For example, try the following. Clear the screen by holding down the
key and key and type (be sure to use the ‘1 key for

one, not a letter ‘I'):

TYPE THIS LINE AND
HIT EETEE

COMPUTER PRINTED
THE ANSWER

What you've discovered is that the Commodore 64 is a calculator in its
basic form. The result of “24” was calculated and printed automatically.
In fact, you can also perform subtraction, multiplication, division, ex-
ponentiation, and advanced math functions such as calculating square
roots, etc. And you're not limited to a single calculation on a line, but
mcre on that lafer.

Note that in the above form, PRINT behaved differently fram the first
example. In this case, a value or result of a calculation is printed, rather then
the exact message you entered because the quote marks were omitred.

ADDITION

The plus sign (1) signals addition: we instructed the computer to grint
the result of 12 added to 12. Other arithmetic operctions take a similar
form to addition. Remember to always hit uﬁer typing PRINT
and the calculation.

23

SUBTRACTION

To subtract, use the conventional minus (—) sign. Type:

FRINT 12 - 3 HIT

MUILTIPLICATION

If you wanred 1o multiply 12 times 12, use the asterisk (*) to represent
multiplication. You would type:

PRINT 12 % 1.
144

DIVISION

Divisicn uscs the familiar “/". For example, to divide 144 by 12, type:

PRINT 144,12 HIT

1z

24

EXPONENTIATION

In a like fashion, you can easily raise a number to a power (this is the
same as multiplying a number by itself a specified number of times].
The '™ {(Up arrow) signifies exponentiation.

FRINT 1z ¢ o

243532

This is the same as typing:

PRINT 12 # 12 % 12 # 12 #% 12

BASIC has a numher of shortcit ways of daing things. One such way is obbreviat-
ing BASIC commands (or keywords). A ? can ne used in place of PRINT, for exam-
ple. As we go on you'll be presented with many commands; Aspendix D shows the |

abbreviatians for sach and what will be displayed an the screen when you type the

abbreviated form,

The last example brings up unolher important point: many calcula-
tions may be performed on the same line, and they can be of mixed
types.

You could calculate this problem:

THIS 7
REPLACES THE

WORD PRINT

25

Up to this point we've just used small numbers and simple examples.

However, the Commodors 64 is capable of more complex calculations.
You could, for example, add a number of large figures together, Try
this, but don’t use any commas, or you'll get an error:

If you took the time to add this up by hand, you would get a different
result.

What's going on here? Even though the computer has a lot of power,
there's a limit to the numbers it can handle. The Commodare 64 can
work with numbers containing 10 digits. However when a number is
printed, only nine digits are displayed.

So in our example, the result was “rounded” 1o fit in the proper
range. The Commodore 64 rounds up when the next digit is five or more;
it rounds down when the next digit is four or less.

Numbers between 0.01 and 999,999,999 are printed using standard
notation. Numbers outside this range are printed using scientific noto-
tion.

Scientific notation is just a process of expressing a very large or smaill
number as a power of 10.

If you type:

26

This is the same as 1.23 * 10117 and is used just to keep things tidy.
There is a limit to the numbears the computer con handle, even in
scientific notation. These limits are:

Largest: = 1.70141183E | 38
Smallest (different from zero): = 2.93873588—139

PRECEDENCE

If you tried to perform some mixed calculations different from the
examples wa showed earlier, you might not have gotten the resulls that
you expected. The reason is that the computer performs calculations in a
certain order.

In this calculation:

20+ 8/2
you can't tell whether the answer should be 24 or 14 unsil you know in
which order to perform the calculations. If you add 20 to 8 divided by 2
(or 4), then the result is 24. But, it you add 20 plus 8 and then divide by
2 the answer is 14. Try the exarple and see whot result you get.

The reason you got 24 is because the Commodore 64 performs calcu-
lations l=ft to right according 1o the lollowing:

First: = minus sign indicating negative numbers
Second: T exponentiation, left to right

Third: wy multiplication and divisicns, left to right
Fourth: +— additieon and subtraction, lef: to right

Follow along cccording tc the order of precedence, and you will see
that in the above example the division was performed first and then the
addition to get o result of 24.

Make up some problems of your own and see if ycu can follow along
and predict the results according to the rules set down above.

There's also an easy wuay 1o alter the precedence process by using
parentheses to set off which operations you want performed first.

For example, if you want to divide 35 by 5-plus-2 you type:

27

you will get 35 divided by 5 with 2 added tc the answer, which is not
what you intended at all. To get what you really wanted, try this:

What happens now is that the computer evaluates what is contained
in the parentheses first. If there are parenthesss within parentheses, the
innermaost parentheses are evaluated first,

Wheres there are a number of parenthases on a line, such as:

the computer evaluates them left to right. Here 21 would be multiplied
by 7 for the result of 147.

COMBINING THINGS

Even though we've spent a lot of time in areas that might not seem
very importent, the cetails presented here will make more sense once
you start to program, and will prove invaluable.

To give ycu an idea how things fit in place, considar the following:
how could you combine the two types of print statements we've exam-
ined so far to print something more meaningful on the screen?

We know that by enclosing something within quote marks prints thal
infcrmation on the screen exactly as it was entered, and by using math
operators, calculations can be performed. So why not combine the two
types of PRINT sratements like this:

SEM COLON MEANS NO SPACE,

a8

Even thcugh this might seem a hit reduncant, whot we've done is
simply use both types of print statements together. The first part prints
“5% 9 =* exactly as it wos typed. The second part does the uctual work
and prints the result, with the semicolon separating the message part ot
the statement from the actval calculation.

You can separate the parts of a mixed print statement with punctua-
tion for various formats. Try @ comma in ploce of the semicolon and see
what happens.

For the curious, the semicolon causes the next part of the stotement to
be printed immediately after the previous part, without any spaces. The
comma does something different. Even though it is an acceptable
separator, It spaces things out more. If you type:

HIT

the numbers will be printed across the screen and down on to the next
line.

The Commodore 64°'s display is organized into 4 areas of 10 columns
each. The comma tabs each result into the next available area. Since
we asked for mere information to be printed than would fit on one line,
(we tried to fit five 10-column areas on ane line) the last item was moved
down to the next line.

The basic difference befween the comma and semicolon in formatting
PRINT statements can be used fo our advantage when creating more
complex displays: it will allow us to create some sophisticated results

very easily.

19

CHAPTER 3

BEGINNING
BASIC
PROGRAMMING

® The Next Step
—GOTO
® Editing Tips

. ® Variables

®IF ... THEN
® FOR . . . NEXT Loops

31

Up to now we've performed scme simple operations by entering a
single line of instructicns into the compuler. Once was de-
pressed, the cperation that we specified was performed immediately.
This is called the IMMEDIATE or CALCULATOR mode.

But to accomplish anything significant, we must be akle to have the
computer operate with more than a sirgle line statement. A number of
statements combined together is called a PROGRAM and cllews you 1o
use the full power of the Commodore 64.

To see how easy it is to write your first Cammodere 64 program, try
this:

Clear the screen by holding the key, and then depressing the
key.

Type NEW and press [[GEIE. (1his ust clears out any numbers that
might have been left in the computer from your experimenting.)

Now type the following exactly as shown (Remember to hit
after sach line)

‘OMMOCORE &4
16

Now, type RUN and hit [0 —wutch what happens. Your screen
will come alive with COMMODORE &4, After you've finished watching
the display, hit to stop the program.

A number of important concepts were introducad in this short pro-
gram that are the basis for all programming.

Notice that here we precaded each statement with a number. This
LINE number tells the computer in what order 1o work with each state-
ment. These numbers are also o reference point, in case the program
needs to get back to a particular line. Line numbers can be cny whole
number (integer) value between 0-63,999.

1¢ PRINT "COMMODORE 64"
T T sarewen

LINE MUMRFR

32

COMMONORE
COMMONOR
o

O -;F
COMRODORE
COMMODORE

MHODORE
MMODORE <
EFEAK IWN 1@
FERDY
| |

It is good programming practice to number lines in increments of
10—in case ycu need fo Insert some statements later on.

Besides PRINT, our program alse used another BASIC command,
GOTO. This instructs the computer to go directly to a sarticular line and
perform it, then continue from that point.

[18 PRINT “"COMMODORE 464"

20 GOTO 19

In our exc:-*np|e, the pregram prints the message in line 10, goes lo
the next line {20), which instructs it tc go back to line 10 and print the
message over again. Then the cycle repeats. Since we didn’t give the
computer a way out of this loop, the program will cycle endlessly, until
we physically stop it with the key.

Once you've stopped the program, type: LIST. Your program will be
displayed, intact, because it's still in the computer’s memory. Notice,
tan, that the compuser converted the ? inta PRINT for you. The program
can now be changed, saved, or run again.

Another important difference between typing something in the im-
mediate mode and writing a program is that once you execute and
clear the screen of an immediate statement, it's lost. Howevar, you can
always get a program back by just typing LIST.

By the way, when it comes to abbreviations don’t forger that the
camputer may run out of space on a line if you use too many.

33

EDITING TIPS

If you make a mistake on a line, you have a number of editing
uplions.
1. You can retype a line anytime, and the computer will automatically

substitute the new line for rhe old one.
2. An unwanted line can be erased by simply typing the line number

and EEAMIH .

- You can also easily edit an existing line, using the cursor keys and

(o]

editing keys.

Suppose you made a typing mistake in a line of the example. To
correct it without retyping the entire line, try this:

Type LIST, then using the and keys together move the
cursor up until it is positicned on the line that nzeds to be charged.

Now, use the cursor-right key to mowve the cursor to the character you
want to change, typing the change over the old character. Now hit
and the corrected line will replace the old one.

If you need more space on the line, position the cursor where the
space is needed and hit and IR at the same time and a
spoce will open up. Now just type in the additional information and hit
. Likewise, you can delete unwanted characters by placing the
cursor to the right of the unwanted charccter and hitting the
key.

To verify that changes were entered, type LIST again, and the cor-
rected program will be displayed! And lines don’t have to be entered in
numerical order. The computer will automatically plece them in the
proper sequence.

Try editing cur sample program on page 33 by changing line 10 and
odding a comma to the end of the line. Then RUN the program again.

TS DONT FORGET TO MGVE THE
CURSOR PAST LINE 20 BEFORE
YOU RUN THE PROGRAM.

12 PRINT “COMMCDORE",

VARIABLES

Variables are some of the most used features of any programming
language, because variables can represent much more information in
the computer. Understanding how variables operate will make comput-
ing easier and allow us to accomplish feats that would not be possible
atharwise.

34

MODOKE CUMMULIUKEE |_ UFMULIUEE LUMMULORE
G [N r[u‘lFE OO0 COMMO0D0
LaMmMon
L[_Il"!f‘h

AOFIMC I|:I|'1F E

READY
&

Imagine a number of boxas within the computer that can each hold a
number or a string of texr characrers. Each of these boxes is to be
labeled with @ name that we choose. That name is called o variable
and represents the information in the respective box.

For example, if we say:

180 X% = 15
20 X — 23.5
30 X$ = “THE SUM OF X% +X = *

The computer might represent the variables like this:

X% 15
X 235

X$ THE SUM OF X% —X =

A variable name represents the box, or memory location, wherz the
current value of the varicble Is stored. As you can see, we can assign
either an integer numker, floating point number, or a text string to o
variable.

The % symbol following a variable name indicates the variable will
represent an integer number. The following are valid infeger variable
names:

35

A%
X%
Al%
NM%

The '$’ following the variable name indicates the variable will repre-
sent a text string. The following are examples of string variables:

A3

X3

PAIS

Floaling point variables follow the same format, with the type indi-
cator:

Al

X

b4

M

In assigning a name to a variakle there are a few things 1o keep in
mind. First, a variable name can have one or two characters. The first
character must be an alphobetic character from A to Z; the second
character can be either alphabetic or numeric (in ths range 0 1o 9). A
third character can be included to indicate the type of variable {integer
or fext string), % or $.

You can vse variable names having more than twe alphabetic
characters, but only the first two are recognized by the computer. So
PA and PARTNO are the same and would refer to the same variable
box.

The last rule for variable names is simple: “hey cant contain any
BASIC keywerds {reserved words) such as GOTO, RUN, etc. Refer back
tc Appendix D for a complete list of BASIC reserved words.

To see how variables can be pur to work, type in the complete pro-
gram that we introduced earlier and RUN it, Remember o hit

after each line in the program.

36

If you did everything as shown, you should get the following result

printed on the screen.

We've put together all the tricks learned so far to formar the display
as you see it and print the sum of the two variables.

In lines 10 and 20 we assigned an integer value to X% and assigned o
floating peint value to X, This puts the number associated with the vari-
able in its box. In line 30, we assigned a text string to X$. Line 40
combines the two types of PRINT statements to print a message ard the
actual value of X% and X. Line 50 grints the text string assigned to X§
and the sum of X% and X.

Note thar even though X is used as part of each variable name, the
identifiers % and $ make X%, X, and X$ unique, thus representing
three distinct variables.

But variakles are much more powerful. If you change their value, the
new value replaces the original value in the same box. This allows you
to write a statement like:

XK= X=1

This would never be accepted in normal algebra, but is one of the
most used concepts in programming. It means: taks the current value of
X, add one to it and place the new sum into the box represanting X.

IF ... THEN

Armed with the ability to easily update the value of variables, we can
now fry o program such as:

37

COMMODORE &
COMMODCORE ¢
o OORE &

COMMODORE &<

What we've done is introduce two new BASIC commands, and pro-
vided some control over our runaway little print program introduced at
the starr of this chapter.

IF . . . THEN adds some logic to the program. It says IF a condifion

holds true THEN do something. IF the condition no longer holds true,
THEN do the next line in the program.

A number of conditions can be set up in using an IF . . . THEN slute-
ment:
SYmMBOL MEANING

< Less Than
> Greater Than
= Equal To

<> Not Equal To

> = Greater Than or Equal To

< = Less Than or Equal To

The use of any one of these conditions is simple, yet surprisingly
powerful.

18CT =28
> 20 ?"COMMODORE 64"
[30 CT = LT 1
4% IF CT < 5 THEN 20

5@ END

38

In the sample program, we've set up a “logp” that has some con-
straints placed on it by saying: IF a value is less than some number
THEN da samething

Line 10 sets CT (CounT) equal ta 0. Line 20 prints our message. Line 30
odds one to the variable CT. This line counts how many times we do the
loop. Each time the loop is executed, CT goes up by one.

line 40 is our contral line. [f CT is less than 5, meaning we've exe-
cuted the loop less than 5 times, the program goes back to line 20 and
prints again. When CT becomes equcl to 5—indicating 5§ COMMODORE
64's were printed—the program goes to line 50, which signals to END
the program.

Try the program and see what we meen. By changing the CT limit in
line 40 you can have any number of lines printed.

IF . .. THEN has a multitude of other uses, which we’'ll see in futurs
examples.

FOR . . . NEXT LOOPS

There is a simpler, and preferred way to accomplish what we did in
the previous example by using o FOR . . . NEXT loop. Consider the
following:

HEM

e FOR CT =1 TGO S
28 FRINT "“COMMODORE &<"

38 HERT CT

ELIN
COMMODORE
COPMMO E

As you cen see, the program has become much smaller and more

direct.
CT starts al 1 in line 10. Then, line 20 does some printing. In Line 30

39

CT is incremented by 1. The NEXT statement in line 30 cutomatically
sends the program back to line 10 where the FOR part of the FOR . . .
NEXT statement is located. This process will continue until CT reaches tha

limit you entered.

The variable used in a FOR . . . NEXT loop can be incremented by
smaller amaounts than 1, if needed.
Try this:

NED

19 FOR HBE = 1 TO 18 STEP
FRINT ME.,
HEAXT HE

LN
b

(W]

DM

R
1
3

If you enter and run this program, you'll see the numbers from 1 to

10, by .5, printed across the display.
All we're doing here is printing the values that NB assumes as it goes

threugh the loop.
You can even specify whether the variable is incrzasing or decreus-
ing. Substitute the following for line 1Q:

19 FOR NB = 10 to | STEP —.5

and walch the vpposite occur, as NB goes from 10 to 1 in descending
order.

40

CHAPTER

ADVANCED BASIC

® |ntroduction

® Simple Animation
— Nested Loeps
INPUT

GET
Random Numbers and Other Functions

Guessing Game

Your Roll

Random Graphics
—CHRS$ and ASC Functions

® & & & @& 0

41

INTRODUCTION

The next ‘ew chapters have been written for people who have be-
come relativaly familiar with the BASIC progremming language and the
concepts necessary to write more advanced programs.

For those of you who are just starting to learn how to program, you
may find some of the information o bit too fachnical to understand
completely. But take heart. . . beccuse for these two fun chapters,
SPRITE GRAPHICS and CREATING SOUND, we've set up some simple
examples that are written for the new user. The examples will give you
a good idea of how to use the sophisticated sound and graphics
capabilities available on your COMMODORE 64.

If you decids that you went to learn more about writing pragrams in
BASIC, we've put a bibliography (Appendix N} in the kack of this man-
val.

If you are already familiar with BASIC programming, these chapters
will help you get started with advanced BASIC programming techniqu-
es. More deluiled infurmation can be found in the COMMODORE 64
PROGRAMMER'S REFERENCE MANUAL, available through your local

Commodore dealer.

42

SIMPLE ANIMATION

Let's axercise some of tha Cemmodore 64's graphic capabilities by

puting fogether what we've seen so far, together with a few new con-
cepts. If you're ambitious, type in the following program and see what
happens. You will notice that within the print statements we car also
include cursor contrals and screen commends. When yau see something
like {CRSR I.EI'T} in a program listing, hold the key and hit the
CRSR LEFT/ RIGHT key. The screen will show tne graphic representation
of a cursor left (two vertical reversed bars). In the same way, pressing

and BENAE shows as a reversed heart.

NEMW

REM BOUNCING BRLL T
PRINT " {CLR/HOME}"

- INDICATES NEW
COMMAND

25 FOR X =1 TO 18 : PRINT "{CRSRADOWN}": NEXT
38 FOR BL = 1 T0O 4@
43 PRINT"| @[CRSR LEFT!"::REM (® is a SHIFT-Q>
S8 FOR TH =4 T0 5
68 NEXT TM
26 NEXT BL THESE SPACES
75 REM MOVE gﬁtf/;IGHT TO LEFT ARE INTENTIONAL
20 FOR BL 30 70 1 STEP -1
98 PRINT"!{CRSR LEFT} {CRSR LEFT}®{CRSR LEFT}";
166 FOR TM = 1 TO 5
118 NEXT TH
120 MEXT BL
138 GOTO 28

TIP:

All words in this text will be completad an one line. However, as ong os you don't
il your 64 will automatically mave to the next line even in the middle of o

word,

The program will display a bouncing ball moving from left to right,
and back again, across the screen.
If we loock at the program closely, (shown on page 44) you can see

how this feat was accomplished.
Line 10 is a REMark that just tells what the program does; it has no

43

18 REM BOUHNCING BALL
—=2E6 PRINT "{CLR-HOME}"
25 FOR X = 1 10 18 : PRIHT " |[CRSRADOMWH} "z HEXT
2B FOR BL = 1 TO 48
48 PRIWNT" @{CRSR LEFT}"::REM <® is= 2 SHIFT—2)
538 FOR TMH = 1 TO S
68 HNEXT TH
—— 78 HMHEXT BL
7S REM MOVE BALL RIGHT TO LEFT
—238 FOR BL = 48 TO 1 STEF -1
9@ PRINT" {CRSR LEFT} {CRSR LEFT)®[CRSR LEFT] "
1Aéda FOR ™M = 1 To S
118 MEXT THM
——1228 HEXT BL
—13E GOTO 2&

effect on the program itself. Line 20 clears the screen of any informa-
tion.

Line 25 PRINTs 10 cursor-down commands. This just positions the ball
in the middle of the screen. If line 25 was eliminated the bell would

move ocross the top line of the screen.
Line 30 sets up a loop for moving the ball the 40 columns from the left

to right.

Line 40 does a lot of work. It first prints a space to erase the previous
ball positions, then it prints the ball, and finally it performs a cursor-left
to get avarything ready to erase the current ball position again.

The loop set up in lines 50 and 60 slows the ball down a bit by delay-
ing the program. Without it, the ball would move too fast to see.

Line 70 completes the loop that prints balls on the screen, set up in
line 30. Each fime the loop is executed, the ball moves another spacs to
the right. As you notice from the illustration, we have set up u loop
within a loop.

This is perfectly acceptakle. The only time you get in trouble is when
the loops cross over each other. It's helpful in writing programs to check
yourself as illustrated here to make surc the logic of a locp is correct.

To see whal would happen if you cross a loop, reverse the statements
in lines 60 and 70. You will get an error because the ccmputer gets
confused and cannot figure out what's going on.

Lines 80 through 120 just reverse the steps in the first part of the
program, and move the ball from right to left. Line 90 is slightly differ-
ent from line 40 because the kall is moving in the opposite direction {we
have to erase the ball to the right and move ta the laft).

44

And when that's all done the program goes back to line 20 to start the
whole process over again. Pretty neat! To stop the program hold
down and hit _

For a variation on the program, edit line 40 to read:

TO MAKE THE #, HOLD THE SHIFT

40 FRINT "8 ==\ bown AND HIT THE LETTER “Q."

Run the pregram and see what happens now. Because we left out the
cursor control, each ball remains on the screen until ercsed by the ball
moving right to left in the second part of the program.

INPUT

Up to now, everything within a program has been set before it is run.
Once the program was started, northing could be changed. INPUT
allows us to pass new information to @ program as it is running and
have that new information acted upon.

To get an idea of how INPUT works, type NEW ([[ESITERR and enter this

short program:

INPUT A%
PRIMT "S0U TYFED: ":A$ YOU TYPED
PRINT ~

4@ GOTO 1@ - COMPUTER

FUN —
7 COMMODORE &4~ = RESPONDED
YoUl TYPED: COMMODORE &4-="

What happens when you run this program is simple. A question mark
will appear, indicating that the computer is waiting for you to type
something. Enter any character, or group of characters, from the
keyboard and hit . The cemputer will then respond with “YOU
TYPED :* followed by the information you entered.

This may seem very slementary, but imagine what you can have the
computer do with any information you enter.

You can INPUT either numeric or string variables, and even have the
INPUT statement prompt the user with a message. The format of INPUT is:

INPUT "PROMPT MESSACE";VARIABLE

G

TN PROMPT MUST BE 38 CHARACTERS OF LESS.

45

Or, just:
INPUT VARIABLE
MOTE: To get cut of this program hold down the and

ceys.
The following program is not only useful, but demonstrates a lot of
what has been presented so far, including the new input statement.

HEW
1 REM TEMFERATUFRE COMYERSIOH PROGRAM

5 PRIMT "{CLE-HIME]}"
1@ FRIMT "COWVERT FROM FAHREMHEIT OF CELSIUS

CRACH" e IMPUT A%
26 IF AF = "W THEM 28
20 IF Af = "F" THEH 105 NO SPACGE
463 IF AF <> "C" THEH 18 HERE

59 IHFUT "EMTER DEGREES CELSIUZ: Y :C
S8 F = <C¥9H/5+4+32
@ PREIMT C:" DEG. CELSIMNS = "; F:" DEG.

DON'T

FRHREMHEI T
20 FRIMT FORGET
Qi@ GOTO 18 TO HIT

198 IHPUT "EHWTER DEGREES FAHREWNHEIT: ":F RETURN

116 T = (F-22H&%E/9

128 PRIMT F:" DEG, FAHREMHEIT = " Cs" DEG.
CELSIUS"
PRINT

128
146 GOTO 16

If you enter and run this program, you'll see INPUT in action.

Line 10 uses the input statement to not only gather information, but
also print cur prompt. Also notice that we can ask for sither a number or
string (by using @ numeric or string variable).

Lines 20, 30, and 40 do some checks on what is typed in. In line 20, if
nothing is entered (just is hit), then the program goes back te
line 10 and requests the input again. In line 30, if F is typed, you know
the user warts to convert a temperature in degrees Fahrenheit to Cel-
sius, so the program branches to the part that does that conversion.

Line 40 does one more check. We know there are only two valid
choices the user can enter. To get to line 40, the user must have typed
some character other than F. Now, a check is made to see if that char-
acter is a C; if not, the program requests input again.

This may seem like a lot of detail, but it is good programming prac-

46

tice. A user nat familiar with the program can become very frustrated if
it does something strange because a mistake was made entering infor-
mation.

Once we determina what type of conversion to perform, the program
does the calculation and prints out the temperature entered and the
converted temperature.

The caleulation is just straight math, using the esteblished formula for
temperature conversion. After the calculation is finished and answer
printed, the program loops back and starts over.

After running, the screen might laok like this:

CONYERT FREOM FAHREWHEIT OF CELSIUS <F/C2:
ENTEF DEGEEEZ FAHREENHEIT :
32 DEG. FAHREWHEIT = B8 DEG. CELSIUS

CONVERT FROM FAHRENHEIT OF CELSIUS
|

After running the program, make sure to save ir on disk or tape. This
program, as well as others presented throughout the manual, can form
the base of your program library.

GET

GET allows you to input one character of a time from the keyboard
without hitting [F2ILUM . This really speeds entering data in many appli-
cations. Whatever key is hit is assigned to the variable you specify with
GET.

The following routine illustrates how GET works:

HEM

1 PRINT " {CLR/HOME} "

18 GET A¥: IF A% = "|" THEH i@ HERSEPACE
28 PRINT A%:

28 GOTO 18

47

If you RUN the program, the screen will clear and each time you hit @
key, line 20 will print it on the display, and then GET anotner character.
It is important to note that the cheoracter entered will not be displayed
unless you specifically PRINT it to the screen, as we've done here.

The second statement on line 10 is also important. GET continuclly
works, even if no key is pressed (unlike INPUT that waits for a response), I
so the second part of this line continually checks the keyboard until a key
is hit.

See what happens il the second part of line 10 is eliminated.

To stop this program you can hit the and keys.

The first part of the temperature conversion program could easily be
rewritten to use GET. LOAD the temperature conversion program, and
modify lines 10, 20 and 40 as shown:

1@ PRINT "CONYERT FROM FAHREMHEIT 0OR CELSIUS

CFACO" —
z@ GET A$: IF A$ = " THEW 20 NO SPACE
48 IF A% <> "C" THEN 28 HERE

This modification will make the program operate smoother, as nothing
will happen unless the user types in cne of the desired responses to
select the type of conversion.

Once this change is made, make sure you save the new version of the
program.

RANDOM NUMBERS AND OTHER FUNCTIONS

The Commodore 64 contains a number of functions that are used to
perform special operations. Functions could be thought of as built-in
programs included in BASIC. But rcther than typing in @ number of
statements each time you need to perform a specialized calculation, you
just type the command for the desired function and the computer dces
the rest.

Many times when designing o game or educational program, you =
need to ganerate a random number, to simulate the throw of dice, for
exomple. You could certainly write @ program that would generate these
numbers, but an ecsier way to call upon the RaNDom number function.

To see what RND actually does, try this short program:

48

NER

180 FOR X = 1 TO 1@ - = YT
2a PRINT RNDC1), -3 IF YOU LEAVE OUT THE COMMA YOUR LIST

OF NUMBERS WILL APPEAR
38 NEXT AS 1 COLUMN

After running the program, you will see a display like this:

Your numbers don’t match? Well, if they did we would all be in
trouble, as they should be completely random!

Try running the program a few more times to verify that the results are
always different. Ever if the numbers don‘t follow any pattern, you
should start to notice that some things remain the same every time the
program is run.

First, the results are always between 0 and 1, but never equal to 0 or
1. This will certainly never do if we want ta simulate the randam toss aof
dice, since we're looking for numbers between 1 and 6,

The othar important feature ro look for is that we are dealing with real
numbers (with decimal places). This could also be a proklem since
whole (integer) numbers are often needed.

There are o number of simple ways to produce numbers from the
RND funclion in the range desired.

Replace line 20 with the faollowing and run the program agcin:

20 PRIMNT c#RHDOCL),

=M

a9

That cured the problem of not having results larger than 1, but we still
have the decimal part of the result to dzal with. Now, another function
can be called upon.

The INTeger function converis real numbers into integer values.

Once more, replace line 20 with the following and run the program to
see the effect of the change:

28 FEINT IHT< MO 20,

That took core of a lot, getting us closer to our original goal of
generating random numbers between 1 and 6. If you examine closely
what we generated this last time, you’ll find that the results range from
0 to 5, only.

As o last step, add a cne to the statement, as follows:

20 PRINT INT(6*RND(1))+1,

Now, we have achieved the desired results,

In general, you can place a number, variable, or any BASIC expres-
sion within the parentheses of the INT functian. Dapending on the range
desired, you just multiply the upper limit by the RND function. For
example, to generate random numbers between 1 and 25, you could

type:
2@ PRINT INT(25"RND(1)+1

The general formula for generating o set of random numbers in «
certain range is:

NUMBER=INT(LOWER LIMIT+(UPPER~LOWER+1)*RND(1))

GUESSING GAME

Since we've gone lo some lengths 1o understand random numbers,
why not put this information to use? The following game not only illus-

50

trates a good use of random numbers, but also infroduces some addi-
fional programming theory.
In running this program, a random number, NM, will be generated.

. INDICATES NO
SPACE AFTER
QUOTATION MAR

NEW

1 REM NUMBER GUESSIHG GAME

2 PRINT "{CLRA/HOME}"

2 IWFUT "ENTER UPFER LIMIT FOR GUESS ":LI

18 HM = INTCLINRRHDC122+1

15 CH =28

22 FPRINI "1°VYE GOT THE HUMBER. " iPRINT

28 IMFUT "WHAT'S YOUR GUESS"; GLU

35 CH =CH + 1

48 IF GU > NHM THEN PRIWT "MY HUMBER IS
LOWER": PRINT : GOTO 3@

S8 IF GU < NM THEM PRIHT "My HUMBER IS
HIGHER" : PRINMT = GOTO 28

6d FRIMT “GREAT! YOU GOT MY NUMBER™

€5 PRINT "IM OMLY ": CH "GUESSES. " :PRINT

78 PRINT "DO Y0OU WAMT TO TREY AHOTHER <Y-M)":

88 GET AN : IF ANF="" THEM S8
9@ IF HHME = "Y" THEH Z

198 IF AHF <> "H" THEH 7@

119 END

You can specify how large the number will be atr the srart of the pro-
gram. Then, it's up to vou 1o guess what the number is.
A sample run follows along with an explanation.

[EMTER UFPER LIM OF GLE
I°%E GOT THE HUME

LIHAT | FAE
My HLU A O

00 YU WAMT TO TEY AHOTHEE 4Y-SH>

31

IF/THEN statements compare your guess to the number generated.
Depending on your guess, the program fells you whether your guess was
higher or lower than the random number generated.

From the formula given for determining random number range, see if
you cun udd ¢ few lines to the progrom that allow the user to also
specify the lower range of numbers generated.

Each time you make a guess, CN is incremented by 1 to keep track of
the number of guesses. In using the program, see if you can use good
reasoning to guess a number in the least number of tries.

When you get the right answer, the program prints out the “GREAT!
YOU GQOT MY NUMBER” message, along with the number of tries it took.
You can then start the process over again. Remember, the program

generates a new random number sach time.

PROGRAMMING TIPS:

In lines 40 and 50, o colon is used to separate mullipls slatements on o single line
This not orly saves typing, bu® In long programs will conserve memory spoce.

Also notice in the IF/THEN starements on the some two lines, we instructed the
computer 1 FRINT something, rather than immediately branching 1o some cther poin:
in the program.

The last point illustrates the reason behind using line numbers in increments of 10
After the progrom was written, we decided tc add the count parnt. By just adding
those new lines at the end of the program, numberec to fall between the proper
existing lines, the progrom was easily modified.

YOUR ROLL

The following program simulates the throw of two dice. You can enjoy
it as it stands, or use it as part of a larger game.

S PRINT " Care to try wour luck? ™

18 PRINT "ERED DICE = ":INT(E¥RENDC1223+1

28 PRINT "WHITE DICE = ":INT{6#RHD{133+1

38 PRIMT "HIT SPACE BAR FUORE ANOTHER RULL" :FPRIHT
48 GET A%$: IF A¥ = "" THEN 48

58 IF A% = CHR#(32> THEHN 18

Care to try your luck?
From what you've learned about random numbers and BASIC, see if
you can follow what is going on.

52

RANDOM GRAPHICS

As a final note on random numbers, and as an introduction to design-
ing graphics, take o moment to enter and run this neat little program:

id PRIHT " {CLR-HOME}"
28 FRIHT CHEA 5.5 + FRHDC12 3 2

43 GOTO 26

As you may hove expected, line 20 is the key here. Another function,
CHR$ (Character Siring), gives you a character, based on a standard
code number from 0 to 255. Every character the Commodore 64 can
print is encoded this way (see Appendix F).

To quickly find out the code for any character, just type:

PRINT ASC("X")

where X is the character you're checking (this can be any printable

character, including graphics). The response is the code for the char-

acter you typed. As you probably figured out, “ASC"” is another function,

which returns the standard “ASCIlI” code for the character you typed,
You car now print that character by typing:

PRINT CHR$(X)

If you fry fyping:
PRINT CHR$ (2¢5); CHR$(2¢I6)

you will see the two right side graphic characters on the M and N keys.
These are the two characters that the program is using ‘or the maze.

By using the formula 205.5 + RND(1) the computer will pick a random
number betwezn 205.5 and 206.5. There is a fifty-fifty chance cof the
number being above or below 206. CHRS igneres any fractional values,
so half the time the character with code 205 is printed and the remain-
ing time code 206 is displayed.

If you'd like to experiment with this program, try changing 205.5 by
adding or subtracting a couple tenths from it. This will give either char-
acter a greater chance of being selectad.

53

CHAPTER 5

ADVANCED COLOR
AND GRAPHIC
COMMANDS

® Color and Graphics
® PRINTing Colors

® Color CHRS Cedes
® PEEKs and POKEs

® Screen Graphics

® More Bouncing Balls

55

COLOR AND GRAPHICS

Up to now we've explored some of the sophisticated computing
capabilities of the Commodore 64, But one of its most fascinating fea-
tures is an outstanding ability to produce color and graphics.

You've seen o quick example of graphics in the “bouncing ball” and
“"maze” programs. But these only touched on the power you command.
A number of new concepts will be introduced in this section to explain
graphic and color pregramming and show how you can create your own
gumes und advanced animation.

Because we've concentrated on the computing capabilities of the mo-
chine, all the displays we've generated so far were a single color (light
blue text on a dark blue background, with a light blue barder).

In this chapter we'll see how v udd color le programs and centrol dll

those strange graphic symbols cn the keyboard.

PRINTING COLORS

As you discovered if you tried the color alignment test in Chapter 1,
you can change rext colars by simply holding rhe key ana one of
the color keys. This works fine in the immediate mode, but what hap-
pens if you want to incorporate color changes in your programs?

When we showed the “bouncing ball” orogram, you saw how
keyboard commands, like cursor movement, could be incorporated
within PRINT statements. In a like way, you can clso add text color
changes to your programs.

You have a full range of 16 text colors to work with. Using the [[S[I8
key and a number key, the fallowing colors are avcilable:

| 2 3 4 5 & 7 8

Black While Red Cyun Purple Green Blue ‘Yellow

If you hold down the E key along with the appropriate number
key, these additional eight colors can be used:

] Z 3 4 s 6 7 B
Orance Brown Lt. Gray 1 Gray 2 Lt. Lt. Gray 3
Rad Green Blue

TYPE NEW, and experiment with the following. Hold down the [l
key and at *he same time hit 1hekey. Next, hit the ﬂkey without

56

holding down the [l key. Now, while again depressirg the B ey
at the same time hit the Ellkey. Release the ey and hit the [[Jkey.
Move through the numbers, alternating with the letters, and type out the
word RAINBCW as follows:

10 PRINT” R, A I N B O W*
g G Ol

oo [1]2]3]afs]6]7)

RUN
RAINBOW

Just as cursor controls show as graphic characters within the quote
marks of print statements, color controls are also represented as graphic
characters.

In the previous example, when you held down (G ord typed @ a
“£" was displayed. SRl displayed a “<. Each color control will
display its unique graphic code when used in this way, The table shows
the graphic represertaticns of each printable color contro.

KEYBOARD COLOR DISPLAY KEYBOARD COLOR DISPLAY
[crre | 1 PR [] ¢] ORANGL &
[c1RL | 2 VI [C=| BROWN £2
[cire | 3 JREETES E & T. RED [
CTRL CYAN Al BB cra O}
crrL | 5 RIS E: |] GRAY 2 e
[CTRL [6 JNELEEN 1] B v oren |
3LUE = (] 7. BLUE &
38 cuow BB ok -

Even though the PRINT statement may look a bit strange on the
screen, when you RUN the program, only the text will be displayed. And
it will automeatically change colors according to the color controls you
placed in the print statement.

Try a few examples of your own, mixing any rumber of colors within a
single PRINT statement. Remember, teo, you can use the second set of
rext colors by using the Commeadore key and ihe number keys.

TIP:

You will natee afer running a program with color or moade (reverse) changes, that the
"READY" prompt and any additienal text you type is the same as the last color or
maode change. To get back to the normal display, remember to depress:

57

COLOR CHR$ CODES

Take a brief look ot Appendix F, then turn back to this section.

You may have noticed in looking over the list of CHR$ codes in
Appendix F that each colar {as well as most other keyboard controls,
such as cursor movement) has a unique code. These codes can be
printed directly to obtain the some results as ryping and the
appropriate key within the PRINT statement.

For examgle, try this:

HEWM
18 FRINT [CHE:
28 FRINT CHR#F:S0 : "CHE 4 CHARK HE Too"

ax CHAMGES ME TO#

The text should now be green. In muny cuses, using the CHR$ func-
tion will be much easier, especially if you want to experiment with
changing colors. The following program is a different way to get a rain-
bow of colors. Since there are a numker of lines that are similar (40
110) use the editing keys to save a lot of typing. See the notes after the
listing to refresh your memory on the editing procedures.

HNEW

L EEM AUTOMATIC COLOR EARS

S FRIMT CHE£0147) : REM CHRE#{147>= CLE/HOME
18 FREINT CHREfFC122 " " r:REM REVERIE EAR
28 CL = INMTCERMDOCL 2 +]

A OM CL GOTO 48,568,508, 70 ,50,30,180,118

4d FRINT CHREFCS2;:: GOTO 1@

o8 FRIMT CHEFcCZS r: GOTOD 19
EA FRIMNT CHREZ 2 GOTO 18
FH PRINT CHREC21 2 GOTO 1@
ZE PRIMT CHE$OL440 20 GOTO 168
S PRINT CHES(LSE sz GOTO 16
188 PRINT CHREFC1SS2:: GOTO L&
118 PRINT CHREC1ISS2:: 5070 18

58

Type lines 5 through 40 normally. Your display should look like this:

EDITING NOTES

Use the CRSR-UP key to position the curser on line 40. Then type 5
over the 4 of 40. Next, use the CRSR-RIGHT key to move over to the 5 in
the CHR$ parentheses. Hit to open up a space and type
'28'. Now just hit with the cursor anywhere on the line.

The display should now lock like this:

HEW

Don‘t worry. Line 40 is still there, LIST the program and see. Using the
same procedure, cortinue to modify the lost line with a new line number
and CHRS coade until all the remaining lines have been entered. See, we
told you the editing keys would come in handy. As o final check, list the
entire program to make sure all the lines were entered properly before
you RUN it.

Here is a shart explanation of what's geing on.

You've probably figured out most of the color bar pregram by now
except for some strange new statement in line 30. But let’s quickly see

59

what the whole pregram actually does. Line 5 prints the CHR$ code for
CLR/HOME.

Line 10 furns reverse type on and prints 5 spaces. which turn auf to he
a bar, since theyre reversad. The first time through the program the bar
will be light blue, the normal lext color.

Line 20 uses our workhorse, the random function to select a random
color between 1 ard 8.

Line 30 contains a variatian of the IF . . . THFN statemeant which is
cdlled ON . ., GOTO. ON . . . COTO allows the program to choose
from a list of line numbers to go to. If the variable (in this case CL) has a
value of 1, the first line number is the one chosen (here 40). If the value
is 2, the second number in the list is used, etc.

Linee 40 110 just convert our random key colors to the appropriate
CHR$ cade for thar coler and return the program to line 10 to PRINT a
section of the bar in that color. Then the whole process starts over
again.

See if you can figure out how to produce 16 random numbers, ex-
pand ON . . . GOTO to handle them, and add the remaining CHR$
codes to display the remaining 8 colors.

PEEKS AND POKES

Na, wa're not talking about jabbing the computer, but we will be able
to “look around” inside the machine and “slick’ things in there.

Just as variables could be thought of as a representation of “boxes”
within the machine where you placed your information, you can also
think of some specially defined “boxes” within tha computer that repre-
sent specific memory locations.

The Commodore 64 looks at these memory locations to see what the
screzn's background and border color should be, what characters are to
be displayed on the screen—and where—and o host of other tasks.

By placing, “POKEing,’ a different value into the proper memory lou-
cofion, we can change colors, define and move cbjects, and even
create music.

These memory locations could be represented like this:

53280 53281 | 53282 53783
X Y
BORDER BACKGRQUND
COLOR COLOR

60

On page 60 we showed just four locations, two of which control the
screen and background colors. Try fyping this:

POKE 53281,7 IGALL

The background color of the screen will change to yellow because we
placed the value '7'—for yellow—in the location that controls the
background color of the screen.

Try POKEing different valuas inta the background color location, and
see what results you get. You can POKE any value between C and 255,
but only O through 15 will work.

The actual values to POKE for each color are:

0 BLACK 8 ORANGE

| WHITE 9 BROWN

2 RED 10 Light RED

3 CYAN 1 GRAY 1

4 PURPLE 12 GRAY 2

5 GREEN 13 Light GREEN
6 BLUE 14 Light BLUE
7 YELLOW 15 GRAY 3

Can you think of a way to disploy the various background and border
combinations? The following may be of some help:

Twe simple loops were set up to POKE various values to change the
background and border colors. The DELAY loop in line 50 just slows
things down a bit.

61

For the curious, try:

? PEEK (53288) AND 15

You should get a value of 15, This is the last value BORDER was given
and muakes sense because both the background and border colers are
GRAY (value 15) after the program is run.

By entering AND 15 you eliminate all other values except 1—15, be-
cause of the way color codes are stored in the computer. Normally you
would expect to find the same value that was last POKEd in the location.
In general, PEEK lets us cxamine a specific location and see what value
is presently there. Can you think of a one line addition to the program
that will display the value of BACK and BORDER as the progrem runs?
How about this:

25 PRINT CHR$(147); “BORDER = “;PEEK (53280) AND 15, “BACK-
GROUND = “; PEEK (53281) AND 15

SCREEN GRAPHICS

In all the printing of information that you‘ve done so far, the computer
normally handled information in @ sequential tashion: one character is
printed after the nexf, starting from the current cursor position (except
where you asked for a new line, or used the *," in PRINT formatting),

To PRINT data in a particular spot you can start from a known place
on tha screen and PRINT the proper number of cursar controls to format
the disploy. But this takes program steps and is lime consuming.

Bur just as there are certain spots in the Commodore 64’s memory o
control color, there are also locations that you can use to directly control
each location on the screen.

SCREEN MEMORY MAP

Since the computer’s screen is capable of holding 1000 characters (40
columns by 25 lines) there are 1000 memory locations set aside to han-
dle what is placed on the screen. The loyout of the screen could be
thought ot as a grid, with each square representing a memary location.

And since each location in memary can contain a number from 0 to
255, there are 256 possible values for each memory location. These
values represent the different characters the Commodore 64 can display
(see Appendix E]. By POKEing the value for a character in the appro-

62

priate screen memory location, that character will be disployed in the
proper position.

COLUMN
0 10 0 30 39

1063
t

1024 —] I 0
1064 I
1104
[14¢
118¢ L
122¢ HE
1264

1304
1344
138¢ qE
1424 | . ! 10
1464
1504
544
584 [
624 |
1664 | |
1704 1 I I
1744 T |
184 |
824 |
1864 I 2
1904 T
944
984 2

o

1
2023

Screen memory in the Commodore 64 normally begins at memory
location 1024, and ends at location 2023. Location 1024 is the upper left
corner of the screen. Location 1025 is the position of the next character
to the right of that, and so on down the row. Location 1043 is thé
right-most position of the first row. The next location following the last
character on a row is the first character on the next row down.

Now, let's say that you're controlling a ball bouncing on the screen.
The ball is in the middle of the screen, column 20, row 12. The formula
for calculation of the memory location on the screen is:

o —
POINT — 1024 + X + 45*Ym____h_:::vw

whers X is the column and Y is the row.
Therefore, the memory location of the ball is:

COLUMN

. — ROW (40" 12)

1924 + 20 + 480 or 1524
. -

63

Clear the screen with and and type:

POKE 1524,81
POKE 55796,1
COLCR

————— LOCATION

COLOR MEMORY MAP

A bell appears in the middle of the screen! You have placed a char-
acter direclly into screen memory without using the PRINT statement.
The ball that appeared was white. However there is a way to change
the color of an object on the screen by altering another range of mem-
ary. Type:

POKE 55796,2- o

The ball’s ccler changes to red. For every spot on the Commodore 64's
screen there cre two memory locations, one for the choracter code, and
the other for the color code. The color memory map begins at location
55296 (top lefi-hand corner), and confinves on for 1000 locations. The

COLUMN
0 1o 2 30 9

33335

o
&
=
3
&
=

Moy

en
en
2
&

36096 20

56295

same color codes, from 0-15, that we used to change border and
nackground colors can be used here ta directly change character colors.

The formule we used for calculoting screen memory locations can be
modified to give the locations to POKE color codes. The new formula is:

COLOR PRINT = 55296 — X + 4@*Y

MORE BOUNCING BALLS

Here's a revised bouncing ball program that prints directly on the
screen with POKEs, rather than using cursor controls within PRINT state
ments. As you will see after running the program, it is much more flexi-
ble than the earlier program, and will lead up to programming much
more sophisticated animation.

NEW

18 PRINT "{CLR/HOME}"

28 POKE S328a,7 : POKE 53281.132
388 =13:31Y%Y=1

48 DX =1 : DY = 1

58 POKE 1824 + < + 40#%Y .81

&8 FOR T = 1 TO 1@ @ MERT

78 FOKE 1824 + # + 40%Y,32

B8 X = X + DX

598 IF ¥ {= 8 0R K 2> =29 THEN DX = -DX
1@ ¥ = VY + OY

118 IF ¥ <=8 OR ¥ >= 24 THEN DY = -OY
128 GOTO 58

Line 10 clears the screen, and line 20 sets the background to light
green with a vellow border.

The X and Y variables in line 30 keep track of the current roew and
column position of the ball. The DX and DY variables in line 40 are the
hotizontal and vertical direction of the ball’'s movement. When o +1 is
added ta the X value, the ball is maved to the right; wher —1 is added,
the ball moves to the left. A +1 added to Y moves the ball down a row;
a —1 cdded 1o Y moves the ball up a row.

Line 50 puts the bell on the screen at the current cursor positien. Line
40 is the familiar delay loop, leaving the ball on the screen just long
enough to see if.

Lline 70 erases the ball by putting a space (code 32) where the ball
was on the screen.

635

Line 80 adds the direction facter 1o X. Line 90 tests to see if the ball
has reached one of the side walls, reversing the direction if there’s a

bounce. Llines 100 and 110 do the same thing for the top and bottom
walls.

Line 120 sends the program back to displuy und mcves the ball
again,

By changing the code in line 50 from 81 to another character code,
you can change tha ball to any other character. If you change DX or DY
to O the ball will bounce straight instead of diagonally.

We can also add a little more intelligence. So far the only thing you
checked for is the X and Y veclues getting cut of bounds for the screen.
Add the following lires to the program.

21 FOR L =1 TO 18
25 POKE 1824 + INTCRHD<I»>#18883, 145

27V HEXT L

25 IF PEEK<1824 + X + <40#%Y: = 145 THEN DX = —DOX:
GOTO 24

103 IF PEEK<1@z24 + X + 42#%Y2 = |5 THEM DY = -[0y!
GOTO iaa

Lines 21 to 27 put 10 blocks en the screen in random positions, Lines
85 and 105 check (PEEK) to see if the ball is about to bounce into a
block, and changes the ball’s direction if so.

66

CHAPTER 6

SPRITE GRAPHICS

Introduction to Sprites

Sprite Creation
Additional Neotes on Sprite
Binary Arithmetic

[-14

INTRODUCTION TO SPRITES

In previous chapters dealing with graphics, we saw that graphic
symbols could be used in PRINT stetements to create animarion and add
chartlike appeararces to our displays.

A way was also shown to POKE character codes in specific screen
memory locations. This would then place the appropriate characters di-
rectly on the screen in the right spot.

Creating animarion In both these cases requires a lot of work because
cbjects must be created from existing graphic symbols. Maving the ok-
ject requires a number of program statements o kezsp track of the ok-
ject and move it to a new spot. And, because of the limitation of using
gruphic symbals, the shape and resolution of the object might not be as
good as required.

Using sorites in animated sequences eliminates a lot of these prob-
lems. A sprite is a high-resolution programmable object that can be
made into just uboul uny shupe—through BASIC commands. The object
car ke easily moved around the screen by simply telling the computer
the position the sprite should be moved to. The computer takes care of
the rest.

And sprites have much more power than just that. Their color can be
changed; you can tell if one object collides with another; they can be
made to go ir front and behind another; and they can be easily ex-
panded in size, just for starters.

The penalty for all this is minimal. However, using sorites requires
knowing some more details about how the Commodore 64 operates and
how numkers are handled within the computer. It's not as difficult as it
sounds, though. Just follow the examples and vou'll be making your own
sprites do amazing things in no time.

SPRITE CREATION

Sprites are controlled by a s2parate picture-maker in the Commodore
é&4. This picture maoker handles the video display. It daes all the hard
work of creating and keeping track of characters and graphics, creating
colors, and meving around.

Tnis display circuit has 46 different “ON/OFF” locations which act like
internal memory locations. Each of these lozations breaks down inte a
series of 8 blocks. And each block can either be “on® or "off”. We'll get
into more detail about this later. By POKEing the appropriate decimal
value in the proper memory location you can control the formation and
movement of your sprite creatiors.

&8

In addition to accessing many of the picture making locations we will
also be using some of the Commodore 64's main memory to store infor-
mation (data) that defines the sprites. Finally, eight memary lacations
directly after the screen memory will be used to tell the computer exactly
which memory area each sprite will get its data from.

As we go through some examples, the process will be very
straightforward, and vou'll get the hang of it

So let's get on with creating some sprite graphics. A sprite object is 24
dots wide by 21 dots long, Up 1o eight sprites can be controlled or a
time. Sprites are displayed in a special independent 320 dot wide by
200 det high area. Howevar, you can use your sprite with any mode,
high-resolution, low-resolution, text etc.

Say you want to create a balloon and have it floal around the sky.
The balloon could be designed as in the 24 by 21 grid on page 70.

The next step is to convert the graphic design into data the computer
can use. Get a piece of notebock or graph paper and set up a semple
grid that is 21 spaces down and 24 spaces across. Across the top write
128,64,32,16,8,4,2,1, three times (as shown) for eoch of the 24
squares. Number down the left side of the grid 1-21 for each row. Write
the word DATA at the end of each row. Now fill in the grid with any
design or use the balloon that we have. t's easiest to outline the shape
first and then go back and fill in the grid.

Now if you think of all the squares you filled in as “on” then substitute
a 1 for each filled square. For the one’s that aren’t fillec in, they’re “off”
so put o zero.

Starting on the first row, you need to convert the dots into three sepa-
rate pieces of dato the computer can read. Each set of 8 squares is
equal to ane piece of data called a byte in our balloon. Working from
the left, the first B squares are blark, or 0, so the value for that series of
numbers is 0.

The middle series lcoks like this {again a 1 indicates a dot, 0 is a
space):

8. 84 @ 6 % 4 8§

ENENNEEREY ERENEN

I
2

0+ 64+32+16+ 8 + 4 + + 1= 127

The third series on the first row also contains blanks, so it, too, equals

zero. Thus, the data for the first line is:

DATA 0, 127, O

69

SERIZS SERIES SERIES

|
|
128 32 8 2{2832821283282
f4 16 4 1)
L

D00 =1 O3 UN b GO P e

ROW

L I
1 5 10 15 20 2
COLUMN

The series.that make up row two are calculated like this:

Series1: 0 [0 | o 0o [ol oo 1]
T
Series2:[1 [1 [v [1 J 1 [1 [1 [
i i) T 7 7 T I T
128 + 64 +32 + 16 +8 +4 +2 + 1 =255

Series 3:[1 it [oJoTJToTJ] o] oo |
(I

128 + 64 = 192

For row 2, the data would be:
DATA 1,255,192

In the samz way, the three series that make up each remaining row
would be converted into their decimal value. Tcke the time to dc the

remainder of the conversion in this example.
Now that you have the data for your object, how can it be put fo use?
Type in the following program and sce what happens.

70

1 REM UP, UP. FHND RLAY!
5 PRINT "{CLR/HOHME}"
18 ¥Y=5323242 : REM START OF DISPLAY CHIP
11 POKE V+21.4 : REM EMABLE SFRITE 2
12 POKE 2842,12 1 REM SPRITE 2 DATA FROM 13TH BLK
28 FOR M = 8 TO 623 READ @ : POKE 232+M,.G: HEXT
30 FOR X = 8 TO 298 A GETS TS INFO. FROM DATA®
48 POKE V+4,¥: REM UPDARTE < COORDIMATES
56 POKE V+5,¥: REM UPDATE ¥ COORDINRTES
66 MEMT X
78 GOTO 30 _-~INFO READ IN FROM @*
2600 DATA“D,127,9,1,255,192,3,255,224,2,221 ,224
219 DRATA 7,217,248,7,223,246,7,217,.2408,2,221_,224
2286 DATA 32,255,224,2,255,224,2,255,160,1,127,64
220 DATA 1.62.64.8, 156,128,8,156,128,4,732,8,48,732.4
248 DATA B.62.8.8.62_.43.8,.62,A4.A.28.4
*“EOR MORE DETAIL OM READ & DATA SEE CHAPTER B,
If you typed everything correctly, your balloon is smocthly flying
across the sky (page 72).
In order ‘o understand what happened, first you need to know what
picture making locations contral the functions you need. These locations.

called registers,could be illustrated in this manner:

Register(s) Description

0 X coardinate of sprite 0

] Y coordinate cf sprite 0

2 — 15 Paired like 0 and 1 for sprites 1-7

16 Meost Significant Bit—X Cocrdinate
21 Sprite appear: | =appear 0=disappear
29 Expand sprite in “X" Direction
23 Expand sprite in “Y" Direction
39 — 46 Sprite 0 — 7 color

In addition to this information you need to know from which 64 byte
section sprices will get their cata (1 byte is not used).

This dara is handled by 8 locations directly after screen memory:

[2040 a1 | 42 [43 [44 | 45 | 46 2047 |
1 1 1 1 1) 5

SPRITE © 1 2 3 4 5 6 7

Now let’s outline the exact procedure to get things moving and firally
write a program.

71

ACTUAL SCREEN FHOTO

There are only a few things necessary tc actually create and move an

object.

1. Muake the proper sprite(s) cppear on the screen by PCKEing into lo-
cation 21 a 1 for the bit which turns cn the sprite.

2. Set sprite pointer (locations 2040-7) to where sprite data should be
read from.

3. POKE cctual data into memory.

4. Through a lcop, update X and Y coordinates to move sprite around.

5. You can, optionally, expand the object, change colors, or perform a
variety of special functions. Using Iocation 29 to expand yeur sprite in
the “X" direction and location 23 in the “Y" direction.

There are only a few items in tne program that might not be familiar
from the discussion sa far.

In line 10;

V=53248
sets V to the starting memory location of the video chip. In this way we
just increase V by the memary number to get the actual memory loca-
tion. The register numbers are the anes given on the sprite register map.

72

In line 11,

POKE Y+21 .4
makes sprite 2 appear by placing a 4 in what is called the sprife enable
register (21) to turn on sprite 2. Think of it like this:

5PRITES

Decimal values of sach
/ sprite number
Sprite Lavel Number

128 54 32 16 g 4 2 1

~
o
B
L
L]
(=]

Put a | For The SPRITE You Want

Each sprite level is represented in section 21 of the sprite mamory and
4 happens to be sprite level 2. If you wers using level 3 you would put a
1 in sprite 3 which has a value of 8. In fact if you used both sprites 2
and 3 you would put o 1 in both 4 and B. You would then aodd the
numkers together just like you did with the DATA on your graph paper.
So, turning on sprites 2 and 3 would be represented os V+21,12.

In line 12;

POKE 2042,13
instructs the computer fo get the data for sprite 2 (location 2042) from
the 13th area of memory. You know from making your sprite that it
takes up 63 sections of memory. You may not have realized it, but those
numbers you put across the top of your grid equal what is known as 3
bytes of the computer. In other words each collection of the following
numbers, 128,64,32,1¢,8,4,2,1 equals 1 byte of computer memery.
Therefore with the 21 rows of your grid times the 3 bytes of each row,
each sprite takes up 63 bytes of memeory. eI N e EITE

{
20 FOR N = ¢ to 62: READ Q: PCKE 832+N,Q: NEXT

This line handles the actual sprite creation. The 63 bytes of data that
represent the sprite you crecated are READ in thrcugh the loop and
POKEd into the 13th block of memory. This starts at lccation 832,

39 FOR X =8 TO 270

40 POKE V+4X — ——{PRITE Zs X COORDINATE)
50 POKE V+3X _—{SFRITE Z5 Y COORDINATLY

If you remember from school the X coordinate represents an objects
horizontal movement acrass the screen and the Y coordinate represents
the sprite’s vertical movement across the screen. Therefore as the values

T3

of X change in line 30 from 0 to 200 (one number at a time) the sprite
moves across the screen DOWN and TO THE RIGHT one space for each
number. The numbers are READ by the computer fast enough o make
the mowvement appeadr to be continuous, instead of 1 step at a time. If
you need more details take a look at the register map in Appendix O.

When you get into moving mulfiple objects, It would be impossible for
one memory section to update the locations of all eight objects, There-
fore each sprite has its own set of 2 memory sections to make it move on
the screen.

Line 70 starts the cycle over again, after one pass on the screen. The
remainder of the program is the data for the balloon. Sure looks differ-
ent on the screen, doesn’s it?

Now, try adding the following line:

25 POKE V+23,4 : POKE V+29,4: REM EXPAND

and RUN the program again. The bclloen has expanded fo twice the
original size! What we did was simpla. By POKEing 4 (again to indicate
sprite 2) intfo memory sections 23 and 29, sprite 2 was expanded in the
X and Y direction.

It's important fo note that the sprite will start in the upper left-hand
corner of the object. When exoanding an object in either direction, the
starting point remains the same.

For some added excitement, mcke the following changes:

11 POKE V+21,12
12 POKE 2242,13 : POKE 20243,13
30 FORX = 1to 198
45 POKE V+6,X
55 POKE V+7,198—X
A second sprite (number 3) has been turned on by POKEing 12 into the
memoary location tha: maokes the sprite appear (V+21). The 12 turns
sorites 3 and 2 on (00001100 = 12).
The added lines 45 and 55 move sprite 3 around by FOKEing values
inta sprite 3's X and Y coordinate locations (V+6 and V+7).
Want to fill the sky with even more action? Try making these addi-

fians: 78 15 REALLY 4 (SPRITEZ) + 8
(SPRITE 3) + 16 (SPRITE 4)
11 POKE V+21,28

12 POKE 2042,13:POKE 2043,13:POKE 2044,13
25 POKE V+23,12 : POKE V+29,12

4B POKE V+8.X

5B POKE V+9,100

74

In line 11 this time, another sprite (4) was made to appear by POKE-
ing 28 info the appropriate “on” location of the sprite memory section.
Now sprites 2-4 are on (00011100 = 28).

Line 12 indicates that sprite 4 will get its data from the same
memory area (13th 63 secfion area) as the other sprites by POKEing
2044,13.

In line 25, sprites 2 and 3 are expanded by POKEing 12 (Sprites 2
and 3 on) into the X and Y direction expanded memory locations (V+23
ond V+29).

Line 48 moves sprite 3 along the X axis. Line 58 positions sprite 3
halfway down the screen, ot location 100. Becouse this value does not
change, like it did before with X=0 to 200, sprite 3 just moves horizon-
tally.

ADDITIONAL NOTES ON SPRITES

Now that you've experimented with sprites, a few more words are in
order. First, you can change a sprite’s color to any of the standard 16
color codes (0-15) that were used to change character color. These can
be found in Chanter 5 ar in appendix G.

For example, to change sprite 1 to light green, type: PQKEL
V+40,13 (be sure to set V=53248).

You may have noticed in using the example sprite programs that
the ohject never moved to the right-hand edge of the screen. This was
because the screen is 320 dots wide and the X dirsction register can
only hold a value up to 255. How then can you get an cbject to move
across the entire screen?

There is ¢ locatien on the memory map that has not been men-
tionec yet, Location 16 (of the map) controls something called the most
significant bit (MSB) of rhe sprite’s X direcrion location. In effect, this
allows you to move the sprite to © horizontal spot between 256 and 320.

The MSB of X register works like this: after the sprite has been
moved 1o X location 255, place a value intc memory location 16 repre-
senting the sprite you want to move. For example, to get 2 to move to
horizantal locarions 256-320, POKE the value for sprite 2 which is (4) into
memory location 16:

POKE V+16,4.

MNow start from 0 again in the usual X direction register for sprite 2
(which is in location 4 of the map). Since you are only moving another 64
spaces, X locations would only range between 0 ard &3 tnis time.

75

This whole concepr is best illustrated with a version of the original
sprite 1 program:

18 Y= S32E4&: POKE Y+21,94 : POKE 2042,13
28 FOR M = @ TO &2 : READ @ : POKE S32+N.0 = NEXT
25 POKE %+5,. 18@a

3@ FOR 8B = & T 255

48 POKE Y+4,4

58 HEXT

o8 FOKE W+1c6.4

78 FOR = = @ To &3

98 POKE Y+4, X

98 HEXT

188 POKE %+1&6.@

1ig GOTO 2@

Line 60 sefs the most significant bit for sprite 2. Line 70 starts moving
the standard X direction location, moving sprite 2 the rest of the way
across the screen.

Line 100 is important because it “turns off” the MSB so thal the
sprite can siart maving from the left edge of the screen again,

To define multiple sprites, you may need additional blocks faor the
sprite data. You can use some of BASIC's RAM by moving BASIC Refore
typing or loading your program type:

POKE44,156:POKE16%256,0:NEW

Now, you can usa blocks 32 through 41 (locations 2048 through 4095) to
store sprite dala.

BINARY ARITHMETIC

It is beyond the scape of this intraductoery manual to go into details of

how the computer handles numbers. We will, however, provide you with
a good base for understanding the process and get you started on
sophisticated animation.

But, before you get too involved we have to define a few terms:

BIT—This is the smallest amount of information a computer can store.

76

Think of a BIT as a switch that is either “on” or "off"”. When a BIT is
“on' it has a value of 1; when a BIT is “ott” it has a value of 0.

After BIT, the next level is BYTE.

BYTE—This is defined as o series of BITS. Since a BYTE is made up of
8 BITS, you can actually have a total of 256 ditterent comkinations
of BITS. In other words, you can have all BITS “off” so your BYTE
will lesk like this:

128 84 32 5 8 4 2 1
[o T o T o [T ¢ [o Jo [o | o |

and its value will be 0, All BITS "“on" is:

128 &4 32 16 8 4 2 1

) i A . M S o T O

which is 1284+64+32+16+8+2+1=255.
The next step up is called a REGISTER.

REGISTER—Defined as a block of BYTES strung together. But, in this
case each REGISTER is really only | BYTE long. A series of REGIS-
TERS mukes up a REGISTER MAP. REGISTER MAPS ars charts liks
the one you looked at to make your BALLOON SPRITE. Each REGIS-
TER controls a different function, like turning on the SPRITE is really
called the ENABLE REGISTER. Making the SPRITE longer is the EX-
PAND X REGISTER, while making the SPRITE wider is the EXPAND Y
REGISTER. Keep in mind thot a REGISTER is a BYTE that performs a
specific task.

Now let's move on to the rest of BINARY ARITHMETIC.

BINARY TO DECIMAL CONVERSION

Decimal Value
&8

_.
@
o
&
(™)
N]
o

o|lolo|a|lc|o|lo|=|=
L]
—
IS

- Ol0O|0|lO|lo|C|C|N

o —lolo|lolo|lale
oc;—-o.o;oao
o|lc|lo|-|o|lo|o|o
o|lolo|o|-|c|o|o
ololololal-|o|lo|s
elojojo|lac|c|=|o|n

~
~

Using combinations of all eight bits, you can obtoin any decimal value
trom O to 255. Do you start to see why when we POKEd character or
color velues into memory locatians the values had to be in the 0-255
range? Each memery lecotion can hald a byte of information.

Any possible combinatior of eight 0's and 1's will convert to a
unigue decimol value between 0-255. If all places contain a 1 then the
value of the byte equals 255. All zeros equal a byte value of zero;
“00000011" equals 3, and so on. This will be the basis for creating date
that represents sprites and manipulating them. As just ore example, it
this byte grouping represented paort of o sprite (0 is o space, 1 is a
colored area):

2? o8 25 04 23 22 21 20
R N T I S D [T I T e
128 + & - B2+ 18+ 8+ 4+ 2+ 1 F = 258

Then we would POKE 255 into the appropriote memory lecotion to
represent that part of the abject.
ro = B e = e = =

TIP:

To save you the trouble of converting binary numbers into decimal values —we'll
need to do tha® a lot—the fellowing program will do the work for you. It's a geod
idea to enter and save the program for future use.

S REM BIMARY TO DECIMAL COMYERTER
18 IMPUT "EMTER 2-BIT BINARY HUMBER :":A$.
12 IF LEM ¢A$» <> & THEM PRIMT "8 BITS PLEASE...":
GOTO 18
i 1S5TL=8 : C =@
28 FOR ¥ = 2 to0 1 STEP -1 = C = C + 1
38 TL = TL + YALCMID$ECAS, O, 100%24 (-1
48 HEXT ¥
S8 PRINT A$:" BINMARY ":" = ":TL:" DECIMAL"
&8 GOTO 18

This program takes your binary number, which was entered os a string, and looks |
et each characrer of the string, from left to right {the MID$ functior). The voriable C
indicatas what character fo work cn as the program goes through the loop.

I The WAL function, in line 30, returns the actual velue of the character. Since we
cre dealing with numeric characters, the value is the same as the character. For
example, if the first character of A% is 1 then the value would alsa be 1.

The final par of lire 30 multiplies the value of the current character by ths proper
power of 2. Since the first value is in the 2°7 place, in the example, TL would first
equal 1 times 128 or 128. If the bit is O then the valve for that place woula also be

zerc.
This process is repeated for all eight characters as TL keeps track of the running
tatal decimal value of the sinary number.

8

CHAPTER

CREATING SOUND

Using Sound if You're Not a Computer-
Programmer

Structure of a Sound Program

Sample Sound Program

Making Music on Your Commodore 64
Important Sound Settings

Playing a Song on the Commodore 64
Creating Sound Effects

Sample Sound Effects to Try

79

USING SOUND IF YOU'RE NOT A COMPUTER
“PROGRAMMER”

Mast programmers use computer scund for two purposes: making
music and generating sound effects. Before getting into the “intricacies”
of programming sound, let's take o quick look at how a typical sound
program is structured . . . and give you a short sound program you can
experiment with.

STRUCTURE OF A SOUND PROGRAM

To begin with, there are five seftings which you should know in order
fo generate sound on your COMMODORE 64: VOLUME, ATTACK/ DE-
CAY, SUSTAIN/RELEASE(ADSR), WAVEFORM CONTROL and HIGH
FREQUENCY/LOW FREQUENCY. The first three settings are usually set
ONCE at the keginning of your program. The high and low frequency
settings must be set for EACH NOTE you play. The waveform control
starts and stops each note.

SAMPLE SOUND PROGRAM

Before you start you have ro choose o VOICE. There are 3 volces.
Each voice requires different sound setting numbers for Waveform, etc.
You car play 1, 2 or 3 voices together but our sample uses only VOICE

NUMBER 1. Type in this program line by line . . . be sure to hit the
RETURN key after each line:
First clear sound chip. 5 FORL=54272T054296:

POKEL, 0:NEXT
1. Set VOLUME at highest setting. 1€ POKE54296,15
2. Set ATTACK/DECAY rates to 22 POKE54277,199
define how fast o note rises to and
falls from its peak volume level (0
to 255):
3. Set SUSTAIN/RELEASE to define 3@ POKE 54278,248
level to prclong note and rate to
relecse it.
4, Find the note/tone you want to 40 POKE54273,17:POKE54272,37
play in the TABLE OF MUSICAL
NOTES in Appendix M and enter
the HIGH-FREQUENCY and LOW-
FREQUENCY values for that note
{each note requires 2 POKEs).

80

5. Start WAVEFORM with one of 50 POKE54276,17

4 standard settings (17, 33, 65

or 129).

6. Enter o time loop to set the 60 FORT=1TO258:NEXT
DURATION of the note to be

played (o quarter note is approx.

“250" but may vary since a longer

program can affect the timing).

7. Turn off nofte. 70 POKE54276,16

To hear the note you just created, type the word RUN and then hit the

key. To view the program type the word LIST and hit _
To change it, retype the lines you want 1o aller.

MAKING MUSIC ON YOUR COMMODORE 64

You don't have to be a musician to make music on your COMMODORE
64! All you need to know are a few simple numbers which tell your
computer how loud to set the volume, which notes te play, how long to
play them, etc. But first . . . here’s a program which gives you a quick
demonstration of the COMMODORE 64's incredible musie capabilities,
using only ONE of your computer’s 3 separate voices.

Type the werd NEW and hit ta erase your previous pro-
gram, then enter this program, type the word RUN and hit the
key.

5 REM MUSICAL SCALE «——————Titl of pragram.
7 FORL=54272T054296:POKEL,@:NEXT

18 POKE 54296.15 Sets voluma at highest setting (15).
20 POKE 542779 S el el {nach ot
30 POKE 54276,17 Determines waveform itype of sound)
4@ FORT=1TOQ300:NEXT «—————Duration (how long) each nota plays.
5@ READ A . Raads Arst number in line 110 DATA

81

60 READ B« Reods second number in line 110 DATA,
7O IFB=—1THENEND ¢ \i65 wher it READs =1 in line 700.
80 POKE 54273,A:POKE54272, B «—pOKes the first numbes frem DATA in line 110 (A= m

os HIGH MEQUEMCY and sezend number (E=237)

as LOW FREGUENCY. MNext time program loops
arcund it READS A as 19 and B os 63, a1d 10 on,
and POKE: these rumbers intc the HIGH and LOW
FREQUIENCY |ocations. The number 54273=HIGH
FREQUENCY for YOICE] and 5¢271=L0W FRE-
QUENCY for VOICET.

85 POKE 54276,17 Start nota

gﬁ FORT=TTO25'B: MNEXT: POKE54276, 16 Let it play then stap note

95 FORT=1TO5@ NEXT «———— Time for release.
]99’ Go'rozg Loops back to reset CONTROL and slay new note.
118 | DATA1 7'37; 19,63,21,1 54,22’227 Musical note values frem note value thart in Appendix
120 DATA'25,177,28,214,32,94,34,175 M. Eoch pair of numbers repressnts ane nole. For

rxample. 17 and 37 represent “C7 of tie dth ae.

tave, 17 and 63 represent "D and so on.

998 DATA—1,—1 When pregram reaches —1 it furns off HIGHILOW
FREIQUEMCY settings and EMDs as instructed in

line 70.

To change the sound to a “harpsichard,” change line 85 to read
POKES54276,33 and Line 20 to read FORT=1TO250:NEXT:POKE5427&,32

and RUN the program again. (To change the line, hit the key
to stop the program, type the word LIST and hit [[EE[EI. then retype
the program line you want to change; the new line will automatically
replace the old one]. Whar we did here is change the “waveform” from
a "triangular” shaped sound wave to a "sawtooth’ wave. Changing the
WAVEFORM can drastically change the sound produced by the COM-
MODORE &4 . , . but . . . waveform s only one of several settings you
con change to maoke different musical tones and sound effects! You can
also change the ATTACK/DECAY rate of each note . . . for example, to
change fram a "harpsichord” sound ta & mare “banje” sound try chang-

ing lines 20 and 30 to read:

20 POKE54277,3
30 PO KE54273,E} Sete reomustoin for banje effecr
82

As you've just seen, you can make your COMMODORE 64 sound like
ditferent musical instruments. Let's take a closer look at how each sound
setting works

IMPORTANT SOUND SETTINGS

1 VOLUME —To turn on the volume and set it to the highest level, type:
POKE 54296,15. The volume setting ranges from 0 to 15 but you’ll use 15
most of the time. To turn “off” the volume, type:

POKE 54296,0

You only have to set the volume ONCE af the beginning of your pro-
gram, since the same setting activates all three of the Commodore 64's
VOICES. (Changing the volume during a musical note or sound effect
can produce interesting results but is beyond the scope of this intraduc-
tion.)

2. ADSR and WAVEFORM CONTROL SETTING — You've already seen
how changing the woveform can change the sound effect from
“xylophone” to “harpsichord.” Each VOICE has its own WAVEFORM
CONTROL SETTING which lets you define four different types of
waveforms: Triangle, Sawrtooth, Pulse (Square) and Noise. The CON-
TROL alsc activates the COMMODORE 64's ADSR feature, but we'll
come back to this in @ moment. A sample waveform start setting looks
like this:

POKE 54276,17
where the first number (54276) represents the control setting for VOICE 1
and the second number (17) represents the start for a friangular

waveform. The settings for each VOICE and WAVEFCRM combination
are shown in the table below.

ADSR AND WAVEFORM CONTROL SETTINGS

CONTROL Note Start/Stop Numbers

REGISTER TRIANGLE SAWTOOTH PULSE NOISE
VOICE 1 54276 176 33/32 65/64 129/128
VOICE 2 54283 1716 33/32 65/64 129/128
VOICE 3 54290 1716 33/32 65/64 129/128

Although the control registers are different for each voice the
waveform setings are the same for each type of waveform. To see how

this works, look at Lines 85 and 90 in the musical scale program. In this
pragram, immediately after setting the frequency in Line 80, we set the
CONTROL SETTING for VOICE 1 in line 85 by POKEing 54276,17. This
turned on the CONTROL far VOICE 1 and set it fo a TRIANGLE
WAVEFORM (17). In Line 70 we POKE 54275, 6, stopping the note. Lo-
ter, we changed the waveform start setting from 17 to 33 to create a
SAWTOOTH WAVEFORM and this gave the scale a “harpsichord” effect.
See how the CONTROL SETTING and WAVEFORM inferact? Selling the
waveform is similar to setting the volume, except each voice has its own
setting and instead of POKEing volume levels we're defining waveforms.
Next, we'll look at another aspect of sound . . . the ADSR feature.

3. ATTACK/DECAY SETTING—As we mentioned before, the ADSR
CONTROL SETTING not only defines the waveform but it also activates
the ADSR, or ATTACK/DECAY/SUSTAIN/RELEASE feature of the COM-
MODORE 64. We'll begin by looking at the ATTACK/DECAY setting. The
following chart shews the various ATTACK and DECAY levels for cach
voice. If you're not familiar with the concepts of sound attack and de-
cay, you might think ot “aftack” as the rate at which a note/sound arises
to its MAXIMUM VOLUME. The DECAY is the rate at which the notel
sound falls from its highest volume level back to the SUSTAIN level. The
following chart shows the ATTACK/DECAY setting for each voice, and the
numbers for each attack and decay setting. Note that YOU MUST
COMBINE ATTACK AND DECAY SETTINGS BY ADDING THEM UP AND
ENTERING THE TOTAL. Far example, you can set a HIGH ATTACK rate
and o LOW DECAY rate by adding the high cttack number (64) 1o the
low decay number (1), The total (65) will tell the computer to set the high
aftack rate and low decay rate. You can also increase the attack rates
by adding them fogether (128 + 44 + 32 + 16 = MAX. ATTACK RATE
of 240).

ATTACK/DECAY RATE SETTINGS
ATTACK/DECAY HIGH MEDIUM LOW LOWEST HIGH MED. LOW LOWEST
SETTING ATTACK ATTACK ATTACK ATTACK DECAY DECAY DECAY DECAY

VOICE 1[54277 | 128 64 2 | 16 Bl tlew I
VOICE 2 {54284 | 128 64 32 16 § 4 2 |
VOICE 3[54291 | 128 64 32 16 8 1 2 |

It you set an attack rate with no decay, the decay is automatically
zero, and vice-versa. For example, if you POKE 54277,64 you set a
medium attack rate with zerc decay for VOICE 1. If you POKE 54277,66
you setl a medium attack rate and a low decay rate (because 66=64+2
and sets BOTH settings). You can also add up several attack values, or
several decay values. For example, yvou can add a low attack (32) and @

84

medium atrack (64) for a combined attack rate of 96, then add «
medium decay of 4 and . . . prestc . . . POKE 54277,100.

At this paint, a sample program will better illustrate the effect. Type
the word NEW, hit and type ‘n this program and RUN it:

5 FOR L=54272T054296:POKEL, B: NEXT «———— Duration the note aloys.

1@ PRINT“HIT ANY KEY" Screen ge.

20 POKES4296,15 ———————————————— Ser volume ar highest leval.
3@ POKES4277,64 < Set Atiock/Decay.

40 POKE54273,17:POKE54272,37 «—————— Poke one note into VOICE 1.
60 GETKS:IFK$=""THEN&0 < Check the keyboard.

70 POKE54276,17:FORT=1TO200:NEXT < 50y wiraforn coniel (nisnglel
80 POKES54276,16:FORT=1TOS@:NEXT «———————— Turn off setiing..
0 GOTD2G € Leep back and de it again.

Here, we're using VOICE 1 to create one note at a time . . . with a
MEDIUM ATTACK RATE end ZERO DECAY. The key is Line 40. POKEing the
ATTACK/DECAY setting with the number ¢4 aclivales u MEDIUM ariack
rate. The result sournds like someone bouncing a ball in an oil drum,
Now for the fun part. Hit the key to stop the program, then
type the word LIST and hit . Now type this line and hit

(the new line 40 automatically replaces the old line 40):

40 POKE 54277,192

Type the word RUN and hit tu see how it sounds. What we've
done here is combine several attack and decay settings. The settings
are: HIGH ATTACK (128) + LOW ATTACK(32) + LOWEST ATTACK (16)
+ HIGH DECAY (8) + MEDIUM DECAY(4) + LOW DECAY(2) = 190.
This effecl sounds like a sound an oboe or other “reedy” instrument
might make. If you'd like to experiment, try changing the waveform and
attock/decay numbers in the musical scale example to see how an
“obne” sounds. Thus . . . you can see that changing the attack/idecay
rates can be used fo create different types of sound effects.

4. SUSTAIN/RELEASE SETTING —Like Atrack/Decay, the SUSTAIN/
RELEASE setting is activated by the ADSR/WAVEFORM Cantrol. SUSTAIN/
RELEASE lets you “extend” (SUSTAIN] a portion of a parficular sound, like
the “sustain pedal” on o piano or organ which lets you proleng o note.
Any note or sound can be sustained at eny one of 16 levels. The

SUSTAIN/RELEASE Setting may be used with a FOR . . . NEXT loop to

85

determine how long the nofe will be held at SUSTAIN volume before
being released. The following chart shows the numbers you have to
POKE to reach differant SUSTAIN/RFLEASE, rates.

SUSTAIN/RELEASE RATE SETTINGS

SUSTAIN/ RELEASE HIGH MEDIUM LOW LOWEST HIGH MED. Low LOWEST
CONTROL SETTING SUSTAIN SUSTAIN SUSTAIN SUSTAIN RELEASE RELEASE RELEASE RELEASE
VOICE 1 54275 128 o4 32 16 8 4 2 1
VOICE 2 542835 128 64 32 16 8 4 2 1
VOICE 3 54292 128 64 32 16 8 4 2 1

As an example, if you're using YOICE1, you can set a HIGH SUSTAIN
LEVEL by typing: POKE 54278,128 or you could combine a HIGH SUSTAIN
LEVEL with u LOW RELEASE RATE by udding 128 + 2 and Ihen POKE
54278,130. Here's the same sample program we used in the ATTACK/
DECAY section above . . . with a SUSTAIN/RELEASE feature added.

Notice the difference in sounds.

5 FORL=54272T.054296:POKEL,0: NEXT < buration the note pleys.

19 POKE54296,15 «— Sot vo'ume at highest level.
200 POKE54277,64 <« Set Aack/Decay.

30 POKE54278,128 Sat Sustain/Ralasse

A0 POKE54273,17:POKE54272,37 <Gk one now Inio voice 1.
5@ PRINTHIT ANY KEY" Screen o

60 GETKS:IFK$=" "THEN&0 <— Chack the keyboard,

70 POKE54276,17:FORT=1TO200:NEXT €————— se1 Wveferm cantiol (viangle)
80 POKES54276,16:FORT=1TO5@:NEXT €—————————Tur: off setings.
20 GOTO6D — Logp back and de it again.

In Line 30, we tell the computer to SUSTAIN the note at a HIGH SUS-
TAIN LEVEL (128 from chart above) . . . after which the tone is released
in Line B80. You can vary the duration of a note by changing the “count”
in Line 70. To see the =ffect of using lhe release funclion try changing
Line 30 fo POKES4278,89 (SUSTAIN = B0, RELEASE = 9).

5. CHOOSING VOICES AND SETTING HIGH/LOW FREQUENCY
SOUND VALUES —Each individual note on the Commodcre 64 requires
TWO SEPARATE POKE COMMANDS . . . one for HIGH FREQUENCY and
one for LOW FREQUENCY. The MUSICAL NOTE VALUE table in Appendix
M thows you the corresponding PQOKEs you need to play any rote in the

Commodore 64's eight octave range. The HIGH and LOW FREQUENCY
POKE COMMANDS are ditterent for each VOICE you use—this allows

you to program all 3 voices independently to create 3-voice music or
exotic sound effects.

The HIGH and LOW FREQUENCY POKE COMMANDS for each vuice
are shown in the chart below, which also contains the NOTE VALUES for
the middle (fifth) octave.

VOICE NUMBER POKE SAMPLE MUSICAL NOTES—FIFTH OCTAVE

& FREQUENCY NUMBER | C |C#| D|D# | E| F|F# | G|G# | A|A#| B| C|C#
VOICEV/HGH | 54273 34 | 36| 38| 40 | 43| 45| 48 | 51| 54| 57| 61| 64| 68| 72
VOICET/LOW 54272 7585|126 200 | 52(198 (127 |97 111 [172(125|188 |149 169
VOICEZ/HIGH | 54280 34 | 36| 38| 40 | 43| 45| 48 |51 54| 57| 61| 64| 68| 72
VOICEZ/LOW 54279 7585|126 (200 | 52\198(127 | 97111 [172(126 188|149 169
VOICEG/HGH | 54287 34 | 36| 38| 40 | 43| 45| 48 | 51| 54| 57| 61| 64| 68| 72
VOICE/ 1OW 54286 75 | 85|126 200 | 52[198[127 | 97111 172(126|188 (149 1469

As you can see, there are 2 settings for each voice, u HIGH FRE-
QUENCY setting and a LOW FREQUENCY setting. Tc play a musical note,
you must POKE a value into the HIGH FREQUENCY location and POKE
ancther value into the LOW FREGUENCY lacation. Using the settings in
our VOICE/FREQUENCY/NOTE VALUE table, here's the setting that plays
a C note from the 5th ocrave (VOICE1]):

POKE 54273,34:POKE 54272,75.
The same note on VOICE2 would be:
POKE 54280,34:POKE 54279,75.
Used in a program, it locks like this:
5 FORL=54272T0O542%96:POKEL,Q:NEXT
10 V=54296.W=54274:A=54277. € fet numbers equal fo letters.

$=54278:H=54273:.L=54272
20 POKEV, 15:POKEA, 190:POKES, 89 «—— POKE volume, wavelorm, attack/decay.

30 POKEH,34:POKEL,75 FOKE hillo freq. notes
40 POKEW,33:FORT =1TO2@0:NEXT «—————start note, Izt it play
50 POKEW,32 stop nove

B7

PLAYING A SONG ON THE COMMODORE 64

The following program can be uscd to compose or play @ song [using
VOICE1). There are rwo impartanrt lessons in this program: First, nota
how we abbreviate all the long control numbers in the first line of the
program . . . after that, we can use the letter W for “Waveform” instead
of the number 54276.

The second lesson concerns the way we use the DATA. This program
is set up to let you enfer 3 numbers for each note: the HIGH FREQUENCY
NOTE VALUE, the LOW FREQUENCY NOTE VALUE, and the DURATION
THE NOTE WILL BE PLAYED.

For this song, we used a duration “count” of 125 for an eighth note,
250 for a quarter note, 375 for a dotied quarter note, 500 for a half
note and 1000 fer a whole note. These number values can be increased
or decreased to match a particular tempo, or your own musical taste.

To ses how a song gets entered, look at Line 100. We entered 34
and 75 as our HIGH and LOW FREQUENCY settings to play a “C" note
(from the sample scale shown previously) and then the number 250 for a
quarter note. So the first note in our song is a quarter note C. The
sacond note is also a quarter note, this time the note is “E” . . . and =o
on fto the end of our tune. You can enter almosi any song this way,
adding as many DATA statement lines as you need. You can continue the
note and duraftion numbers from one line to the next but each line must
begin with the word DATA. DATA-1,-1,-1 should be the last line in your
program. This line “ends” the song.

Type the word NEW to erase your previous program and type in the
following program, then type RUN to hear the song.

MICHAEL ROW THE BOAT ASHORE-1 MEASURE

2 FORL=54272T054296:POKEL,2:NEXT
5 V=54296:W =54276:A=54277:HF=54273:1F=54272,:5=54278:
PH=54275:PL=54274
18 POKEVY,15:POKEA,BB:POKEPH, 15:POKEPL, 15: POKES, 8%
20 READH:IFH=—=1THENEND
30 READL
4@ READD
60 POKEHF,F:POKELF,L:POKEW,&5
80 FORT=1TOD:NEXT:POKEW , 64
85 FORT=1TOS50:NEXT

88

0 GOTO19

100 DATA34,75,25¢,43,52,250,51,97,375,43,52,125,51,97
185 DATA257,57,172,250

119 DATAS51,97,502,0,0,125,43,52,250,51,97,253,57,172
115 DATAI098@,51,97,500

120 DATA-1,-1,-1

CREATING SOUND EFFECTS

Unlike music, sound effects are more often tied to ¢ specific pro-

gramming “action” such as the explosion made by an astro-fighter as it
crashes through a barrier in o space game . . or the warning huzzer in

a business program thot tells the user he's about to erase his disk by
mistake.

You have o wide range of options available if you want to create

diffarent sound effacts. Here are 10 programming ideas which might

help you get started experimenting with sound effects:

. Change the volume while a note is playing, for example to create

an “echo” effect.

2. Vary between two notes rapidly to create a sound “tremor.””

11

. Waveform . . . try different settings for each vuice.

Attack/Decay . . . to alter the rate a sound rises toward its “peak”
volume and rate it diminishes from that peak.

. Sustain/Release . . . to change sustain to volume of a sound effect,

and rate it diminishes from thar volume.

Multivoice effects . . . playing mere than one voice at the same
time, each voice indeperdenily controlled, or one woice playing
lenger or sherter than another, or serving as an “echs” or response

lo w firsl note.

. Changing notes on the scale, or changing octaves, using the values

in the MUSICAL NCTE VALUE table.

Use the Square Waveform and different Pulse Settings to create
different effects.

Use the Noise Waveform to generare “white noise” for accenting
tonal sound effects or creating explosions, gunshots or footsteps.
The same musical notes that create music can also be used with the
Noise Waveform to crecte different types of white noise.

. Combine several HIGH/LOW frequencies in rapid succession across

different octaves.
Filter . . . try the extra POKE setting in Appendix M.

89

SAMPLE SOUND EFFECTS TO TRY

The following programs may be added to almost any BASIC program.
They are included to give you some programming ideas and demon-
strate the Commodore 64’s sound effect range.

Notice the programming shortcut we’re using in Line 10. We can
abbreviate those long cumbersome sound selling nurmbers by defining
them as easy-to-use letters (numeric variables). Line 10 simply mears
that these easy to remember LETTERS can be used instead of those long
numbers. Here, V = Volume, W=Waveform, A=Attack/Decay, H=High
Frequency (VOICE1), und L=Low Frequency (VOICE1). We then use these
letters instead of numbers in our program . . . making our program
shorter, typing faster, and the sound settings easier to remember and
spot.

DOLL CRYING

10 V=54296:W=54276:A=54277: H=54273:1=54272
20 POKEV,15:POKEW,&65:POKEA, 15

3@ FORX—2@@TOS5STEP-2:POKEH , 48:POKEL, X:NEXT

40 FORX=150TO5STEP-2:POKEH,40:POKEL,X:NEXT

5@ POKEW @

SHOOTING SOUND . . . USING VOICE1, NOISE WAVEFORM, FADING
VOLUME

180 V=354296:W=054276:A=354277:H =54273:1=54272

20 FORX=15TO@STEP-1:POKEY,X:POKEW,129:POKEA,
15:POKEH,40: POKEL, 28€: NEXT

3@ POKEW,d:POKEA,Q

20

CHAPTER 8

ADVANCED DATA
HANDLING

|
READ' and DATA
Averages
Subscripted Variables
One-Dimensional Arrays
Averages Revisited
DIMENSION
Simulated Dice Roll With Arrays

Two-Dimensional Arrays

91

READ AND DATA

You've seen how to assign values to variables directly within the pro-
gram (A = 2), and how to assign different values while the program is
running—through the INPUT statement.

There are many times, though, when neither one of these ways will
quite fit the joh you're trying to do, especially if it involves a lot of
information.

Try this short program:

18 RERAD X
2@ FR]

DATH 1,

RLUH

HO
MG
HiCH
Hiod
= MO

A0UT OF DRTA ERROR IH 1022
EADY
||

In line 10, the computer READs one value from the DATA statement
and assigns tat value ta X. Each fime through ~he loop the nexr value in
the DATA s:aterment is read and that value assigned to X, and PRINTed.
A pointer in the computer itself keeps track of which value is to be used

next:

Painter

L
40 DATA 1, 34, 18.5, 14, 234.56

When all the values have been used, and the computer executed the
loop again, looking for another value, the OUT OF DATA error was dis-
played because there were no more values to READ.

92

It is important to follow the farmat of the DATA statement precisely:

4@ DATA 1, 34, 18.5, 16, 234.56

i T

Comma separates Ma Cemma
each itom

Data stalerments can contain integer numbers, real numbers (234.65),
or numbers expressed in scientific notation. But you can’t READ other

variables, or have arithmetic operations in DATA lines. This would be
incorract:

40 DATA A, 23/56, 275

You can, however, use a string variable in a READ statement and then
place string information in the DATA line. The following is acceptable:

: MO
[[N
MO
RERDY

Notice that this 7ime, the READ stutement was placed inside a FOR
. . . NEXT loop. This lcop was then executed to match the number of
values in the dara statement.

In many cases you will change the number of values in the DATA
starement each time the program is run. A way to aveid counting the
number of values and still avoid an OUT OF DATA ERROR is to place a
“ELAG" as the last value in the DATA line. This would be a value that
your date would ncver equal, such as a negative number or a very
large or small number. When that value is READ the program will
branch to the next part.

There is o way to reuse the same DATA later in the program by RE-

93

STOREing the data pointer to the beginning of the data list. Add line 50
to the previous program:

5¢ GOTO 19

You will still get the QUT OF DATA error because as the program
branches back to line 10 to reread the data, the data pointer indicates
all the data has been used. Now, add:

45 RESTORE

and RUN the program again. The datc pointer has been RESTOREd and
the data can be READ continuously.

AVERAGES

The following program illustrates a practical use of READ and DATA,

by recding in a set of numbers and calculating their average.

~1 THEH % FEM CHECE FOR FLAG
1
: REM UPDATE TOTAL
GOTO 168
FREINT "THERE MWERE

FRINT "TOTAL =
PRINMT "AYER
DATA 73,

THEREE HWERFE ¥ “ALUES RERD
TOTAHL

line 5 sets CT, the CounTer, and T, Total, equal to zero. Line 10 READs
a value and assigns the value to X. Line 20 checks to see if the value is
our flag (here a —1). If the value READ is part of the valid DATA, CT is
incremented by 1 and X is added to the total.

When the flag is READ, the program brarches to line 50 which PRINTs

94

the number of values read. Line 60 PRINTs the totcl, and line 70 divides
the total by the number of values to get the average.

By using a flag at the end of the DATA, you can place any number of
values in DATA statements—which may stretch over several lines—
without worrying about counting the number of values entered.

Another variation of the READ statement involves assigning infarma-
tion from the same DATA lins to different variables. This information can
even be o mixture of string data and numeric values. You can do all this
in the following program that will READ o name, some scores—say
bowling—and print the name, scores, and the average score:

HEW

18 READ

Z8 PRINT H X .ORES MERE: ";R:"
FRIWT “RAGE I5: ":<{A+B
PRIHT =z
OATH MI
OATH JOHH -

RLIM

MIKE"S =
AMO THE H

ODICK"!

In running the program, the DATA statements were set up in the same
order that the READ statement expected the informaticn: a name (a
etring), then three values. In other words N$ the first time through gets
the DATA "MIKE”, A in the READ corresponds to 190 in the data state-
ment, “B"” to 185 and “C"” to 165. The process is then repeated in that
orcder for the remainder of the informatien. (Dick and his scores, John
and his scores, and Paul and his scores.)

SUBSCRIPTED VARIABLES

In the past we've used only simple BASIC variables, such as A, A$,
and NU to represent values. These were a single letter followed by a

95

letter or single digit. In any ot the programs that you would write, it is
doubtful that we would have a need for more variable nomes than
possible with all the combinations of leHers or numbers available. But
you are limited in the way variables are used with programs.

Now let’s introduce the concept of subscripted variables.

A1)
L Subscript
Varioble

This would be said: A sub 1. A subscripted variable consists of a lerter
followed by a subscript enclosed within parentheses. Please note the
difference between A, Al, and A(l1). Each is unique. Only A1) is a
subscripted variable.

Subscripted variables, like simple variables, name a memory location
within the computer. Think of subscripted veriables as boxes to store

informatian, jusr like simple variables:

A@) |
AQ1)
A(2)
A3)
A(4)

It you wrote:
10 A(P) = 25: A(3) = 55 : A4) — —45.3

Then memcry would look like this:

A(0) 25
A1)

A(2)

AR |8
Ad) | —453

This group of subscripted variables is also called an array. In this
case, a one-dimensianal array. later on, we'll intraduce multidimen-
sional arrays.

Subscripts can also be more complex to include other variables, or
computations. The following are valid subscripted variables:

A(X) AX+1) A@E+1) A{173)
The expressions within the paresntheses are evaluated according to the

same rules for arithmetic operations outlined in Chapter 2.

96

Now that the ground rules are in place, how can subscrioted vari-
ables be put to use? One way is to store a list of numbers enterea with
INPUT or READ statements.

Let’s use subscripted variables to do the averages a different way.

3 FRINT CHES< 1472
6 IMFUT “HOW MA
FOR A = 1 TOQ ;

FRINT : PRIHT "AYERAGE

RLM

HOM MAHY HUMBERS
EMTER “YALLE
EHTER YALLUE
EHMTER YALLE
EHTER “ALUE
EHTER “ALUE

*tHXTH
DL RE SO

AYERAGE =

-
Ty
—
[

[N

There might have beern an easier way to accomplish what we did in
this program, but it illustrates how subscripted variobles work. Line 10
asks for how many numbers will be entered. This variable, X, acts as
she counter for the loop within which values are entered and assigned to
the sukscripted variable, B.

Each time through the INPUT loop, A is increased by 1 and so the next
value entered is assigned to the next element in the array A. For exam-
ple, the first time through the loop A = 1, so the first value entered
is assigned tc B(1). The next time through, A = 2; the next value is
assigned o Bi2), and so on until all the values have been entered.

But now a big difference comes into gplay. Once all the values have
been entered, they are stored in the array, ready to be put to work in @
variety of ways. Before, you kept a running tetal each time through the

97

INPUT or READ loop, but never could get back the individual pieces of
dato without re-reading the information.

In lines 50 through 80, another loop has been designed to add up the
various elements of the array and then display the average. This sepa-
rate part of the program shows that all of the values are stered and can
be accessed as needed.

To prove that all of the individual values are actually stored separately
in an array, type the following immediately after running the previous
program;

FOR A = 1 TO 5 : ?B(A),: NEXT

125 167 189 167
158

The display will show your actual volues as the contents of the array
are PRINTed.

DIMENSION

If you tried to enter more than 10 numbers in the previous example,
you gor o DIMENSION ERROR. Arrays of up to eleven elements (sub-
scripts 0 to 10 for a one-dimensional array) may be used where needed,
just as simple variables can be used anywhere within a program. Arrays
of more than eleven elements need to be “declared” in a dimension
statement.

Add this line fo the program:

5 DIM B(120)

This lets the computer know that you will have a maximum of 100
elements in the array.

The dimension statement may alse be used with a variable, so the
following line could replace line 5 (don't forget te eliminate line 5):

15 DIM B(X)

This would dimension the array with the exact numkber of values that
will be entercd.

Be careful, though., Once dimensioned, an array cannot be redimen-
sioned in another part of the program. You can, however, have multiple
arrays within the program and dimension them all on the same line, like

this:

1¢ DIM C(20), D(52), E(48)

98

SIMULATED DICE ROLL WITH ARRAYS

As programs become mare complex, using subscripted variables will
cut down on the number of statements needed, and make the program
simpler to write,

A single subscripted variable can be used, for example, to keep track
of the number of times o particular face turns up:

1 REM DICE SIMULATION 2 PRINT CHR$(147)
18 INPUT “HOW MHNY RULLS:":x

280 FOR L = 1 TO ¥

38 R = INT<&6¥RHNDC1>2+1

48 FCR2 = F(R» + 1

S8 NEXT L

568 FRINT “FACE"., “NUMBER OF TIMES"

7@ FOR C =1 TO & = FPRINT C, FCClz NEXT

The array F, for FACE, will be used to keep track of how many times a
particular face turns up. For example, every time a 2 is thrown, F(2) is
increased by one. By using the same element of the array to hold the
actual number on the face that is thrown, we've eliminated the need for
five other variables (one for each face) and numerous statements to
check and see what number is thrown.

Line 10 asks for how many rclls you want to simulate.

Line 20 establishes the loop to perform the random roll and increment
the proper element of the array by one each for each toss.

After all of the required tosses are completed, line 60 PRINTs the
heading and line 70 PRINTs the number of times each face shows up.

A sample run might look like this:

HOW MAMY ROLLS: ~
E

F
4
[

Well, at least it wasn’l loaded!

Just as a comparison, the following is ane way of re-writing the same
program, but without using subscripted variables. Don‘t bother to type it
in, but do notice the additional statements necessary.

99

18 INPUT "HOW MANY ROLLS:" 3
26 FOR L = 1 TO %
38 R = INTCE®RHD(133+1

48 IF R = 1 THEM F1 = F1 + 1 : MEWT
41 IF R = 2 THEM F2 = F2 + 1 : NE®T
42 IF R = 2 THEM F2 = F2 + 1 : MET
43 IF R = 4 THEN F4 = F4 + 1 = HE®T
44 IF R = 5 THEH FS = F5 + 1 : HMEXT
45 IF R = & THEH F& = F& + 1 : ME-T

58 PRINT "FACE", “HNUMBER OF TIMES"
8 PRINT 1. F1
71 PRINT 2, FZ
72 PRIMT 2. F3
73 PRINT 4, F4
¥4 PRIMT 5.
7S PRIMT &, F&

The program hos doubled in size from 8 1o 16 lines. In larger pro-
grams the spcce savings from using subscripted variables will be even
muore dramatic.

TWO-DIMENSIONAL ARRAYS

Earlier in this chapter you experimented with one-dimensional arrays.
This type of array was visualized as a group of consecutive boxes within
memory each holding an element of the array. Whar would you expect
a twe-dimensional array to look like?

First, a two-dimensional array would be writtan like this:

A(4,6)
SUESCRIPTS

ARRAY NAME

anc could be represented as o rwo-dimensional grid within memory:

?] 2 3 4 5 6

E o N =

=]

The subscripts could be thought of as representing the row and col-
umn within the table where the particular element of the array is stored.

100

A(3,4) = 255

T L COLUMN
ROWN
0] | 2 3 4 5 6

259

AW -

It we assigned the value 255 to A(3,4), then 255 could be thought of
as being placed in the 4th column of the 3rd row within the table.

Two-dimensional arrays behove aceording to the same rules thot were
established for one-dimensional arrays:

They must be dimensiored: DIM A(20,20)
Assignment of data: A(1,1) = 255
Assign values to other variables: AB = A(1,1)
PRINT values: PRINT A(1,1)

If two-dimensional arrays work like their smaller counterparts, what
additional copabilities will the expanded arrays handle?

Try this: can you think of a way using a two-dimensional array to
tabulote the results of o guestionnaire for your club that involved four
questions and had up to three resporses for each questicn? The prob-
lem could be represented like this:

CLUB QUESTIONNAIRE
Q1: ARE YOU IN FAVOR OF RESOLUTION #17?
[(-ves [J2-NO []3-UNDECIDED

. and so on.

101

The array table for this problem could be represented like this:

RESPCNSES
YES NO UNDECIDED
QUESTION 1
QUESTION 2
QUESTION 3
QUESTION 4

The program to do the actual tabulation for the questionnaire might
look like that shown on page 103.

This progrem makes use of many of the programming technigues that
have been presented so far. Even if you dont have any need for the
actual program right now, see if you can follow how the program
works.

The heart of this program is a 4 by 3 rwo-dimensicnal array, A(4,3).
The total responses for each possible answer to each question are held
in the appropriate element of the array. For the scke of simplicity, we
don’t use the first rows and column (A(0,0) tc A(0,4)). Remember,
though, that these elements are always present in any array you design.

In proctice, if question one is answered YES, then A(1,1) ig in-
cramented by one—row 1 for question 1 and column 1 for a YES re-
sponse. The rest of the questiors and answers follow the same patiern.
A NO responze for question three would add one to element A(3,2), and
so on.

102

P B
FRINT “{CLR~HOME}"
FOR R = 1 TO 4
FRINT "QUESTION # : ": K
PRINT " 1-YES 2-H0O 3-UNMDECIDED"
PRINT "WHAT WAS THE RESPONSE : ";:
GET C 3 IF C <1 or C>3 THEN &1
FRINT C: PRINT
ACR,C>» = ACR,C? + 1: REM UFDATE ELEMENT
NEXT R
PRINT
PRINT "DO ¥OU WANT TO ENTER ANOTHER" : PRINT
| "RESPOMNSE <(Y/N>":
GET A% : IF A$ = "" THEH 108
IF AF = "¥"* THEHN 2@
IF Af <> "H" THEHN 188
PRINT "{CLR-HOME}";"THE TOTAL RESFONSES
WERE " :FRINT
PRINT SPCc¢18):"RESPONSE"
FRINT "GQUESTION","YES","HNO","UNDECIDED"
PRIHT "“——— —_—
156 FOR R = 1 TO 4
168 PRINT R, A{R 1>, ALR 2>, AR, 3>
178 NEXT R
RUMN

QUESTION # : 1
1-YES 2-NO 3-UNDECIDED
WHAT WAS THE RESPONSE : 1

GUESTION # : 2
1-YES 2-H0 3-UHDECIDED
WHAT WAS THE RESFOHSE = 1

Arnd S0 Ones.
THE TOTAL RESPOHSES WERE:

RESFOHSE
YES MO UNDECIDED

- APPENDICES

105

INTRODUCTION

Now that you've become more intimately involved with your Commo-
dare 64, we want you to know that our customer support does not stop
here. You may not know it, but Commodore has been in business for
over 23 years. In the 1970’s we introduced the first self-contained per-
sonal computer (the PET). We have since become the leading computer
company in many countries of the world. Qur ability to design and
manufacture our own computer chips allows us to bring you new and
better personal computers at prices way below what you'd expect for
this level of technical excellence.

Commodore is committed to supporting not anly you, the end user,
but also the dealer you bought your cemputer from, magazines which
publish how-ta articles showing you new applications or techniques,
and . . . importantly . . . software developers who produce programs
on cartridge, disk and tape for use with your computer. We encourage
you to establish or join @ Commodore "user club” where you con learn
new technigues, exchunge ideas and share discoveries. We publish two
separate magazines which contain programming tips, information on
new products and ideas for computer applications. (See Appendix N).

In North America, Commodore provides o “Commodore Information
Network' on the CompuServe Information Service . . . lu access this
network, all you need is your Commodore 64 computer and our low cost
VICMODEM telephone interface cartridge (or other compatible modem).

The following APPENDICES contain charts, tables, and other informa-
tion which help you program your Commodore 64 faster and more
efficiently. They also include important information on the wide variety
of Commodere products you may be interested in, and a kibliography
listing of over 20 books and magazines which can help you develop your
programming skills and keep you current on the latest information con-
cerning your computer and peripherals.

106

APPENDIX A

COMMODORE 64 ACCESSORIES
AND SOFTWARE

ACCESSORIES

The Commodore 64 will support Commodore VIC 20 storage devices
and accessories— DATASSETTE recorder, disk drive, modem, printer —
so your system can expand to keep pace with changing needs.

® Datasette Recorder—This low cost tape unit enables programs and
data to be stored on cossette tape, and played back atl a later
fime. The datasefte can also be used to play pre-written programs.

® Disk—The single disk unit uses standard 5Vi4-inch floppy diskettes,
about the size of a 45 RPM record, to stare programs and data.
Disks allow faster access to data and hold up to 170,000 char-
acters of infurmation each. Disk units are “inrelligent,” meaning
they have their own microprocessor and memory. Disks require no
resources from the Commodore 64, such as using part of main
memory.

® Modem—A low-cost communication device,the VICMODEM allows
access to other computers over ordinary telephone lines. Users will
have access to the full resources of large data bases such as The
Source, CompuServe, and Dow Janes News Retrieval Service (North
America only).

® Printer—The VIC printer produces printed copies of programs,
data, cr graphics. This 30 character per second dot-matrix printer
uses plain tractor feed paper and other inexpensive supplies. The
printer attaches directly to the Commodore 64 without any addi-
tional interfaces.

® Interface Cartridges—A number of specialized cartridges will be
available for the Commodore 64 to allow various standard devices
such as modems, printers, controllers, end instruments to be at-
tached to the system.

107

With a special IEEE-488 Cartridge, the Commodore 64 will support
the full range of CBM peripherals including disk units and printers.

Addifrionally, o Z80 cartridge will allow you to run CP/M™ on the
Commodore 64, giving you access to the largest base of
microcomputer applications available.

SOFTWARE

Several categories of software will be offered for the Commodore 64,
providing you with a wide variety of personal, entertainment, and edu-
cational applications to choose from.

BUSINESS AIDS

® An Electronic Spreadsheet package will allow you to plan budgets,
and perform “what if?” analysis. And with the optional graphic
program, meaningful graphs may be created from the spreadsheet
data.

® Financial planning, such as loan amortization, will be easily han-
dled with the Financial Planning Package.

® A number of Professional Time Management pregrams will help
manage appointments and work load.

® Easy-to-use Dota Base programs will allow you to keep track of
information . . . mailing lists . . . phone lists . . . inventories . . .
and organize information in a useful form.

® Professional Word Processing programs will turn the Commodore 64
into a full-featured word processor. Typing and revising memos,
letters, and other text material become a breeze.

ENTERTAINMENT

® The highest quality games will be available on plug-in cartridges
for the Commodore 64, providing hours of enjcyment. These pro-
grams moke use of the high resolution graphics and full sound
range possible with the Commodare 64.

® Your Commodore 64 allows you all the fun and excitement avail-
able on MAX games because these two machines have completely
compatible cartridges.

*CP/M is a registered trademark of Digital Research Inc.

108

EDUCATION

® The Commodore 64 is a tutor that never tires and always gives
personal arrention. Besides access ro much of the vast PET educa-
tional programs, odditional educational languages that will be

available for the Commodore 64 include PILOT, LOGO and other
key advanced packages.

109

APPENDIX B

ADVANCED CASSETTE OPERATION

Besides saving copies of your programs on tape, the Commodore 64
can also stors the values of variakles and other items of data, in a
group called a FILE. This allows you to store even more information than
could be held in the computer’s main memory at one time.

Statements used with data files are OPEN, CLOSE, PRINT#, INPUT#,
and GET#. The system variable ST (status) is used to check for tapes
markers.

In writing data to tape, the same concepts are used as when display-
ing information on the computer’s screen. But instead of PRINTing in-
formation on the screen, the information is PRINTed on tape using a
variation of the PRINT cammand —PRINT#.

The following program illustrates how this works:

18 PRINT "WRITE-TO-TAPE-PROGRAM"

28 OPEN 1.1.1."DATA FILE"

30 PRINT "TYPE DRTA TO BE STORED OR TYFE STOP"
58 PRINMT

68 INPUT “DATR" :R$

78 PRINT #1, AF

88 IF A$ <>"STOP" THEN 5@

28 PRINT

188 PRINT "CLOSIHG FILE"

118 CLOSE 1

The first thing that you must do is OPEN a file (in this case DATA FILE).
Line 10 handlzs that.

The program prompts for the data you want to save on tape in line
0. Line 70 writes what you typed —held in A§—onto the tope. And the
process continues.

If you type STOP, line 110 CLOSES the file.

110

To retrieve the information, rewind the tape, and try this:

1@ PRINT "READ-TAFE-FROGRAM"
28 OPEN 1.1.8,"DATA FILE"

38 FRIWT "FILE OFEN"

48 PRINT

58 INPUT#1, A$

&8 PRIHT A%

v8 IF A¥ = "STORP" THEH EHD
28 GOTO 48

Again, the file "DATA FILE” first must be OPENed. In line 50 the pro-
gram INPUTs A% from tape and also PRINTs A$ on the screen. Then the
whole process is repeated until “STOP” is found, which ENDs the pro-
gram.

A variation of GET—CET# —can also be used to read the data back
from tape. Replace lines 50-80 in the orogram above with:

58 GETH#1, A%

&8 IF AF = "" THEW EHD
78 PRIHT fAf, ASCIA$:
88 COTO 58

111

APPENDIX C

COMMODORE 64 BASIC

This manual has given you an introduction to the BASIC language —
enough for you to get a feel for computer programming and some of
the vocabulary involved. This appendix gives a comglete list of the rules
(SYNTAX) of Commuodore 64 BASIC, alunyg with concise descriptions.,
Please experiment with these commands. Remember, you can’t do any
permanent damage fo *he computer by just typing in programs, and the
best way to learn computing is by daing.

This apeendix is divided into sections according to the different types
of operations in BASIC. These include:

1. Variables and Operators: describes the different type of variables,
legal variable names, and arithmetic and logical operators.

2. Commands: describes the commands used to work with programs,
edit, store, and erase them.

3. Statements: describes the BASIC program statements used in num-
bered lines of programs.

4. Functions: describes the string, numeric, and print functions.

VARIABLES

The Commodore 64 uses three types of variables in BASIC. These are
real numeric, integer numeric, and string (alphanumeric) variables.

Variable names may ccnsist of a single lettar, o letter followed by a
number, or two letters.

An integer variable is specified by using the percent (%] sign ofter the
variable name. String variables have the dollar sign ($) ofter their

name.

EXAMPLES

Real Varicble Names: A, A5, BZ
Integer Variable Names: A%, A5%, BZ%

112

String Variable Names: A$, A5$, BZ§

Arrays are lists of variables with the same name, using extra numbers
to specify the element of the array. Arrays are defined using the DIM
statement, and may contain floating point, integer, or string variables.
The array variable name is followed by a set of parentheses () enclos-
ing the number of variables in the list.

A7), BZ9(11), A$(50), PT(20,20)

NQTE: There are three variable names which are reserved for use by
the Commodare 64, and may nat he defined by you. These variables
are: ST, Tl, and TI$. ST is a status variable which relates o input/output
operations. The value of ST will change if there is a problem loading a
program from disk or tape.

Tl and TI$ are variables which relate to the real-time clock built into
the Commodore 64. The variable Tl is updated every /soth of a second.
It starts at 0 when the computer is turned on, and is reset only by chang-
ing the value of TI$.

TI$ is a string which is constantly updated by the system. The first two
charactars contain the number of hours, the 3rd and 4th characters the
number of minutes, and the 5th and 6th characters are the number of
seconds. This variable can be given any numeric value, and will be
vpdated from that point.

TI$ = “101530” sets the clock to 10:15 and 30 seconds AM.

This clock is erased when the computer is turned off, and starts at
zero when the system is turned back on.

OPERATORS

The crithmetic operators include the following signs:

+ Addition

— Subtraction

* Multiplication

/ Divisian

1 Raising to a power (exponentiation)

On a line containing more than one operator, there is a set arder in
which operaticns always occur. If several operations are used together

113

on the some line, the computer assigns priorities as follows: First, ex-
ponentiation. Next, multiplication and division, and lest, addition and
subtracticon.

You can change the order of operations by enclosing within pa-
rentheses the cclculation to be performed first. Operations enclosed in
parentheses will take place before ather operations.

There are also operations for equalities and inequalities:

= Equal To

< Less Than

= Greater Than

<= Less Than or Equal To
== Greater Than or Equal To
<> Not Equeal To

Finally, there are three logical operators: =

AND

OR

NOT

These are used mosi often to join rmulliple formulas in IF . . . THEN
statements. For example:

IF A =B AND C = D THEN 100 (Requires both parts to be true)
IFA =B OR C = D THEN 100 (Allows either part to be true) -
COMMANDS

CONT (Continue)

This command is used to restart the execution of a program which has
been stopped by either using the STOP key, o STOP starement, or an
END statement within the program. The program will restart at the exact
place from where it left off.

CONT will not work if you have changec or added lines to the pro-
gram (or even just moved the cursor), or if the program halted due to an
error, or if you caused an error before trying to restart the program. In
these cases you will get a CANT CONTINUE ERROR.

114

LisT

The LIST command allows you to look at lines of a BASIC program in
memory. You can ask for the entire program to be displayed, or only
certain line numbers.

LIST Shows entire program

LIST 10— Shows only from linc 10 until end
LIST 10 Shows only line 10

LIST —10 Shows lines from beginrning until 10
LIST 10-20 Shows line from 10 to 20, inclusive
LOAD

This command is used o transfer o program from tupe or disk inlc
memory sa the program can be used. If you just type LOAD and hit
RETURN, the first program found on the cassette unit will be placed in
memary. The command may be followed by a program name enclosed
within quoles. The nume may then be followed by @ comma and o
number or numeric variable, which acts as a devica number to indicate
where the program is coming from.

If no device number is given, the Commodore 64 assumes davice #1,
which is the cassette unit. The other device commonly used with the
LOAD command is the disk drive, which is device #8.

LOAD Reads irn the next program on tcpe
LOAD “HELLO" Searches tape for pregram called
HELLO, and loads program, if found

LOAD A% Looks for program whose name is in the variable A%
LOAD “HELLO”,8 Looks for program called HELLO on the disk drive
LOAD "*" 8 Looke far first pragram on disk

NEW

This command erases the entire program in memory, and also clears
out any variables that may have been used. Unless the program was
SAVEc, it is lost. BE CAREFUL WHEN YOU USE THIS COMMAND.

The NEW command can alse be used as a BASIC program statement,
When the program reaches this Iine, the program is erasad. This is use-
ful if you want to lzave everything neat when the program is done.

115

RUN

This commend causes execution of a program, ance the orogram is
loaded into memory. It there is na line number following RUN, the com-
puter will start with the lowest line number. If a line number is desig-
nated, the program will start executing from the specified line.

RUN Starts program ot lowest line number
RUN 100 Starts execution at line 100
RUN X UNDEFINED STATEMENT ERROR. You must

always specify an actual line number,
not a variable representation

SAVE

This commuand will store the program currently in memory on cassette
or disk. If you just type SAVE and RETURN, the program will bs SAVEd on
cassette. The computer has no way of knowing if there is & program
already on that tape, so be careful with your tapes or you may erase a
VG|UGb|.=.- program.

If you type SAVE followed by a name in quotes or a string variable,
the computer will give the program that name, so it can be more easily
located and retrieved in the future. The name may also be fallewed by
a device number.

After the device number, there can be @ comma and a second
rnumber, either 0 or 1. I¥ the second number is 1, the Commodoare 64 will
put an END-CF-TAPE marker after your program. This signals the
computer not to look any further on the tape if you were to give an
additional LOAD command. If ycu try to LOAD a program and the com-
puter finds one of these markers, ycu will get a FILE NOT FOUND ER-
ROR.

SAVE Stores program to tape without name
SAVE “HELLO™ Stores on tape with name HELLO
SAVE AS Stores on tape with name in A%

SAVE "HELLO",3 Stores on disk with name HELLO
SAVE “HELLO”,1,1 Stores on tape with name HELLC
and follows program with END-OF-
TAPE marker

116

VERIFY

This command causes the computer to check the program on disk or
tape against the one in memory. This is proof that the program is actu-
ally SAVEQ, in case the tape or disk is bad, or something went wrong
during the SAVE. VERIFY without anything after the command causes the
Commedore 64 to check the next program on tape, regardless of name,
against the program in memary.

VERIFY followed by a program name, or a string variable, will search
for that program and then check. Device numbers can also be included
with the verify command.

VERIFY Checks the next program on tape
VERIFY “HELLO” Secrches for HELLC, checks against memory
VERIFY “HELLO",8 Secrches for HELLC on disk, then checks

STATEMENTS
CLOSE

This command completes and closes any files used by OPEN state-
ments. The number following CLOSE is the file number ta be closed.

CLOSE 2 Only file #2 is closed

CLR

This command will erase any variables in memory, kut leaves the
program itself intact. This command is automatically executed when a
RUN command is given.

CMD

CMD sends the output which normally would go to the screen (i.e.,
PRINT statements, LISTs, but not POKEs onto the screen) fo another de-
vice instead. This could be o printer, or a dato file on tape or disk. This
device or file must be OPENed first. The CMD command must be fol-
lowed by a number or numeric variable referring to the file.

nr

OPEN |,4 OPENs device #4, which is the printer
CMD 1 All normal output now goes to printer
LIST The program listing now goes te

the printer, not the screen

To send output back tc the screen, CLOSE the file with CLOSE 1.

DATA

This statement is followed by a list of items to be used by READ
statements. ltems may be numeric values or text strings, and items are
separated by commas. String items reed not be inside quote marks
unless they contain space, colon, or comma. If two commas have noth-
ing between them, the value will be READ as a zero for a number, or an
empty string.

DATA 12, 14.5, “HELLO, MOM", 3.14, PARTI

DEF FN

This cammand allows you to define a complex calculation as a func-
tion with a short name. In the case of a long formula that is used many
rimes within the program, this can save fime and space.

The function name will be FN and any legal variakle name (1 or 2
characters long). First you must define the function using the statement
DEF followed by the function name. Following the name is a set of pa-
rentheses enclusing a numeric variable, Then follows the actual formula
that you want to define, with the variable in the proper spot. You can
the formula, substituting any number for the variable.

then “call”

18 DEF FNA(X) = 12%(34.75 X/.3)
2@ PRINT ENA(7)

T] 7 is inserted where

X is in the formule

For this example, the result would be 137.

DIM

When you use more than 11 elements of an array, you must execute o
DIM statement for the array. Keep in mind that the whole array takes up

118

room in memory, so don't create an array much larger than you'll need.
To figure the number of varicbles created with DIM, multiply the total
number of elements in each dimension of the array.

10 DIM A$(40), B7(15), CC%(4,4,4)
) 1 T

4| ELEMENTS 14 ELEMENTS 125 ELEMENTS

You can dimension more than one array in a DIM statement. How-
ever, be careful not to dimension an array more than once.

When a program encounters an END statemant, the program halts, as
if it ran out of lines. You may use CONT to restart the program.

FOR. . .TO. . .STEP

This statement works with the NEXT statement to repeat a section of
the program a set number of times. The format is:

FOR (Var. Name)=(Start of Count) TO (End of Count) STEP (Count By)

The locp variable will be added to or subtracted from during the
program. Without any STEP specified, STEP is assumed to be 1. The start
count and end count are the limits to the value of the loop variable.

1@ FOR L= 1TO 1€ STEP .1
2@ PRINT L
3@ NEXT L

The end of the loop value may be followed by the word STEP and
another number or variable. In this case, the value following STEP is
added each time instead of 1. This allows you to count bhackwards, or
by fractions.

GET

The GET statement cllows you to get data from the keyboard, one
charocter at a time. When GET is executed, the character that is ryped is
assigned to the varioble. If no character is typed, then a null (empty)
charocter is assigned.

GET is followed by a variable name, usually o string variable. If o
numeric variable was used and a nonnumeric key depressed, the pro-
gram would halt with an error messcge. The GET statement may be
pleced into a locp, checking tor any empty result. This loop will continue
until a key is hit,

18 GET A%: IF A$ =" THEN 10

GET#

The GET# statement is used with a previously OPENed device or file,
to input one character at a time from that device ar file.

GET #1,A%
This would input one character from a data file.

GOSUB

This statement is similer to GOTO, except the computer remembers
which program line it last executad before the GOSUB. When a line with
a RETURN statement is encountered, the program jumps back to the
statement immadiately following the GOSUB. This is useful if there is a
routing in your program that occurs in several paris of the program,
Instead of typing the routine over and over, execute GOSUBs ecch time
the roufine is needed.

29 GOSUB 8p@

GOTO OR GO TO

When a siatement with the GOTO command is reached, the next line
to be executed will be the cne with the line number following the word
GOTO.

IF. . .THEN

IF. . THEN lets the computer analyze a situation and take two possi-
ble courses of action, depending on the outcome. If the expression is
true, the statement following THEN is executed. This may be any BASIC
sfatement,

It the expression is false, the program goes directly to the next line.

The expression being evaluated may be a variable or formula, in
which case it is considered true if nonzero, ond false if zerc. In most
cases, there is an expression involving relational operators (=, <, >,
<=, »>=, <>, AND, OR, NOT).

120

18 IF X > 18 THEN END

INPUT

The INPUT statement allows the program to get data from the user,
ossigning that data to a variable. The program will stop, print a gues-
tion mark (?) on the screen, and wait for the user to type in the answer
and hit RETURN.

INPUT is followed by a variable name, or a list of variable names,
separated by commas. A message may be placed within quate marks,
kefore the list of veriable names to be INPUT. If more than one variable
is to be INPUT, they must be sepurated by commus when typed.

12 INPUT “PLEASE ENTER YOUR FIRST NAME “;A$
2@ PRINT “ENTER YOUR CODE NUMBER"”; : INPUT B

INPUT#

INPUT# is similar to INPUT, but takes data from a previously OPENed
file or device.

13 INPUT#1, A

LET

LET is hardly ever used in programs, since it is optional, but the
statement [s the heart of all BASIC progrems. The variakle name which
is to be assigned the result of a calculation is on the left side of the
equal sign, and the formule cn the right.

19 LET A — 5
2@ LET D$ = “HELLO"

NEXT

NEXT is always used in conjunction with the FOR statement. When the
program reaches a NEXT statement, it checks the FOR statement to see
if the limit of the loop has been reached. If the loop is not finished, rhe
loop variable is increased by the specified STEP value. It the loop is
finished, execution proceeds with the statement following NEXT.

121

NEXT may be followed by a variable name, cr list of variable names,
separated by commas. If there are no names listed, the last loop started
is the one being completad. If variables are given, they are completed
in order from left to right.

16 FOR X = 1 TO 1@@: NEXT
ON

This command turns the GOTO and GOSUB commands into special
versions of the IF statement. ON is followed by a formula, which is
evaluated. If the result of the calculation is one, the first line on the list is
executed; if the result is 2, the second line is executed, and so on. If the
result is 0, negative, cr larger than the list of numbers, the next line
executed will be the statement following the ON statemant.

19 INPUT X
280 ON X GOTO 1¢,20,3¢,49,50

OPEN _—

The OPEN statement allows the Commodore 64 to access devices such
as the cassette recorder and disk for data, a printer, or even the screen.
OPEN is followed by a number (0-255), to which all following statements
will refer. There is usually a second number after the first, which is the
device number,

The device numbers are:

a Screen

1 Casserte
4 Printer

8 Disk

Following the device number may be a third number, separared
again by a comma, which is the secondary address. In the case of the
cassette, this is O for read, 1 for write, and 2 for write with end-of-tape
marker.

In the case of the disk, the number refers to the buffer, or channel,
number. In the printer, the secondary address controls features like ex-
panded printing. See the Commedore 44 Pragrammer’s Reference Man- 2=
val far more details.

122

19 OPEN 1,0 OPENs the SCREEN as a device
20 OPEN 2,1,2,”D" OPENs the cassette for reading,
file to be searched for is D
30 OPEN 3,4 OPENs the printer
40 OPEN 4,8,15 OPENs the dara channel on the disk

Alsc see: CLOSE, CMD, GET#, INPUT#, ard PRINT#, system variable
ST, and Appendix B.

POKE

POKE is alweys followed by two numbers, or formulas. The first loca-
tion is a memory location; the second number is a decimal valve from 0
to 255, which will be placed in the memory location, replacing any pre-
viously stored value.

1¢ POKE 53281,7

20 S=4¢96713
30 POKE 5+29,8

PRINT

The PRINT statement is the first one most people learn to use, but
there are @ number of variations to be aware of. PRINT can be faollewed

by:

Text String with quctes
Variable names
Functions

Punctuation marks

Punctuation marks are used to help format the data on the screen.
The comma divides the screen inte four columns, while the semicolon
suppresses all spacing. Either mark can be the last symbol cn a lire.
This results in the next thing PRINTed acting as if it were a continuation

of the samz PRINT statement.
10 PRINT “HELLO”

28 PRINT “HELLO",A%

30 PRINT A+B

123

4¢ PRINT J;
60 PRINT A,B,C,D

Also see: POS, SPC and TAB functions

PRINT#

Thara are o few differences betweon this statement and PRINT.
PRINT# is followed by a number, which refers 1o the device or daota file
previously OPENed. This number is followad by a comma and a list to be
printed. The comma and semicolon have the same affect as they do in
PRINT. Please note that some devices may nat work with TAB and SPC.

198 PRINT#1,"DATA VALUES”; A%, B1, C$

READ

READ is used to assign information from DATA statements to vari-
ables, so the informalion muy be pul to use. Care must be taken to
ovoid READing strings where READ is expecting o number, which will
give a TYPE MISMATCH ERROR.

REM (Remark)

REMark is a note to whamaver is reading a LIST of the program. It
may explain a section of the program, or give additional instructions.
REM statements in no way offect the cperation of the pragram, except
to add to its length. REM may be followed by any text.

RESTORE

When executed in a program, the pointer to which an item in a DATA
statement will be READ next is reset fo the first item in the list. This gives
you the ability to re-READ the information. RESTORE stands by itself on o
line.

RETURN

This statement iz clways used in conjunction with GOSUB. When th=
program encounters a RETURN, it will go to the statement immediarely
following the GOSUB command. If no GOSUB was previously issued, a
RETURN WITHOUT GOSUB ERROR will occur.

124

STOP

This statement will halt program execution. The messcge, BREAK IN
xxx will be displayed, where xxx is the line number containing STOP. The
program may be restarted oy using the CONT command. STOF is nor-
mally used in debuggirg a program.

SYS

SYS is followed by a decimal number or numeric value in the range
0-65535. The pragram will then begin executing the machine languege
program sterting at that memory location. This is similar te the USR
function, but does not allow parameter passing.

WAIT

WAIT is used to halt the program until the contenrs of @ memory loca-
tion changes in a specific way. WAIT is followed by a memory location
(X) and up to two variables. The format is:

WAIT X,Y,Z

The contents of the memory location are first exclusive-ORed with the
third number, if present, and then logically ANDed with the second
number. If the result is zero, the program goes back to that memory

location and checks again. When the result is nonzero, the program
continues with the next statement.

NUMERIC FUNCTIONS

ABS(X) (abselute value) |

ABS returns the absolute value of the number, without ifs sign [+ or
—). The answer is always positive.

ATN(X) (arcrangent)
Returns the angle, measured in radians, whose tangent is X.

125

COS(X) (cosine)

Returns the value of the cosine of X, where X is an angle measured in
radiuns.

EXP(X)

Returns the valus of the mathematical constant e(2.71827183) raised
to the power of X,

FNxx(X)

Rerurns the value of the user-defined function xx created in a DEF
FNxx(X) statement.

INT(X)

Returns the truncated value of X, that is, with cll the decimal places
to the right of the decimal point removed. The result will alwaoys be less
than, or equal te, X. Thus, any negative numbers with decimal places
will become the integer less than their current value.

LOG(X) (logarithm)

Will return the natural log of X, The natural log to the base e (see
EXP(X)). To convert to log base 10, simply divide by LOG(10).

PEEK(X)

Used to find out contents of memory location X, in the range 0-65535,
giving a result from 0-255. PEEK is often used in conjunction with the
POKE statement.

RND(X) (random number)

RND(X) returns a random number in the range 0-1. The first random
number should be generated by the formula RND(—TI) to start things off
differently every time. After this, X should be o 1 or any positive
number. If X is zero, the result will be the same random number as the
last one.

126

A negative value for X will reseed the generator. The use ot the same
negative number for X will result in the same sequence of “randem”
numbers.

The formula for generating a number between X and Y is:

N = RND(1)*(Y=X)+X

where,
Y is the upper limit
X is the lower range of numbers desired.

SGN(X) (sign)

This function returns the sign (positive, negative, or zero) of X. The
result will be +1 if positive, 0 if zero, and —1 if negative.

SIN(X) (sine)

SIN(X) is the trigonometric sine function. The result will be the sine of
X, where X is an angle in radians.

SQR(X) (square root)

This function will return the square root of X, where X is a pasitive
number or 0. If X is negative, an ILLEGAL QUANTITY ERROR results.

TAN(X) (tangent)

The result will be the tengent of X, where X is an angle in radians.
USR(X)

When this function is used, the program jumps to a machine languege
program whose starting point is contained in memory locations. The pa-
rameter X is passed to the machine language program, which will re-
turn another value beck to the BASIC program. Refer to the Commodore

64 Programmer’s Reference Manual for more details on this function
and machine languvage programming.

127

STRING FUNCTIONS
ASC(X$) —

This function will return the ASCII code of the first character of X$.

CHR$(X)

This is the opposite of ASC, and returns a string character whose
ASCIl code is X.

LEFT$(X$,X)
Returns a string centaining the leftmost X characters of $X.
LEN(X$)

Returned will be the number of characters (including spaces and
cther symbols) in the string XS.

MID$(X$,5,X)

This wil' return a string containing X characters starting from the Sth
character in X$.

RIGHT$(X%,X)
Returns the rightmost X characters in X$.

STR$(X)

This will return @ string which is identical to the PRINTed version of X.

VAL(X$)

This function converts X$ into a number, and is essenticlly the inverse
operation fram STR$. The string is examined from the leftmost character
to the right, for as many characters as are in recognizable number for-
mat.

128

16 X = VAL(“123.456") X = 123.456
18 X = VAL("12A13B") X =12

19 X = VAL("RIUB17") X =g

18 X = VAL ("—1.23.45.67") X=-123

OTHER FUNCTIONS
FRE(X)
This function returns the number of unused bytes available in memory,

regardless of the value of X. Note that FRE(X) will read cut n negative
numbers if the number of unused bytes is over 32K.

POS(X)

This function returns the number of the column (0-39) at whick the
next PRINT statement will begin on the screen. X may hove any value
and is not used.

SPC(X)
This is used in o PRINT statemeant to skip X spaces forward.
TAB(X)

TAB is also used in a PRINT statement; the next item to be PRINTed will
be in column X.

129

APPENDIX D

ABBREVIATIONS FOR
BASIC KEYWORDS

As a time-saver when typing in pregrams and commands, Commo-
dore 64 BASIC allows the user to abbreviate most keywords. The ab-

breviation for PRINT is a question mark. The abbreviations for other
words are made by typing the first one or two letters ot the word, tol-
lowed by the SHIFTed next letter of the word. If the akbreviations are

used in a program line, the keyword will LIST in the full form.

Looks like Looks like

Com- Abbrevi- this on Com- Abbrevi- this on
mand ation screen mand ation screen
AES A B8 s Alll END [sHiFr JIN e /]
ano AEmN A EXP eEEx e (W]
asc AEEs AV FN NONE FN

ATN A B8 Al FOR 3 sHiFT J[O) F]
CHR$ (ol sHIFT 5] Cm FRE F Eilag R F Q
CLOSE CLEZE © CLD GET (el SHIFT 3 G E
CLR c EE. c[GET# NONE GET#
CMD c B cN cosue Go [EER s co[w]
cont c BfEBo c[] corc GcEmo o [J
Ccos NONE COS IF NONE IF

DATA o EBGE A D [#] INPUT NONE INPUT
DEF o Ee o5 weut | E@N 0
DIM Sl stirr o N INT NONE INT

130

Looks like Looks like

Com- Abbrevi- this on Com- Abbrevi- this on
mand ation screen mand ation screen
LEFTS N SHIFT [_Fg RIGHTS 8 SHIFT RE[
LEN NONE LEN RND REm@ N R
LET N shir1 I L RN REMB U R[A
LIsT . & L] sAavE s @R A s [&]
wap L (SIER o L [SGN sEm e s
LOG NONE LOG SIN s R sK]
MID$ L strr |l ME' SPC() swiFt s D
NEW NONE NEW SQR sEmE o s @
NEXT N E N STATUS ST S
notr N EIE o N[] ster STIRHGR E S|
ON NONE ON stor s (R T s [
OPEN O BLlaN F o} j 5TR3 ST Ehllag R STQ
OR NOME OR 5Y5 S ELlas Y 5 D]
PEEK Gl siirt [z P TAB(T EGE A T
roke P EIER © > [TAN NONE TAN
POS NONE POS THEN T [EIEE H T[]
PRINT ? ? TIME i T
PRINT# P [EaB R P TIMES TI$ TI$
READ R E R USR v B s v [%]
REM NONE REM VAL v Bilag A v @
restore re [EED S RE [v] veriey v (NS E v
RETURN RE (SHIER T Re|] | warr wERR A w(4]

1231

APPENDIX E

SCREEN DISPLAY CODES

The following chart lists all of the characters built into the Commadore
64 character sets. It shows which numbers should be POKEd into screen
memory (locations 1024-2023) to gst a desired character. Also shown is
which character corresponds to o number PEEKed from the screen.

Twa character sets are available, but only one set at o time. This
means that you cannot have characters from one set on the screen at
the sume time you have characters from the other set displayed. The
sets are switched by holding down the and [& keys simul-
taneously.

Fram BASIC, POKE 53272,21 will switch to upper case mode and
POKE 53272,23 switches to lower case.

Any number on the chart moy also be displayed in REVERSE. The
reverse character code may be obtained by adding 128 to the values
shown.

If you want to display a solid circle at location 1504, POKE the code
for the circle (81) info location 1504: POKE 1504,81.

There is a corresponcing memory location ta control the color of each
character displayed on the screen (locations 55296-56295). To change
the color of the circle to yellow (color code 7) you would POKE the corre-
sponding memory location (55776) with the character color: POKE
55776,7.

Refer ta Appendix G for the complete screen and color memory

maps, along with color codes.

SCREEN CODES

SET1 SET2 POI(E[SET1 SET 2 POKE,BET1 SET2 POKE

@ 0 C c 3 F f 6
A a 1 D d g e
B b 2 E e H 8

132

POKE

)
[{a]

8

I~
w

a
w

m
w

R

1
I~

(o]
M~

m
~

-
~

a o O o M = W
PECRRRS oo ®o ®

o
w

~
ve]

=]
@

[=1 (oY]
2850

m <O ODWUWETIT-—-->¥452z200a0@CTmiE-D>3X>N
0w
|l EBMDDO0ES6GMINOBNOCe0ROEXKOR B B
Y 5B 895 Y9I LSYTISSSYB 38858885888
o
m
L]
m%&;().+-_ -~ 0O N O % W O~ -<__>?E
[
loccnosmer 22 s NRIRENRABFEB S8 8
o
ml.lklmnOPQrstuvwxv.z

Ll
- -
| — o ¥ oS z0a 0 & ® kD> X>N—w—« |- * &
n

133

SET1 SET2 POKE | SET1 SET2 POKE | SET1 SET2 POKE
M % | 4 105 | I 17
M B e | [] ws | [N 118
N N o [H o7 | O 119

% | 108 | 120
B 97 | [YH 109 | o 121
= 8 f] 1mo | O M 122
0 99 | [111 | ! 123
] 100 | [A 112 | ™ 124
] 101 | [113 | H] 125
B2 102 | 114 |] 126
[] 103 | H] 115 | M 127
= 104 | [J 116

Codes from 128-255 are reversed images of codes 0-127.

134

APPENDIX

ASCIl AND CHR$ CODES

F

This appendix shows you what characters will appear if you PRINT
CHR$(X), for cll possible values of X. It will also show the values ob-
tained by typing PRINT ASC("x"), where x is any character you can type.
This is useful in evaluating the character received in a GET statement,
converting upper/lower case, and printing character based commands
(like switch to upper/lower case) that could not be enclosed in quotes.

135

PRINTS CHRS | PRINTS CHRS | PRINTS CHRS | PRINTS CHRS

o & izl “ 34 3 51

1 | ER 18 # 35 4 52

2 m 19 $ 36 5 53

s | B 20| % 37 6 54

4 21 & 38 7 55

£ S 22 39 8 56
6 23 (40 9 57

7 24) 41 58

oisaaLes [IEN (8 25 - 42 : 59
ensstes (R (o 26 e 43 = 60
10 27 " a4 = 61

11 n 28 - 45 > 62

12 s 29 46 ? 63

13 B 3 /a7 a 64
4 | SR 3 0 48 A 65
15 32 1 49 B 66

16 ! 33 2 50 ¢ 67

| PRINTS CHRS$ | PRINTS CHRS | PRINTS CHRS | PRINTS CHR$
D 68 97 126 HH 185
E s | [I] 8 | N 127 | g 156
F 0 | H 99 128 ‘ B s
G n | B 100 | [#] 129 | B
H 2 | 3 1o 190 A 150
' 3| 102 131 160
J 74 | [103 132 I e
K 75 | [104 | 133 162
L % | N 105 | 3 134] 163
M 77 | [N 106 | f5 135 O 1es
N B | Y] 17| w7 13e| [1es
o 7 [0 18| f2 13| BB 166
P g0 N 109 | f4 138 (1 167
Q g1 |/ 110 | f6 139 = 168
R &2 [111 | 18 140 P 160
S g3 [112 | O 41 (1 170
T 84 R svcH 10 PP H 17
U 85 [114 1493 | [m 172
v g [V 15 | QEA 144 Y 173
w s [16| B 14| Bl 174
X 88 4 17 | K 146 L 9%
Y 89 118 147 E 176
z 9 | O 119 B 148 K o177
(91] 120 (A 148 = 178
£ 92 | I 121 | @@ 10| H 17
] % | # 22 151 | L] 1e0
T 94 EF' 123 [oh] 152 E 181
— o5 | E rea | [3| [A ez
B e | [IJ 125 | (@] 154 [183

136

137

PRINTS CHRS PRINTS CHRS PRINTS CHR$ | PRINTS CHRS$
™ 184 | [] 186 | [™ 186 |:]l w0
85 [@] 187 | H] 180 ‘ B 101
_ CODES 192-223 SAME AS 96-127
CODES 224-254 SAME AS 160-180
CODE 255 SAME AS 125

APPENDIX G

SCREEN AND COLOR MEMORY MAPS

The following charts list which memory locations control placing char-
acters on the screen, and the locations used to change individual char-
acter colors, os well as showing character color codes.

SCREEN MEMORY MAP

COLUNN
n 10 70 o a9

1083

1024 —— 1 (
1064 [
1104 |
114
1184
1224
1264
130
1384
1334
1424

1 | ! 1 n
1504 |
1544 .
1584 | |
1624]
1664 . :
1704 [
M i L 1]
1781
1824

1864 : 2
1904 | ,
1948 - i — i
1984 1 I u

Moy

138

The actual values to POKE into a color memory location to change a
character’s color are:

@ BLACK 8 ORANGE

1 WHITE 9 BROWN

2 RED 1¢ Light RED

3 CYAN 11 GRAY 1

4 PURPLE 12 GRAY 2

5 GREEN 13 Light GREEN
6 BLUE 14 Light BLUE
7 YELLOW 15 GRAY 3

For example, to change the color of a character located at the upper
left-hand corner of the screen to red, type: POKE 55296,2.

COLOR MEMODRY MAP

COLUMN
0 10 20 30 3

55315
t

3529t —= 0
55336
55376
5541€
55456 | [
53496 N [[[11
53536 !
55576]
55616 HEE I] [
55656 | LY |

5569] I — —
55736] [
55776 | |
gsglg |
383 [|

55896 | [] + R
55936 [B 11 [
55976 | | | 11
56016 |
L6056 | I i
5609 [| 20
56136 i

56176
5621€]]
5(25€ I 1]

Mod

t
56295

139

APPENDIX H

DERIVING MATHEMATICAL FUNCTIONS

Functions thet are not intrinsic to Commodore é4 BASIC may be calcu-

lated as follows:

FUNCTION

BASIC EQUIVALENT

SECANI
CCSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE

INVERSE SECANT
INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIZ SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT

HYPFRBOIIT SFCANT
HYPERROLIZ COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC SINE
INVERSE HYPERBOLIC COSINE
INVERSE HYPERBOLIC TANGLNT
INVERSE HYPERBOLIC SECANT

INVERSE HYPERBOLIC COSECANT

NVERSE HYPERBOLIC COTAN-
GENT

SEC(X)=1/COS(X)
CSC)=1/5INX)
COT(X)=1/TAN(X)
ARCSING)=ATN(X/SQR(—X*X+ 1))
ARCCOS[X)= —ATN(X/SQR
[—X*X +1) +m2
ARCSEC(X)=ATN(X/SQR(X*X—1))
ARCCSC(X)=ATNX/5QR(X*X—1))
—(SGN(X)—1*m/2
ARCOT(X)=ATN(X)+7/2
SINH(X)=(EXP{X)—EXP[—X))i2
COSH(X)= (EXP(X)+EXP(— X))/2
TANH(X)=EXP(— X)/(EXP(x)+EXP
(—xXn*241
SECH(X)=2/(EXP(X)+EXP({—X))
CSCH(X)=2/(EXP{X)—EXP(—X))
COTH[X)=EXP{— X)(EXP(X)
—EXP(—X))*2+1
ARCSINF(XI=LOG(X+ SQR(X* X+ 1))
ARCCOSH(X)=LOG(X+SQR(X*X~—1))
ARCTANH(X)=LOG{(1 +X)/(1—X)¥/2
ARCSECH(X)=_OG((5QR
(= XX+)%
ARCCSCH(X)=LOG((SGN(X)"SQR
(XY K+1/x)
ARCCOTH(X)=LOG((X+ 1) (x—1))/2

140

APPENDIX 1

PINOUTS FOR INPUT/OUTPUT DEVICES

This appendix is designed lo show you what connections may be
made to the Commodore 64.

1) Game I/Q 4) Serial /O (Disk/Printer)
2) Cartridge Slot 5) Modulator Qutput
3) Audio/Video 6] Cassette

71 User Port

Control Port 1
Pin Type Note
JOYAQ
JOYAIL
JOYAZ
JOYAZ Q Q o Q
POT AY 6 8 9
BUTTON A/LP
+5V MAX. 50mA
GND
POT &aXx

-~

@ N O B W R =

Control Port 2
Pin Type Note
10YBO
J0YR1
J0YB2
JOYB3
POT BY
BUTTON B
+5v MAX. 50mA
GND
POT BX

0@ N> e W -

141

Cartridge Expansion Slot
Pin Type —|
12 BA
13 DA
14 D7
15, Dé
6 D5
7 D4
‘R D3
9 N2
20 DI
7 Do
22 GND
Pin Type
N A9
P A8
R A7
5 Aé
1 As
u Ad
v A3
W A2
X Al
Y AD
z GND

2221201918 171515141312 11108 A 7 B 541321

ZY*WVU SAPNMLKIJFFEDCBA

]
=
=

Type

— D0 @ N>R W=

——

GND

+ 5V
5V
IRQ
RIW
Dot Clack
a1
GAME
EXROM
o 2
ROML

5]
2

TCrASTTMON®®E

Type

GMND
ROMH
RESET
Nl
502
Als
Ald
Al3
Al2
All
AT1D

Avudio/Video
Pin Type Note
1 LUMINANCE
2 GND
3 AUDIO OQUT
4 VIDEO OUT
5 AUDIC IN [
Serial /O
Pin Type
1 SERIAL SRQIN
2z GND
3 SERIAL ATN IN/OUT
4 SERIAL CLK INJOUT
5 SERIAL DATA IN/OUT
|, 6 RESET

142

Cassette

Pin
A
B-2
Cc-3
D-4
E-5
F-4

Type

GND

+5V

CASSETTE MOTOR
CASSETTE RFAD
CASSETTE WRITE
CASSETTE SENSE

User I/O

Pin

Type

Note

0o~ AWK =

GND

+5V MAX,

RESET

CNTI

SP]

CNT2

SP2

PC2

SER. ATN IN

9 VAC MAX
9 VAC MAX.

GND

100 mA

100 mA
100 mA

Type

Note

ZTrARcITmon o >»F

GND
rLaGz
PBO
PB1
PB2
PB3
PB4
PBS
PB&
PB7
PA2
GND

12 3 4 5 6 7 8 9 101112

T ——

A BCDETFHJEKLMN

143

12 3 458

L]

ABCDEHF

APPENDIX J

PROGRAMS TO TRY

We've included ¢ number of useful programs for you ta try with your
Commodore é4. These programs will prove both entertaining and

useful.

144

100 print"Bjotto jim butterfisld”
120 input"®want Instructions";z%:ifasc(zs$)=78gotol50
130 print"Btry Lo guess Lhe mystery S-letler word”
L4D print"®you must guzss only legal S5-lettar"
130 print"words, too..."
140 print"you will bhe tald the number af matches”
170 print"(or *jots”) cof your guess."
L8 print"Bhint: the trick is to vary slightly"”
190 print" from one gquess to the mext; so that"
200 print” I yow guess "batch”™ and get 2 jots"
210 print" yowu might try “botch™ or “chart”™"
220 print" for the next guess..."
250 data bxbsf,ipccz,dbdif,esfbe,pgabm
240 data hpshf,ibudi,djujm,kpnez,lbzhbl
270 data sbkbi,nfufm,nind.boofu,qjafs
280 data rvftu,sjufs,qsftt,puufs,fufou
290 data xfbwf,fuupm,nvtiz,afcsh,qjasz
500 data ui jdl,esvol,gquppe,ujhfs,gblfs
310 deta cppuigymzjoh,trvbu,hbvaf,pxjoh
320 data uisff,tjhiu,bymft hsvng,bsfob
130 data rvbsu,dsffg,cfmdi,qsftt, tabsl
3140 data shebs,.svsbm,tnfam,gspuo,.esigu
500 n=30
410 dim n$(n),z(3) ,u(3)
420 for j=lton:readn$(j)inext;
430 t=ti
440 t=t/1000:ift>=1thengoto440
450 z=pndi-t)
200 g=0:as=nS(rnd(1)%n+1)
310 print "0i have 3 five letter wordi™:ifr>0goto340
520 print "gquess (with legsl words)"
330 print "and i"11 tell you how many"
340 print "' jots’, or matching letters,”
350 print "you have...."
560 g=g+liinput "your word";z$
570 if len(zs)<:Sthenprint"ynu must quess =2
S-letter word!":igotoS40
380 w=0:h=0:m=0
390 forj=1toS
500 z=ascimidé(z$,j,1))zy=ascimidsi(ns,j,1))-1:ifu=é4theny=70
510 ifz<sSorz>¥0thenprint”that’'s not 2 word!":g0to360
520 ifz=40urz=67orz=73urz=79urz=8Jorz=8%thenv=y+i
630 ifz=ythenn=a+l
440 zTl(jiszzyljisyzneuntj
450 ifm=3q0t0d00
460 ifv=Dorv=Sthenprint"cone on..what kind of
a3 word is that?":gotoS60
570 for j=ltoS:y=ylj)
680 for k=1todzifu=z(k)thenh=hrl:iz(k)=0:go0to700C
670 next k
700 next |
710 print"0D00DDDDDDONODNOOBEOR" ;H;"JOTS"
720 ifg«<30gotods0
730 print"i’'d-better tell you.. word was ";
740 forj=1toS:printchr$(u(;));inextj
/30 print""":qo0to810
300 print"you got it in only";g;"guesses."”
210 input"Banother word";z$
820 r=1:ifasciz$)<>78q0ta500

145

1,35 NN e

~ o~

rem *#*¥ seduence

rem

rem #%% from pel user group

rem *%#% software exchanage

rem 2%#% po box 371

rem *## montgomeruville, pa 18936
rem

S50 dim a3$(26)

100
110
200
230
230
240
300
310
320
400
420
430
440
450
460
470
480
979
£00
405
610
620
630
640
650
4L0
670
680
690
700
750
800
210
a4zo0
810
840
250
700
710
940
930
9350
&0
770
FEO
750

z¢="gbcdefghijklonopgrstuvewxuz"
Z1$="123454789012345567870123456"
print"3FPenter length of string to be sequencedP”
input "maximun lemath is 286 Vsl
if eXd1 or X304 then 200

s=sl

for i=1 to s

a4 |)=midélz%,i, 1)

next |

rem reandomize sbring

for i=1 to s

k=intlrnd(1)*s+1)

ti=z¢(i)

adlid=aslk)

a$ik)=ts

next |

aosub Y30

t=0

rem revares substring

t=t+1

input "how many io reverse ";ri
if rZ=0 goto %00

if rX>0 and ri<=s qoto &50

print "wust be between 1 and ";s: goto 610
r=int{rk/2)

for i=1 to r

te=as(i}

a¥(id=as(ri-i+l)

a4({ri-i+1)=ts

next

gosub YL

c=1: for i=2 toc =

if as{i)>as(i-1) goto B3D

c=0

next |

if ¢c=0 goto &00

print "Buou did it in ";t;" tries”

rem check for another gane

input "Pwant to pleay sagsin "ju%

if leftédus, 1)="uy" or y$="ok" or y$="1" goto 200
end

print

print left$(zls$,s)

for i=1 to s: print asli);snext i

print "av

relurn

This program courizsy of Gene Deals

146

FEM FIAMD EEYEORRED

FRIMT"Z 2 20 B0 | MF WE B0 | R0 W01 oM
FRIMT" @ M 2 | M &E 5E | | W§ | oM "
FRIMT" 23 bF (8 | oF i) m0) 2wl 1 mA B
PRIMNT" &) 0 1 bbb
PRINT S WIEIRITIY WP @ &7
FRIMT"®"SFACE" FOR S0LD OR POLYPHOHIC!
PRIM™"87F1,F2.F5 . F7° OJUTAVE SELECTION!
FRIMT"®'EF2 . Fa . F&.F2° WAYEFORMM"
FRIMT"HAMG OH, SETTIHG UP FREC
S=1Z%4398+ 1024 sDIMFC2S sDIMK
FORI=GTO22 :FOKES+T 3 MENM
Fl=v@a@ sFURL=1 1025 sF i 27 - 7=F 1%, 3430 IFL=F 12701 120 sMEST
fE="OZMIERSTEYT I I F0O0F Bk L T

FORI=1TOLEH IE s WSS MIDECHE T2 =1 s HEXT

EHEY THELE..."

=

PRINT"O "
i LS +RE sAV=AT#1E4+0E :

ki

AT=A:TE=0:Sl=15:FE=2:3
Wy'=16€ :ld=3 1 M=1 1 D0 =4 tHE=
FORI=GTIZ2 :FPOKES+S+I%7 AT#1E6+IE:FOKES+E+I47 .Sk 15+FE
POKES+2+1%7 , 4008AM025S 1 POKES+3+ 147, 4003258 s HEXT
POEES+249 , 15 tREM+16+54 tPOKES+23, 7

GETAZ :IFAF=""THZHZOa

FR=a=F{K<PSCIAF»? ' r'M s TasY# 7 iCR=3+T+4: IFFR=ZT-IEHEQD
POKES+£+T, . Z2:FREM FIMIZSH DEC-/SJS

FORKES+S+T . 2:REM FIMIEH ATT/REL

FOKECR S :POKECR,,@:REM FIX OFF

FOEES+T .FR—-HE®IMT(FR.HE» :REM ZET LO

POKES414T . FRAHE :REM SET HT

POKES+£+T , 5% sREM SET DEC/3US

POKES+S+T.AY sREM SET ATT/REL

POKECR LWV 1 s FORI=1 TOEG4AT = HEXT

POKECR .Y :REM RPULSE

[FP=]lTHEMY=Y+1 : IFV=2THENY =0

GOTIDZEa

[FAF="M" THENM=1 :DC=4 s Z0OTOZ08
IFAS="M"THEHM=2 1 1N '
[FA#="|R"THEN =+ :0C=
IFAE="AI"THEHM=2 ; DZ=1 n
[FA%-"M'THEN -G 20 =1 2 -30TO230
IFS$="R"THEM=1 1 i'V=32Z : GO T4
[FAE="8"THEN
IF9%="U"THEHK=32:
IFA$=" "THENF=1-P s G0TOI@0
IF3$="0"THEHZ QG

GOTOZE0

FRIMT"HIT A KEWY"

GETAS :IFA$=""THENS1G :WAIT FOR A KEY
PRIMTA# :RETLRHM

NOTES:

Line 100 uses (SHIFT CLRIHOME), Line 530 uses (i7)

(CTRL 9),(CTRL]),[SHIFT B} Line 540 uses (12)

Line 150 uses (CASA DOWN) Line 550 uses (14)

Line 240 uses (CASA UP) Line 560 uses (16)

Line 500 uses (M) Line 570 uses (18)

Line 510 uses (f3) Line 590 uses (SHIFT CLR/HOME)

Line 520 uses (15]

147

APPENDIX K

CONVERTING STANDARD
BASIC PROGRAMS TO
COMMODORE 64 BASIC

If- you have programs written in a BASIC eother than Carmmodore
BASIC, some minor adjustments may be nccessary before running them
on the Cammodore-64. We've included some hints To make the conver-
sion easier.

String Dimensions

Delete all statements that are used to declare the length of strings. A
statement such as DIM AS$(l,J), which dimensicns o string array for J
elements of length |, should be converted to the Commodore BASIC
statement DIM A$(J).

Some BASICs use a camma or ampersand for string concatenation.
Each of these must be changed to a plus sign, which is the Commodore
BASIC operator for string concatenation.

In Commodore-64 BASIC, the MID$, RIGHT$, and LEFT$ furctions are
used to take substrings of strings. Forms such as A$(l) to access the Ith
character in A§, or A%(l,J) to take a subsiring of A} from position | to J,
must be changed as fcllows:

Other BASIC Commodore 64 BASIC
AS() = X$ A$ = LEFT$(AS,I—1)+X$+MIDS(AS, 1+ 1)
A$(,)) = X$ A$ = LEFT$(AS,1—1)+X$+MID$(AS, J+1)

Multiple Assignments
To set B and C equal to zern, some BASICs allow staterents of the
form:

18 LET B=C=¢

148

Commodore 64 BASIC would interpret the second equal sign as «

lagical operator and set B = —1 it C = 0. Instead, convert this state-
ment to:
1§ C=g : B=¢

Multiple Statements

Some BASICs use a backslash (\) fo separate multiple statements on
a line. With Commedore &4 BASIC, separate all statements by a colon
().
MAT Functions

Programs vusing the MAT functions available on some BASICs must be
rewritten using FOR. . .NEXT loops to execute properly.

149

APPENDIX L

ERROR MESSAGES

This appendix contains a complete list of the error messages gener-
ated by the Commodore-64, with a description ot causes.

BAD DATA String data was received from an open file, but the pro-
gram was expecting numeric data.

BAD SUBSCRIPT The program was trying to reference an element of
an array whase number is ouiside of the range specified in 1he DIM
statement.

CAN'T CONTINUE The CONT command will not work, either because
the program was never RUN, there has been an error, or a line has
been ediled.

DEVICE NOT PRESENT The required I/O device was not available for
an OPEN, CLOSE, CMD, PRINT#, INPUT#, or GET#.

DIVISION BY ZERO Division by zero is o mathemctical oddity and not
allowed.

EXTRA IGNORED Too many items of data were typed in response to
an INPUT statement. Only the first few items were accepted.

FILE NOT FOUND If you were laoking for a file on tape, and END-OF-
TAPE marker was found. If you were looking on disk, no file with that
name exists.

FILE NOT OPEN The file specified in a CLOSE, CMD, PRINT#, INPUT#,
or GET#, must first be OPENed.

FILE OPEN An attempt was made to open a file using the number of
an ulready open file,

FORMULA TOO COMPLEX The string expression being evaluated
should be split into at least two parts for the system 1o work with, or a
formula has too many parentheses.

ILLEGAL DIRECT The INPUT statement can only be used within a pro-
gram, and not in direct mode.

ILLEGAL QUANTITY A number used as the argument of a function or

statement is out of the allowable range.

150

LOAD There is a problem with the program on tape.

NEXT WITHOUT FOR This is caused by either incarrectly nesting loops
or having ¢ variable name in ¢ NEXT staterment that doesn’t correspond
with one in a FOR statement.

NOT INPUT FILE An attempt was made to INPUT or GET data frem a
file which was specified to be for output anly.

NOT OUTPUT FILE An attempt was made to PRINT data to a file which
was specifled as input only.

OUT OF DATA A READ statement was executed but there is no data
left unREAD in a DATA statement.

QUT OF MEMORY There is no mora RAM cvailable for program or
variables. This may also occur when too many FOR loops have been
nested, or when there are too many GOSUBs in effect.

OVERFLOW The result of a computation is lorger than the largest
number allowed, which is 1.70141884F+38.

REDIM'D ARRAY An array may only be DIMensioned once. If an array
variakle is used before that array is DIM'd, an automatic DIM operation
is performed on that array setting the number of elements to ten, and
any subsequent DIMs will couse this errar.

REDO FROM START Character data was typed in during an INPUT
statement when numeric data was expected. Just re-type the entry so
that it is correct, and the program will continue by itself.

RETURN WITHOUT GOSUB A RETURN statement was encountered,
and no GOSUB command has been issued.

STRING TOO LONG A string can cenlain up to 255 characters.
?SYNTAX ERROR A statement is unreccgnizable by the Commcdore
64. A missing or extra parenthesis, misspelled keywords, etc.

TYPE MISMATCH This error occurs when a number is used in place of a
string, or vice-versa.

UNDEF'D FUNCTION A user defined function was referenced, but it
has never been defined using the DEF FN statement.

UNDEF'D STATEMENT An attempt was made to GOTO or GOSUB or
RUN a line number thatl doesn’t exist.

VERIFY The program cn tape or disk does not match the program cur-
rently in memory.

151

APPENDIX M

MUSIC NOTE VALUES

This appendix contains a complete list of Note#, actual note, cnd the
values to be POKEd into the HI FREQ and LOW FREQ registers of the
sound chip to produce the indicated note.

MUSICAL NOTE OSCILLATOR FREQ
NOTE OCTAVE DECIMAL HI LOW
0 c-0 268 1 12
1 C#-0 284 1 28
2 D-0 301 1 45
3 D#-0 318] 62
1 E—0 337 1 81
5 F—0 358 1 102
) F#-0 379 1 123
7 G-0 401 1 145
8 G#-0 425 il 149
? A-0 451 1 195
10 AF—-0 477 1 221
11 B-0 506 1 250
16 C-1 536 2 24
17 C# -1 548 2 56
18 D—1 602 2 90
19 D# -1 637 2 125
20 E-1 675 2 163
21 F—1 716 2 204
22 F#-1 758 2 246
23 G—1 803 3 35
24 G#-1 851 3 83
25 A 202 3 134
26 A# -1 955 3 187
27 B—1 1012 3 244
32 Cc-2 1072 4 48

152

MUSICAL NOTE

OSCILLATOR FREQ

NOTE OCTAVE DECIMAL HI LOwW
33 C#-2 1136 4 112
34 D-2 1204 4 180
35 D#-2 1275 A 251
36 E-2 1351 5 71
37 F-2 1432 5 152
38 F#-2 1517 5 237
39 G-2 1607 é 71
40 G#-2 1703 6 167
41 A-2 1804 7 12
42 A#-2 1911 7 119
43 B—2 2025 7 233
48 Cc-3 2145 8 97
49 C#-3 2273 8 225
50 D-3 2408 9 104
51 D#-3 2551 9 247
52 E 3 2703 10 143
a3 F-3 2864 11 48
54 F#-3 3034 I 218
55 G-3 3215 12 143
56 G#-13 3406 13 78
57 A-3 3608 14 24
58 AF# -3 3823 14 239
59 B-3 4050 15 210
64 Cc-4 4201 16 195
65 C#-4 4547 17 195
66 D-4 4817 18 209
67 D#-4 5103 19 239
68 E-4 5407 21 31
69 F—4 5728 22 96
70 F#—4a 6069 23 181
71 G-4 6430 25 30
72 G#-4 6812 26 156
73 A4 7217 28 49
74 A#—4 7647 29 223
75 B-4 8101 31 165
80 C-5 8583 33 135
81 C#-5 2094 35 134

153

MUSICAL NOTE

OSCILLATOR FREQ

NOTE QCTAVE DECIMAL HI Low
82 c-0 2634 37 162
83 C#-0 10207 39 223
84 D-0 10814 42 62
85 F-5 11457 44 193
86 F#_5 12139 47 107
87 G-5 12860 50 60
83 G#-5 13625 53 57
89 A-5 14435 56 99
Q0 A#-5 15294 59 190
91 B-5 16203 63 75
95 C—6 17167 67 15
97 C#-6 18188 71 12
9R D-6 19269 75 £9
99 D#-6 20415 79 191

100 E-6 21629 84 125
101 F-6 22915 89 131
102 F#-6 24278 94 214
103 G—6 25721 100 121
104 G#-6 27251 104 115
105 A—6 28871 112 199
106 A#-6 30588 119 124
107 B-é4 32407 126 151
112 c-7 34334 134 30
113 C#H-7 36376 142 724
114 D—7 38539 150 139
115 D#-7 40830 159 126
116 E-7 43258 168 250
17 F-7 45830 179 6
118 F#—7 48556 189 172
119 G-7 51443 200 243
120 G#-7 54502 212 230
121 A=7 57743 225 143
122 A#F-T 61176 238 248
123 B-7 64814 253 46

1549

FILTER SETTINGS

Location Contents
54293 Low curoff frequency (0-7)
54294 Hiah cutoff frequency (0—255)
54295 Resonance (kits 4—7)

Filter voice 3 (bit 2)

Filter voice 2 (bit 1)

Fiter voice 1 (kit 0)
54296 High pass (bit 6)

Bandpass (bit 5)
Low pass (bit 4)
Volume (bits 0-3)

155

APPENDIX N

BIBLIOGRAPHY

Addison-Wesley

Compute

Cowbay Computing

Creativa Computing

Dilithium Press

Faulk Baker Associates

Hayden Book Co.

“BASIC and the Personal Computer”, Dwyer
and Critchfield

“Compute’s First Book of PET/CBM"
“Feed Me, I'm Your PET Computer”, Carol Al-
exander

“Looking Good with Your PET”, Carol Alexan-
der

“"Teacher’'s PET—Flans, Quizzes, and An-
swers”'

"“Getting Acquainted With Your VIC 20",
T. Hartnell

“BASIC Basic-English Dictionary for the PET",
Larry Noonan

“PET BASIC"”, Tom Rugg and Phil Feldman
“MOS Programming Monual”, MOS Technol-
ogy

"BASIC Fram the Ground Up”, David E. Siron
| Speak BASIC to My PET”, Aubrey Jones, Jr.
“library of PET Subroutines”, Nick Hampshire
“PET Grouphics”, Nick Hampshire

“BASIC Conversions Handbook, Apple, TRS-
80, and PET”, David A. Brain, Phillip R.
Oviatt, Paul J. Paguin, and Chendler P, Stone

156

Howard W. Sams

Little, Brown & Co.

MeGraw-Hill

Oshorne/ MeGraw-Hill

P. C. Publications

“The Howard W. Sems Crash Course in Mi-
cracomputers”, Louis E. Frenzal, Jr.

“Mostly BASIC: Applications for Your PET”,
Howard Berenbon

“PET Interfacing”, James M. Downey and Sre-
ven M. Rogers

“VIC 20 Programmer’s Reference Guide”, A.
Finkel, P. Higginbottom, N. Harris, and M.
Tomczyk

“Computer Games for Businesses, Schools,
and Hames”, J. Victor Nagigian, and Williarm
S. Hodges

“The Computer Tutor: Leaming Activities for
Homes and Schools”, Gary W. Orwig, Univer-
sity of Central Florida, and William S. Hodges

“Hands-On BASIC With a PET”, Herbert D.
Peckman

“"Home and Office Use of VisiCalc’, D.

Castlewitz, and L. Chisauki

“PFET/CBM Parsonal Computer Guide”, Carroll
S. Donahue

“PET Fun and Games”, R. lJeffries and G.
Fisher
“PET and the IEEE”, A. Oshorne and C.

Donuhue

“Some Common BASIC Programs for the PET",
L. Poole, M. Borchers, and C. Donahue

“"Osborne CP/M User Guide”, Thom Hogan
“CBM Professional Computer Guide”
“The PET Personnl Guide”

“The 8086 Book”, Russell Rector and George
Alexy

“Beginning Self-Teaching Computer Lessons”

157

Prentice-Hall

Reston Publishing Ce.

Telmas Caurseware
Ratings

Tota! Information Ser-

vices

“The PET Personal Computer for Beginners”,
S. Dunn and V. Morgan

“PET and the IEEE 488 Bus (GPIB)”, Eugere
Fisher and C. W. Jensen

“PET BASIC—Training Your PET Computer”,
Raomon Zomora, Wm_ F. Carrie, and B.
Allbrecht

“PET Games and Recreation”, M. Ogelsby, L.
Lindsey, and D. Kunkin

“PET BASIC"”, Richard Huskell
“VIC Games and Recreation”

"“BASIC and the Personal Computer”, T. A.
Dwyer, and M, Critrchfield

“Understanding Your PET/CBM, Vol. 1, BASIC

Programming”

“Understanding Your VIC"”, David Schultz

Commadore Magazines provide you with the most up-fo-date infor-

mation for your Commodore é4. Two of the most popular publications
that you should seriously consider subscribing to are:

COMMODORE —The Microcomputer Maguazine is published bi-monthly
and is available by subscription ($15.00 per year, U.S., and $25.00 per

year, worldwide).

POWER/PLAY —The Home Computer Magazine is published quarterly
and is available by subscription ($10.00 per year, U.S., and $15.00 per

year worldwide).

158

APPENDIX 0

SPRITE REGISTER MAP

Register #
Dec Hex [CB7 DB& DBS DB4 DB3 D82 DBl | DBO
0 0 |S0X7 S0XD SPRIIE O X
Comporent
1 1 |S0Y7 SOYD SERITE O Y
Component
2 2 |S1X7 S1X0 SPRITE | X
3 3 |1Yr S1YD SFRITE 1 Y
4 4 52X7 S2X0 SFRITE 2 X
5 5 82v7 €2¥YD SPRITE 2 ¥
—
] o [S3AF S3X0 SPRITE 3 X
7 7 |53Y7 23Y0 (SFRITE 3 Y
) B [S4X7 S4X0 |SFRITE 4 X
9 9 54Y7 S4Y0D |SFRITE 4 Y
10 A |S5XT7 S5X0 |[SFRITE 5 X
11 B |55Y7 S5Y0 |SPRITE 5 Y
12 C |S8&6X7 S&X0 |SFRITE & X
13 D [S6Y7 S6YD |SPRITEG Y
14 E [|S7X7 §7X0 |SFRITE 7 X
Component
15 F [s7Y7 S7Y0 |SFRITET7 Y
Compaonent
16 10 |S7X8 | S6xX8| S5XB| 54X8 | S3X8 | 52X8 | S1XE| S0X8 |M5B of X
COOCRD.
17 11 [res | Ecm | BMm | 3ink| RSEL | vscLz |yscui|ysclo | SCROM
18 12 |RC7 | RC6 | RC5 | RC4 | RCI | RC2Z [RC1 | RCO |RASTER
19 13 |IPX7 LPX0 [LIGHT FEN X
20 14 PY7 LPYD |LIGHT FEN Y

159

Register #

Cec

Hex

pe7

DBo

DB3

DB4 DB3

DB2

DB1

DBO

21

22
23

24

25

28

<l

15

1C

o

SE7

SE0

SPRITE
EMABLE
(ON/OFF)

N.C.
SEXY7

N.C.

RST

MCM | CSEL

%SsCL2

Xs5CL1

XSCLO

¥ SCROLL
MODE

SEXYO

SPRITE
EXPAMD Y

vS13

Vs12

V511

VS10 | CBI3

CBI12

CB1

N.C.

SCREEN
Character
Memory

IRQ

N.C:

NG

N.C. | LPIRQ

ISSC

ISBC

RIRQ

Interup*
Request's

N.C.

N.C.

MN.C.

N.C. | MLPI

MISSC

MISBC

MRE RO,

Interup:
Request
MASKS

BSP7

BSPO

Background-
Sprite
PRICRITY

SCMT

5CMO

MULTICOLOR
SPRITE
SELECT

SEXX7T|

SEXXQ|

SPRITE
EXPAND X

S5C7

5500

Sprite-Sprite
COLLISION

SBC7

SBCO

Sprite-
Backaraund
COHISION

160

161

ONLY CCLORS 0-7 MAY BE USED IN MULTICOLOR CHARACTER MODE

COLOR CODES DEC HEX COLOR

2 20 |c 0 BLACK EXT 1 EXTERIOR COL |

33 21 1 WHITE BKGDO

34 22 |2 2 RED EKGDI

35 23 |3 3 CYAN BKGD3 N

3 24 |4 4 PURPLE BKGDS

37 25|15 5 GREEN SMC 0 SPRITE
MULTICOLOR 0

38 26 |6 6 BLUE SMC 1 1

¥ 27 |7 7 YELLOW S0COL SPRITE 0 COLOR

40 28 |8 8 ORANGE S1COL |

4 29 g 9 BROWN 52001 :

42 2210 A LT RED S3COL 3

43 2B |11 B GRAY 1 c4coL 4

4 2¢l12 C GRAY 2 S5COL 5

45 2013 D LT GREEN sscoL 6

46 2 |14 E LT BLUE s7coL 7

15 F GRAY 3
LEGEND:

APPENDIX P

COMMODORE 64 SOUND CONTROL
SETTINGS

This handy table gives you the key numbers you need to use in your
sound programs, according ta which of the Commodore 64's 3 voices
you want to use. To sat or adjust a sound control in your BASIC pro-
gram, ust POKE the number from the second column, followed by a
comma (,) and a number from the chart . . . like this: POKE 54276,17
(Selects o Triangle Waveform for VOICE 1).

Remember that you must set the VOLUME before you can generate
sound. POKE54296 followed by a number from 0 to 15 sets the volume
for all 3 voices.

It takes 2 separate POKEs tc generate each musical note . . . for
example POKE54273,34:POKE54272,75 designates low C in the sample
scale below.

Also . . . you aren’t limited to the numbers shown in the tables. If 34
doesn’t sound "right” for a low C, try 35. To provide o higher SUSTAIN
or ATTACK rate than those shown, add twoe ar more SUSTAIN numbers
together. (Examples: POKE54277,96 combines two attock rates (32 and
64) for a combined higher artack rate . . . bur . . . POKE54277,20
provides a low attack rate (16) and a medium decay rate (4).

162

SETTING VOLUME—SAME FOR ALL 3 VOICES

VOLUME COMTRCL|POKES429

Settings range From O (off) to 15 (loudes?)

TO CONTROL POKE THIS FOLLOWED BY OUNE OF THESE NUMEERS
THIS SETTING: HUMBER: (@te 15...0r... 0t 255 depending on range)
TO PLAY A NOTE c |c#| b E F|F#| o | G# A|la#| 8| c| c#
HIGH FREQUENCY | 54273 34 | 36 | 38| 40|43 | 45| 48|51 | 54 57| 61| 64| 68| 72
LOW FREQUENCY |54272 75 | 85 | 126 |200|52 | 198 [127|97 (11 172 (126 |188 (149|169
WAVYEFORM POKE TRIANGLE| SAWTOOTH PULSE NOISE
54276 17 33 635 129
PULSE RATE (Pulse Wavefarm)
Hl PULSE 54275 A valve of 0 to 13 (for Pulse waveform cnly)
LO PULSE 54274 A value of U to 255 (for Pulse waveform anly)
ATTACK/DECAY POKE ATKA | ATKR l ATK2 | ATK1 | DEC4 | DEC3 | DEC2 | DECI
54277 128 b 32 16 8 4 2 1
SUSTAIN/RELEASE POKE 5US4 | 5US53 | SUS2 | sUs) REL4 RELZ RELZ REL1
34278 128 b4 a3z 14 &8 4 2 1
TO PLAY A NOTE C |c# D| D# E F|F#| G | G# A | AF| B| C| C¥#
HIGH FREQUEMCY | 54280 34| 36 38| 40| 43 45 | 48| 57 54 57| 61| &d| 4B| 72
LOW FREQUEMCY | 54270 75| B85 | 124 |200| 52 | 198 |127(97 (111 172 (126 1BR | 149|149
WAVEFORM POKE TRIANGLE| SAWTCOTH | PULSE Nolse
54283 17 33 a5 129
PULSE RATE
HI PULSE 54282 A value of 0 1e 15 (fer Pulss waveform only)
LO PULSE 54281 A valse of 0 tc 255 (for Pubse waveform only)
ATTACKIDECAY POKE ATK4 | nxa| ATK2 | ATKI | DEC4 | DEC3 | DECZ | DECI
54284 128 o4 32 16 8 4 2 1
SUSTAIN/RELEASE POKE SUS4 | SUS3 | SUS2 | 5US1 | REL4 | RELZ | REL2 | REL1
54285 128 bd 31 L] B 4 2 1

163

TO PLAY A NOTE C |C#| D|D¥ E FIF# G | G# A|A#| B| C| c#
HIGH FREQUEMNCY |54287 34 | 36 | 3B| 40|43 | 45| 4B| 51| 54 57| 61| t4| &8| 72
LOW FREQUENCY 54284 75 | B5 | 126|200| 52 | 198 |127| 97 |111 | 172|126 | 168|149 169
WAVEFORM POKE TRIANGLE | SAWTOOTH FULSE NOISE
—_
54290 7 33 &5 129
PULSE RATE
HI PULSE 54289 A value of 0 to 15 (for Pulse woveform only}
LO PULSE 54288 A valus of 0 to 255 (for Pulie waveform only)
ATTACK/DECAY POKE ATK4 | ATK3 | ATK2 | ATK1 | DEC4 | DEC3 | DEC2 | DECI
54271 128 (-2 32 16 L] 4 2 1
SUSTAIN/RELEASE | POKE SUS4 | SUS3 | SUS2 | SUS1 | REL4 | REL3 | RELI | REL1
54792 128 Ad a2 14 8 4 -] 1

TRY THESE SETTINGS TO SIMULATE DIFFERENT INSTRUMENTS

Instrument Waveform Attack/Decay Sustoin/Release | Pulse Rote
Piano Pulse ? [} Hi-0, Le-255
Flute Triange 95 0 Nat opplicabls
Herpsichord Sawtooth 2 0 Not opplicable
Xylophane Triangle 7 Q Mot opplicable
Organ Triangle 0 240 Nat cpplicable
Colliope Triangle 0 240 Mot applicabla
Accordion Triangle 102 0 Naot cpplicable
Trumpet Sawtooth 98 0 MNat epplicable

MEAMINGS OF SOUND TERMS

ADSR— Attack/Decay/Suttain/Ralaace

Atteck—rote tound risee to peak velime

Deeny— rate sound falls from poak velume te Sustmin lavel
Sustain preleng note ot certnin volume
Release—rate at which valume falls from Sustair lewel
Waveform—"shaps” of sound ware

Pulse—rtone quality of Pulse YWaveform

NOTE: Attack/Decay and Sustain/Relesse seftings should always be POKEd in your program

BEFORE the Waveform is POKEd.

164

INDEX

A

Abbreviaticns, BASIC commands, 130,
131

Accessories, viii, 106-108

Addition, 23, 26-27, 113

AND operator, 114

Animation, 43-44, 65-66, &69-75, 132,
138139

Arithmetic, Operators, 23, 26-27,
113-114

Arithmetic, Formulas, 23, 26-27, 113,
120, 140

Arrays, 95-103

ASC function, 128, 135-137

ASCIl character codes, 135-137

B

BASIC
abbreviations, 130-131
commands, 114-117
numeric functions, 125-127
operators, 113-114
other functions, 129
statements, 117-125
string functions, 128
variables, 112-113

Bibliography, 155- 158

Binary arithmetic, 75-77

Bit, 75-76

Business aids, 108

Byte, 76

C

Caleulations, 22-29
Cussetle tape recorder (audic), viii, 3,
18-20, 21
Cassetle tape recorder (videc), 7
Cassetie, port 3
CHR$ function, 36-37, 46-47, 53,
58-60, 113, 128, 135-137, 148
CLR statement, 117
CLR/HOME key, 15
Clock, 113
CLOSE statement, 117
Coler
adjustment, 11-12
CHRS% codas, 58
keys, 56-57
memory map, 54, 139
PEEKS and POKES, 60-61
sereen and border, 60-63, 138

Commands, BASIC, 114-117
Commodore key, (see graphics keys)
Connections

optional, 6-7

rear, 2-3

side panel, 2

TV/Menitor, 3-5
CONT command, 114
ConTRL key, 11, 14
COSine function, 126
CuRSoR keys, 10, 15
Correcting errors, 34
Curser, 10

D

DATASSETTE recorder, (see cassette
tape recorder)

Daula, loading und saving (disk), 18-21

Data, Joodiﬂg and saving (fﬂpe),
18-21

DATA statement, 92-74 118

DEFine statement, 118

Delay loop, 61, 65

DELete key, 15

DIMension statement, 118-119

Division, 23, 26, 27, 113

Duration, (see For . . . Next)

E

Editing programs, 15, 34

END statement, 119

Equal, not-equal-te, signs, 23, 26-27,
114

Eqquatinns, 114

Error messages, 22-23, 150-151

Expansion port, 141-142

EXPonent function, 126

Exponentiation, 25-27, 113

F
Files, (DATASSETTE), 21, 110-111
Files, (disk), 21, 110-111

FOR statement, 119

FRE function, 129

Funetione, 125-129

G

Game contrals and ports, 2-3, 141
GET statement, 47-48, 119-120

GET# statement, 120

Getting started, 13-29

GOSUB statement, 120

GOTO (GO TO) statement, 32-34, 120

165

Graphic keys, 17, 56-57, 61, 132-137
Graphic symbols, (see graphic keys)
Greater than, 114

H
Hyperbolic functions, 140

I

IEEE-488 Interface, 2-3, 141

IF . . . THEN statement, 37-3%, 120-
121

INPUT statement, 45-47, 121

INPUT#, 121

INSert key, 15

INTeger functien, 126

Integer variahle, 112

/O pinouts, 141-143

/O ports, 2-7, 141-143

)
Joysticks, 2-3, 141
K
Keyboard, 14-17
L

LEFTS function, 128

LENgth funclion, 12B

Less than, 114

LET stalement, 121

LIST command, 33-34, 115

LOAD command, 115

LOADRiIng programs on tape, 18-20
LCGarithm function, 126

Loops, 39-4C, 43-45

Lower case characters, 14-17

M

Mathematics

formulas, 23-27

function table, 140

symbols, 24-27, 38, 114
Memory expansion, 2-4, 142
Memory maps, 62-65
MID$ function, 128
Modulator, RF, 4-7
Multiplication, 24, 113
Music, 79-920

N

MNames
program, 18-21
variable, 34-37
NEW command, 115
NEXT statement, 121-122

166

NOT operator, 114
Numeric varicbles, 36-37

o

OM statement, 122

QPEM statement, 122

Operators
arithmetic, 113
logical, 114
relatianal, 114

P

Parentheses, 28
PEEK function, &0-62
Peripherals, viii, 2-8, 107-109
POKE statement, 60-461
Ports, 1/O, 2-3, 141-143
POS function, 129
PRINT statement, 23-29, 123.124
PRINT#, 124
Programs
editing, 15, 34
line numbering, 32-33
loading/saving (DATASSETTE), 18-21
loading/saving (disk), 18-21
Prompt, 45

Q
Quotation marks, 22

RaNDom function, 48-53, 126

Random numbers, 48-53

READ statement, 124

REMark statement, 124

Reserved words, (see Command state-
ments)

Restore key, 15, 18

RESTORE statement, 124

Return key, 15, 18

RETURN stctement, 124

RIGHTS function, 128

RUN command, 1156

RUN/STOP key, 16-17

-1

SAVE command, 21, 114

Saving programs (DATASSETTE), 21
Saving programs (disk), 21

Screen memory maps, 62-63, 138
SGM, functien, 127

Shift key, 14-15, 17

SINe function, 127

Sound effects, 89-90

SPC function, 129

SPRITE EDITOR, vii, 69-75
SPRITE graphics, vii, 69-76
SQuaRe function, 127

STOP command, 125

STOP key, 16-17

String variables, 36-37, 112-113
S5TR$ function, 128

Subscripted variables, 95-98, 112-113
Subtraction, 24, 113

Syntax error, 22

SYS statement, 125

T

TAB function, 129
TAN function, 127
TI variable, 113
TI$ variakle, 113
Time clock, 113

TV connections, 3-7

u
Upper/lower Case mode, 14

USR functicn, 127
User defined function, (see DEF)

\'

VALue function, 128

Variables
array, 95-103, 113
dimensions, 98-103, 113
floating point, 95-103, 113
integer, 25-103, 112
numeric, ?5-103, 112
string ($), 95-103, 112

VERIFY command, 117

Voice, B0-90, 162-1464

A}

WAIT command, 125
Writing te tape, 110

1
Z-80, vii, 108

167

Commodore hopes you've enjoyed the COMMODORE 64
USER’S GUIDE. Although this manual contains some pre-
gramming information and tips, it is NOT intended to be a
Programmer’s Reference Manual. For those of you who are
advanced programmers ond computer hobbyists Commeo-
dore suggests that you consider purchasing the COMMC-
DORE 64 PROGRAMMER'S REFERENCE GUIDE ovailable
through your local Commodore dediler.

n addition npdatas and corrections as well as programming hints and tips are availakle in
the COMMODORE cnd POWER PLAY magozines, on the COMMODORE database of the
COMPUSERVE INFORMATION NETWORK, nceessad thraugh e VICMODFM

COMMODORE &4 QUICK REFERENCE CARD

SIMPLE VARIABLES
Ype Nome Rorge

Reul ®¥ =1.70/411B3E+38
= 293073588839
Integes XY% =NTE

Sy X¥3 Ot 255 charostera

X s o lemer (A-Z), ¥is ¢ leter o number (0-5). Voriotle name:
can be mare than 2 choraciers, but cnly the frst two cre recog-
nized,

ARRAY VARIABLES

Type N
Single Dimensicn XYi5)
Two-Dimention Y55
Thoee-Dimension ATE5.5.5

Arays of 1p tc elessn elements (subscriats 0-10] ean be used
whers needed, Arrgys with more than eleven elemens nesd 10
be DiNensianed.

ALGERRAIC OPERATORS

= Brwigne unle tn variahls
— Megotion

=* Exponentiation

* Muhiplicarion

/ Divaion

+ Addifion

— Sublractan

RELATIOMAL AND LOGICAL OFERATORS

-l
<> kot Equal To
< Less Than

= Greaer T

== |L=ss Than of Equal Ta

== Greater Than or Equal To

WNOT Logical “Hor™

AND Lagicel "And"

OF logical "Or"

Exoression equals | 1 riue, D if folse,

SYSTEM COMMANLDS

LUAL “MNAME™ Loods @ program from Tope
SAF "MAME" Soves @ program on ‘ope
LOAD “NAME" B Llseds o program from disk
SAE "MAME" B Soves o program to disk

WVERIFY "MARE" Varifine thet peagrnm was SAED

withaut errom

RUMN Exmcute: o program

RUM s Exccutes program stading of ina
wx

STOP Holls exacution

KD Ends emeeution

CONT Continues pragram execution from
Ine where program was halted

PEER(K) Reiveria cuniteuls of memcry
lzcation X

POKE XY Chonges cortents of locardion X
o volue ¥

575 o000 Jumps to execute 0 mackine languoge
progrom, starting of oo

WAIT K7L frogram walts wril comtents of
Iscation X, when FORed with Z aad
ANDed with ¥, is noszers.

USR() Poues volue of X 1o o mochine

language subrouiine

ENTING AMD FORMATTING CCOMMAMNDS

LsT lists entre crogram

LIST &-8 Usts from lire & 1o line B

REM Comment con ke listed but
s ignared during program esecution

TAB(X) Used in PRINT statements. Spaces X

pastions on screen

SPC(X)

POS()
CLR/FOME

SHIFT SLE/HEOME
SHIFT INST/DE
INST/DEL

CTRL

CRER Keys

Commodore Key

PRINTs & blanks on line

Ratirns curmnt curiar pesition
Position: cursor ‘o kft comner of
screen

Clears scraen ond naces curind K
“Heme" potition

Inserts spoce of current cursar
Eotition

Delates chorachr of current surser
poaltion

Whin uted with numerie eolor key,
melects lexd color, May be wsed in
BRINT siatement.

Moves curacr up, down, left, right
on icreen

When uied with SHIFT selects
berween uppesowe: cure wnl
grophic display mode.

Whan uked with numeric color key.
selects optionol ex colar

ARRAYS AND STRMNGS

i ALK, Y, E)
&N (X3)
STRS(N}
VLX)
CHRS(X)
AEC(xE)

LEFTSIAS X)
RIGHTS{AL, X}

MIDSIAS, X,Y)

Sets moumum sabscripns for &g
reserves spoge for (X4 1PY=11"2+1)
element storting af AD,0.0)
Retyms number of chorocters m K%
Baturne numeric e of X
converted o o #ring

Retyrns numeric vaive of A%, up 1o
Flrst nanmurreric chornetar

Returns ASCH choracter whose code
s X

Retwrns ASCI code for fier
charocter of X§

Returns lefimost X choracters of AS
figturns rightmen ¥ chemerer

of AS

Ratyrns ¥ charocters of AS

staning o thureie €

INFUT QUTPUT COMMANDS

INRUT AS OR A
INPUT “ABC™A
GET AS ot A
DATA A0",C

READ A% or A
RESTORE

PRINT "A= "A

FROGRAM FLOW

GOTO X
IF A=3 THEN 10

FOR A=1T0 10
STEP 2 : NEXT

MEKT A
GOSUB 2000

HEILKN

ON X GOTO AB

DN X GOSUB A3

PRMNTE ‘P on screen and waits for
user to enter o siring or value
PRINTs memaoge ond weits for wer
fo snter volse. Tas alse INPUT A5
Waoits far uier te Hpe ore-
character value, no RETURN nesded
iniilalizes o set of values thit

can be vsed by READ stmement
Astigns next DATA value to AS or A
Rescts doto poitter o siarl
READing the DATA list ogain
PRINTa string "A= ' and value of A
7 suppressas spoces - © robs daro
to sext Field.

Branches fc line X

IF assedion is tue THEN execute
followirg part of alatempne. iF
falie, execute rext ine aumber
Executes oll staterrents botween FOR
und correaponding HEXT, with A&
gaing from 1 1o 10 by 2. Step size
is | unless speciied

Defines enc of oop. A 5 oprionol
Branches fo subroutne starting ot
lime 2000

Marks end of subioutine. Keturrs 1o
statament “ollowing most recent
GOSUE

Branches fo Xth line number on

fis. X = 1 bronchas in A, ate.
Branches t3 subrowine ot Xth line:
number in fist

ABOUT THE COMMODORE 64
USER'S GUIDE . . .

Outstanding color . . . sound synthesis . . . graphics . . .
computing capabilities . . . the synergistic marriage of
state-of-the-art technologies. These features make the
Commodore 64 the most advanced personal comptter
in its class.

The Commodore 64 User's Guide helps you get started
in computing, even if you've never used a computer
befare. Through clear, step-by-step instructions, you
are given an insight into the BASIC language and how
the Commodore 64 can be put to a myriad of uses.

For those already familiar with microcomputers, the
advanced progsramming sections and appendices
explain the enhanced features of the Commadore 64
and how to get the most of these expanded
capabilities.

r commocdore

COMPUTER

Commadere Rusiness Machines. Inc.—Computer Systems Division.
487 Devan Park Drive, Wayne, PA 19087

DISTRIBUTED BY

Howard W. Sams & Co., Inc.

4300 W. 62nd Street, Indianapolis, Indiana 46268 UEA

$12.95/22010 ISEN: 0-672-22010-5

	_00
	_01
	_02
	_03
	_04
	_05
	_06
	_07
	_08
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170

