acorn electron

ADVANCED
USER GUIDE

acorn electron

a1 A S B = BT s RS
Yoy o YN ef =

Second Edition

The
Advanced

User
Guide

for the Acorn Electron

Adrian C. Dickens BA,
Churchill College,
Cambridge University

Mark A. Holmes BA,
Fitzwilliam College,
Cambridge University

Published by Adder Publishing, Cambridge

The “Acorn Electron Advanced User Guide” is published by Adder Publishing for
Acornsoft Limited.

Acornsoft Limited, Betjeman House, 104 Hills Road, Cambridge, CR2 1LQ,
England. Telephone (0223) 316039
ISBN 0907876 17 X

Copyright © 1984 Adder Publishing

Adder Publishing, PO Box 148, Cambridge, CB1 2EQ
ISBN 0947929 03 7

First published September 1984
Second edition June 2008

The Authors would like to thank Nigel Dickens, Tim Dobson, Steve Furber, Tim
Gleeson, David Johnson-Davies, Dr John Horton, Zahid Najam, Mark
Plumbley, John Thackeray, Ken Vail, Geoff Vincent, Adrian Warner, Leycester
Whewell, Albert Williams and everyone else who helped in the production of
this book.

All rights reserved. This book is copyright. No part of this book may be copied
or stored by any means whatsoever whether mechanical, photographic or
electronic, except for private or study use as defined in the Copyright Act. All
enquiries should be addressed to the publishers. While every precaution has
been taken in the preparation of this book, the publisher assumes no
responsibility for errors or omissions. Neither is any liability assumed for
damages resulting from the use of information contained herein.

The Authors gratefully acknowledge Acorn Computers Limited for their kind
permission to reproduce the complete Electron circuit diagram. The Authors
would like to point out that Acorn Computers reserve the right to make
improvements in the specification of its products. Therefore the circuit diagram
and other contents of this book may not be in complete agreement with the
product supplied.

Please note that within this text the terms Tube, Econet and Electron are
registered tradenames of Acorn Computers Limited. All references in this book
to the BBC Microcomputer refer to the computer produced for the British
Broadcasting Corporation by Acorn Computers Limited.

This book was prepared using the Acornsoft VIEW wordprocessor on the BBC
Microcomputer and then computer typeset by Parker Typesetting Service,
Leicester.

Printed in Great Britain by The Burlington Press Ltd. Foxton, Cambridge.
Book production by Adder Publishing.

Contents

Introduction

1

The Acorn design philosophy

Operating system routines and vectors

2

Operating system calls

2.1 OSWRCH Write character routine

2.2 Non-vectored OSWRCH

2.3 OSRDCH Read character routine

2.4 Non-vectored OSRDCH

2.5 OSNEWL Write a newline routine

2.6 OSASCI Write character routine

2.7 GSINIT General string input initialize
2.8 GSREAD Read character from string
2.9 OSRDRM Read byte from paged ROM
2.10 OSEVEN Generate an event

2.11 OSCLI Pass string to the CLI

OSBYTE calls
OSWORD calls

Filing system calls

5.1 OSFILE Read/write entire file

5.2 OSARGS Read/write file attributes
5.3 OSBGET Get a single byte

54 OSBPUT Write a single byte

5.5 OSGBPB Read/write a group of bytes
5.6 OSFIND Open or close file

5.7 OSFSC Misc filing system control

Operating system vectors

6.1 The User vector

6.2 The BRK vector

6.3 Interrupt vectors, IRQ1V & IRQ2V

3

10
10
11
11
12
12
13
13
14
15
15

16
87

94

95

98
100
101
102
105
106

110
113
116
119

6.4 The event vector, EVNTV

6.5 User print vector, UPTV

6.6 Econet vector, NETV

6.7 VDU extension vector, VDUV
6.8 Keyboard vector, KEYV

6.9 Buffer maintenance vectors
6.10 Unused vectors

6.11 The default vector table

7 Interrupts
7.1 Introduction
7.2 Interrupts on the Electron
7.3 Using NMIs
7.4 Using IRQs
7.5 Intercepting interrupts
Paged ROM firmware
8 Paged ROM formats
8.1 Paged ROM header format
8.2 Language entry
8.3 Service entry
8.4 ROM type byte
8.5 Copyright offset pointer
8.6 Binary version number
8.7 Title string
8.8 Version string
8.9 Copyright string
8.10 Tube relocation address
9 Language ROMs
9.1 Language initialization
9.2 Firm keys
9.3 Language ROM compatibility
10 Service ROMs
10.1 Paged ROM service calls
10.2 Service ROM example
10.3 Extended vectors
11 *ROM filing system ROMs

11.1 Converting files to *ROM format
11.2 The header code
11.3 Service call &D

4

119
121
123
124
125
126
134
134

135
135
138
138
138
139

143
144
144
145
145
146
146
146
147
147
148

148
148
149
150

152
152
162
171

172
173
173
174

11.4
11.5
11.6

Memory usage

12 Memory allocation and usage

Hardware

13 An introduction to hardware

Service call &E
*ROM data format
Example

14 Inside the Electron

14.1
14.2

The ULA and its registers
The keyboard

15 Outside the Electron

15.1
15.2
15.3
15.4
15.5
15.6
15.7

Appendices

QHOmgaQw >

Bibliography
Glossary

Index

Introduction

The expansion connector
Designing circuits
Sideways ROMs

The 1MHz bus

The A to D converter
Disabling the Plus 1

VDU code summary
PLOT routine functions
Screen MODE layouts
OS calls and vectors

Plus 1 ROM connector
Complete circuit diagram
Hardware expansions

175
176
178

183

201

204
204
216

217
217
217
222
225
227
229
229

230
232
234
241
243
250
252

256
257
262

Introduction

The Advanced User Guide for the Electron has been designed to
be an invaluable reference guide for users of the Electron
computer. The original Electron User Guide provides a
description of BASIC on the Electron and reaches the point at
which programming in Assembly Language is introduced, along
with a very brief introduction to the available system calls. The
Advanced User Guide takes over at this point by providing a
thorough, well indexed and cross referenced description of all the
available facilities and how to use them. This will allow the
serious programmer to make the most of his/her machine, whilst
keeping within the Acorn Guidelines to ensure compatibility with
other machines in the Acorn BBC Micro series.

It is inevitable that a machine like the Electron should be partially
overpowered by its big brother the BBC Micro. However, many
of the facilities which are provided on the larger machine can also
be added on to an Electron. A whole new series of operating
system calls have been provided to take account of this, and are
described within these pages.

What may not at first sight be so apparent is that in many ways the
Electron has more expansion potential than a BBC Micro! This is
because all of the 6502 bus lines are available to expansion
modules via the expansion connector. A full description of this
connector, including interfacing details for paged ROMs and other
devices have therefore been included.

The authors have tried to provide a book which will be found by
the side of all enthusiastic Electron programmers. All material is
in an easily accessible referenced format. Where appropriate,
examples are presented and discussed. In particular, there is a
large section concerned with the use of paged ROMs. It is
intended that this will help programmers to build up the necessary
skills for producing their own exciting software in ROMs.

All of the information contained in this book has been checked on
an Electron fitted with Electron OS 1.00 and BASIC 2. Where
appropriate, an Electron Plus 1 expansion module was also used.

6

1 The Acorn Design
Philosophy

A glance through the back pages of any microcomputer magazine
will reveal a large number of machines ‘For Sale’. This is a
reflection of the speed at which the industry moves; the all-new
whizz-bang machine can become yesterday’s micro in as little as a
year. The manufacturer has to tread a careful path; on the one
hand he is committed to improving his products, but on the other
he must not render his existing range obsolete.

The Acorn design philosophy has been to produce a system right
from the start which would allow for growth in both the software
and hardware. All users should be aware of this if they wish their
own software and hardware to be compatible with the complete
range of available systems, from a humble Electron right up to a
machine with Econet, second processor, hard disks etc. Ensuring
compatibility is not hard, it simply requires a little self-discipline
in your approach.

The rules as such are simple. If your software needs to access
anything outside its own domain (that is the memory and other
resources it has been provided with) then use the officially
supported operating system routines. The second is to make no
assumptions about the environment your program will run under.
This includes the amount of memory available, the processor and
any other software / hardware components which might be there.
Run-time enquiries have been built into the system to allow you to
discover these facilities.

Programs which run in RAM, say a simple Basic program, may
discover that there is not enough memory available for them. A
test for this should be made at the start of the program, since they
should not be allowed to crash and should never use any memory
outside their allocation. Programs placed in ROM should not
make assumptions about their eventual run-time environment
either. They may find themselves copied over the Tube and

7

running in RAM on another processor!

One of the most common situations on the BBC microcomputer
where incompatibility arises, is where software is designed for use
on non-Econet machines and then used on such machines. This
ultimately denies the software producer a sale and denies the
Econet machine owner use of a particular program. This is a
situation which can be avoided by intelligent software design and
reasonable product testing. The Electron contains fewer pitfalls in
this respect, but where software is destined for a wider
distribution, the programmer should think about different machine
configurations and potential problems.

2 Operating System
Calls

The list below contains all the Acorn supported operating system
routines and their vectors which exist in the Electron OS 1.00. See
the User Guide for a general description of these calls.

2.1 OSWRCH Write character routine
Call address &FFEE Indirected through &20E

This routine outputs the character in the accumulator to the
currently selected output stream(s).

On exit:
A, X and Y are preserved.
C, N, V and Z are undefined.

The interrupt status is preserved (though interrupts may be
enabled during a call).

2.2 Non-vectored OSWRCH

Call address &FFCB

This call is normally made by OSWRCH. This call has no vector
and so cannot be intercepted. Its use is not recommended for this
reason.

2.3 OSRDCH Read character routine
Call address &FFEO Indirected through &210

This routine reads a character from the currently selected input
stream and returns it in the accumulator.

On exit:
C=0 indicates that a valid character has been read. C= 1 indicates
that a character has not been read due to an error.

If an error should occur acknowledgement of the error condition
should be made using OSBYTE &7E.

X and Y are preserved.
N, V and Z are undefined.

The interrupt status is preserved (though interrupts may be
enabled during a call).

2.4 Non-vectored OSRDCH

Call address &FFCS8

This call is normally made by OSRDCH, it is not available for
interception and its use is not recommended by Acorn.

10

2.5 OSNEWL Write a newline routine
Call address &FFE7 Not indirected

This routine writes a line feed (&A/10) and a carriage return
(&D/13) to the current output stream(s) using OSWRCH.

On exit:
A=&0D (13)
X and Y are preserved.
C, N, V and Z are undefined.

Interrupt status is preserved (though it may be enabled during a
call).

2.6 OSASCI Write character routine,
OSNEWL called if A=&0D (13).
Call address &FFE3 Not indirected
This is a write character routine performing the same action as
OSWRCH but which outputs a line feed and a carriage return in
response to a carriage return character.
On exit:

A, X and Y are preserved.

C, N, V and Z are undefined.

Interrupt status is preserved (though interrupts may be enabled
during a call).

11

2.7 GSINIT General string input
initialise routine.

Call address &FFC2

The original intention was that this routine together with
GSREAD would provide a standard string input facility for the
use of filing system paged ROMs. It is now felt that this routine is
unsuitable for that purpose and accordingly its use is not
recommended.

This routine initialises a string for input prior to reading using
GSREAD.

Entry parameters:
String address stored in &F2 and &F3 plus offset in Y
C=0, if first space, CR or second ” terminates input
C=1, if first space does not terminate input

On exit:
Y contains the offset of the first non-blank character from
the address contained in &F2 and &F3.
A contains the first non-blank character of string
Z flag is set if the string is a null string

2.8 GSREAD Read character from
string input routine.

Call address &FFC5

This routine is used to read characters from an input string after a
GSINIT call. Control codes and non-ASCII values may be
introduced into the input string by using an escape character, ‘|°.
The escape character followed by a letter gives a character value
equal to the ASCII value minus 64 (&40). The escape character
followed by a ‘1’ character gives a value of 128 plus the value of
the next character in the string. An escape character followed by
itself gives the escape character.

12

Entry parameters:
&F2, &F3 and Y set by GSINIT

C=0 String terminated by first space, carriage return or

second quotation mark.
C=1 String terminated by carriage return or second
quotation mark.

On exit:
A contains the character read from the string.
Y contains the index for the next character to be read.
C=1 if the end of string is reached.
X is preserved.

2.9 OSRDRM Read byte from paged
ROM routine.

Call address &FFB9
This call returns a byte read from a paged ROM.
Entry parameters:

ROM number stored in Y.

Address stored in &F6 and &F7.

On exit:
A contains the value of the byte read.

This routine was included for the implementation of ROM filing

system software in paged ROM and is not recommended for
general use.

13

2.10 OSEVEN Generate an event routine.
Call address &FFBF

The user event may be generated using this routine. Software
replacing OS routines should generate the appropriate events by

making this call.

Entry parameter:
The event number should be placed in Y.

On exit:
C=0 if and only if the event was enabled.

2.11 OSCLI Pass string to the CLI.
Call address &FFF7 Indirected through &208

This routine is implemented on the BBC micro, the Electron and
the Tube operating system.

This call provides the machine code user with a convenient
method of performing any of the * commands that the system
provides from Basic. The command required is placed in a string
as normal text and this call is made.

If the string passed to the CLI is not terminated by a carriage
return within 255 bytes this routine has undefined effects.

The following commands are recognised:

* String escape character rest of command ignored
*, treated as a *CAT command

*/ treated as a *RUN command

*BASIC select BASIC as current language

*CAT issue catalogue request to filing system

*CODE passed to user vector (see chapter 6)
*EXEC select text file as input stream

14

*FX issue OSBYTE call (no registers returned)
*HELP issue paged ROM service call 9, see chapter 10
*KEY take rest of line as text for soft key

*LINE passed to user vector (see chapter 6)

*LOAD issue load request to filing system

*MOTOR open/close cassette motor relay

*OPT issue option request to filing system
*ROM select *ROM filing system
*RUN issue load and execute request to filing system

*SAVE issue save request to filing system
*SPOOL include text file in output stream
*TAPE select tape filing system

*TV ignored by the Electron

These commands may be abbreviated by taking the first few
letters and terminating with a ‘.’ character. Parameters may be
passed in the text following the command.

Other unrecognised commands are first offered to paged ROMs
(see section 10.1) and are then offered to the currently selected
filing system via the filing system control vector (see chapter 5).

Entry parameters:
X and Y contain the address of a line of text (X=low-byte,
Y=high-byte) terminated by a CR character.

On exit;

A, X,Y,C, N,V and Z are undefined. Interrupt status is preserved
but interrupts may be enabled during a call.

15

3 OSBYTE calls

OSBYTE calls are a powerful and flexible way of invoking many
of the available operating system facilities.

OSBYTE calls are specified by the contents of the accumulator (A
register) in the 6502. This means that up to 256 different calls can
be made.

The command line interpreter (see section 2.11) performs
OSBYTE calls in response to *FX commands. This enables the
user to make OSBYTE calls from the keyboard or within BASIC
programs. It should be noted however that no results are returned
by a *FX call and so it is inappropriate to use certain OSBYTEs in
this way.

OSBYTE Miscellaneous OS functions specified by the
contents of the accumulator.

Call address &FFF4 Indirected through &20A

On entry:
A selects an OSBYTE routine.
X contains an OSBYTE parameter.
Y contains an OSBYTE parameter.

All calls are made to the OSBYTE subroutine at address &FFF4.
This is then indirected through the vector at &20A (which means
that user programs can intercept the OSBYTE calls before they
get to the operating system if so desired). The selected function is
determined by the accumulator contents. Two parameters can be
passed to and from OSBYTE routines by putting the values to be
passed in the X and Y registers respectively.

16

Example

Using OSBYTE 4 to disable cursor editing.

From BASIC this would be typed as:

*FX 4,1

From assembly language it could be performed as:

LDA #4 \Load accumulator with 4
LDX #1 \Select cursor disabled option
JSR &FFF4 \Make OSBYTE call

If an OSBYTE is not recognised by the Electron, it will be offered
to any fitted paged ROMs (see chapters 8 to 11). The OSBYTE
will then usually be claimed by the relevant expansion module’s
ROM. When OSBYTE is called directly, if none of the paged
ROMs claim it then the call returns with the overflow flag set. If
the OSBYTE itself was initiated by a *FX command then the *FX
handler will generate the ‘Bad command’ error.

When OSBYTE calls are used in a second processor only a
limited amount of information is returned. For low numbered
OSBYTE calls (0 to 127) only the X register is returned and for
high numbered OSBYTE calls only the X and Y registers, and the
carry flag are returned.

All the OSBYTE calls recognised by the operating system are
described on the following pages. The description for each call
includes details of the entry parameters required and the state of
the registers on exit. Al OSBYTE calls may be made using the
*FX command, but it is not always appropriate to do so (i.e. those
calls returning values in the X and Y registers). Where it is
appropriate to use a *FX command this has been indicated.
Preceding the full OSBYTE descriptions is a complete summary
of the OSBYTE calls in a list.

17

OSBYTE/*FX Call
Summary

dec. hex. function

Print operating system version.

Set the User flag.

Select input stream.

Select output stream.

Enable/disable cursor editing.

Select printer destination.

Set character ignored by printer.

Set RS423 baud rate for receiving data.
Set RS423 baud rate for data transmission.
Set flashing colour mark state duration.
Set flashing colour space state duration.
Set keyboard auto-repeat delay interval.
Set keyboard auto-repeat rate.

Disable events.

Enable events.

Flush selected buffer class.

10 Select ADC channels to be sampled.

11 Force an ADC conversion.

12 Reset soft keys.

13 Wait for vertical sync.

20 14 Explode soft character RAM allocation.
21 15 Flush specific buffer.

22 16 Increment paged ROM polling semaphore
23 17 Decrement paged ROM polling semaphore
24 18 Change sound system.

ORI NP, WN—O

—_
()

MHOOAWE> ORI UN AW —O

e e g T Sy Y
NeNe JEN Neo)WV, RE NS (9}

OSBYTE/*FX calls 25 (&19) to 114 (&72) are not used by OS
1.00.

115 73 Blank/restore palette.

116 74 Reset internal sound system.

117 75 Read VDU status.

118 76 Read keyboard status.

119 77 Close any SPOOL or EXEC files.

18

120 78 Write to two-key-roll-over locations.

19

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160

Perform keyboard scan.

Perform keyboard scan from 16 (&10).
Inform OS, printer driver going dormant.
Clear ESCAPE condition.

Set ESCAPE condition.

Acknowledge detection of ESCAPE condition.
Check for EOF on an open file.

Read ADC channel or get buffer status.
Read key with time limit or key depression.
Read machine high order address.

Read top of OS RAM address (OSHWM).
Read bottom of display RAM address (HIMEM).
Read bottom of display address for a given MODE.
Read text cursor position (POS and VPOS).
Read character at cursor position.

Perform *CODE.

Perform *MOTOR.

Insert value into buffer.

Perform *OPT.

Perform *TAPE.

Perform *ROM.

Enter language ROM.

Issue paged ROM service request.

Perform *TV (not implemented).

Get character from buffer.

Read from FRED, 1 MHz bus.

Write to FRED, 1 MHz bus.

Read from JIM, 1 MHz bus.

Write to JIM, 1 MHz bus.

Read from SHEILA, 1 MHz bus.

Write to SHEILA, 1 MHz bus.

Examine buffer status.

Insert character into input buffer.

Reset video flash cycle.

Reserved.

Read/write 6850 control register and copy.
‘Fast Tube BPUT’

Read from speech processor.

Write to speech processor.

Read VDU variable value.

20

OSBYTE/*FX calls 161 (&A1) to 165 (&AS5) are not used by OS
1.00 and are reserved for future expansion.

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

186
187

188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
BO
Bl
B2
B3
B4
B5
B6
B7
B8
B9

BA
BB

BC
BD
BE
BF
Co
Cl1
C2
C3
C4
Cs
Co6

Read start address of OS variables (low byte).

Read start address of OS variables (high byte).
Read address of ROM pointer table (low byte).
Read address of ROM pointer table (high byte).
Read address of ROM information table (low byte).
Read address of ROM information table (high byte).
Read address of key translation table (low byte).
Read address of key translation table (high byte).
Read start address of OS VDU variables (low byte).
Read start address of OS VDU variables (high byte).
Read/write filing system timeout counter.
Read/write input source.

Enable/disable keyboard scanning

Read/write primary OSHWM.

Read/write current OSHWM.

Read/write RS423 mode.

Read character definition explosion state.
Read/write cassette/ROM filing system switch.
Undefined.

Read/write timer paged ROM service call
semaphore.

Read/write ROM number active at last BRK (error).
Read/write number of ROM socket containing
BASIC.

Read current ADC channel.

Read/write maximum ADC channel number.

Read ADC conversion type.

Read/write RS423 use flag.

Read RS423 control flag.

Read/write flash counter.

Read/write space period count.

Read/write mark period count.

Read/write keyboard auto-repeat delay.

Read/write keyboard auto-repeat period.
Read/write *EXEC file handle.

Read/write *SPOOL file handle.

Read/write ESCAPE, BREAK effect.

Read/write Econet keyboard disable.

Read/write keyboard status byte.

21

203 CB Read/write the ULA interrupt mask.

204 CC Read/write Firm key pointer.

205 CD Read/write length of current firm key string.
206 CE Read/write Econet OS call interception status.
207 CF Read/write Econet OSRDCH interception status.
208 DO Read/write Econet OSWRCH interception status.
209 DI Read/write speech suppression status.

210 D2 Read/write sound suppression status.

211 D3 Read/write BELL channel.

212 D4 Read/write BELL (CTRL G) sound information.
213 D5 Read/write BELL frequency.

214 D6 Read/write BELL duration.

215 D7 Read/write startup message and !BOOT options.
216 D8 Read/write length of soft key string.

217 D9 Read/write number of lines printed since last page.
218 DA Read/write number of items in VDU queue.

219 DB Read/write External sound flag.

220 DC Read/write ESCAPE character value.

221 DD Read/write i/p buffer code interpretation status.
222 DE Read/write i/p buffer code interpretation status.
223 DF Read/write i/p buffer code interpretation status.
224 EO Read/write i/p buffer code interpretation status.
225 El1 Read/write function key status.

226 E2 Read/write firm key status.

227 E3 Read/write firm key status.

228 E4 Read/write CTRL+SHIFT+function key status.
229 E5 Read/write ESCAPE key status.

230 E6 Read/write flags determining ESCAPE effects.
231 E7 Reserved.

232 E8 Sound semaphore.

233 E9 Soft key pointer.

234 EA Read flag indicating Tube presence.

235 EB Read flag indicating speech processor presence.
236 EC Read/write write character destination status.
237 ED Read/write cursor editing status.

238 EE Read/write OS workspace bytes.

239 EF Read/write OS workspace bytes.

240 FO Read country code.

241 F1 Read/write user flag location.

242 F2 Read RAM copy of &FE07.

243 F3 Read timer switch state.

244 F4 Read/write soft key consistency flag.

22

245
246
247
248
249
250
251
252
253
254
255

F5
Fé6
F7
F8
F9
FA
FB
FC
FD
FE
FF

Read/write printer destination flag.

Read/write character ignored by printer.
Read/write first byte of BREAK intercept code.
Read/write second byte of BREAK intercept code.
Read/write third byte of BREAK intercept code.
Read/write OS workspace locations.

Read/write OS workspace locations.

Read/write current language ROM number.
Read/write last BREAK type.

Read/write available RAM.

Read/write start up options.

OSBYTE &00 (0)

Identify OS version

See OSBYTE &81 for more information regarding OS
identification.

Entry parameters:
X=0 Execute BRK with a message giving the OS version
X<>0RTS with OS version returned in X

On exit:
X=0, OS 1.00 or Electron OS 1.00
X=1, OS 1.20 or American OS

A and Y are preserved

C is undefined

23

OSBYTE &01 (1)

Set the user flag

Entry parameters:
The user flag is replaced by X

On exit:
X=old value

This call uses OSBYTE with A=&F1 (241). This OSBYTE call is
left free for user applications and is not used by the operating
system. The user flag has a default value is 0.

OSBYTE &02 (2)

Select input stream

In the Electron any call with X<>0 will result in an unknown
OSBYTE service call being made to the paged ROMs unless a
previous such call was recognised and thus changed the input
source.

Entry parameters:
X determines input device(s)

*FX 2,0 X=0 keyboard selected, RS423 disabled
*FX 2,1 X=1 RS423 selected and enabled
*FX 2,2 X=2 keyboard selected, RS423 enabled
Default: *FX 2,0
On exit:
X=0 if previous input was from the keyboard
X=1 if previous input was from RS423
A'is preserved
Y and C are undefined

24

OSBYTE &03 (3)

Select output stream

If RS423 output is selected in the Electron, paged ROM service
calls are issued. In the absence of a suitable response this output is
sunk (thrown away). The same applies to printer output if

selected.

Bit 3 should not be used to enable the printer as this may conflict
with the Econet protocol of claiming the printer.

Entry parameters:
X determines output device(s)

Bit

AN NP WN—O

7

o/p selected if bit is set

Enables RS423 driver

Disables VDU driver

Disables printer driver

Enables printer, independent of CTRL B or C

Disables spooled output

Not used

Disables printer driver unless the character is preceded
by a VDU 1 (or equivalent)

Not used

*FX 3,0 selects the default output options which are :
RS423 disabled
VDU enabled
Printer enabled (if selected by VDU 2)
Spooled output enabled (if selected by *SPOOL)

On exit:

A is preserved
X contains the old output stream status
Y and C are undefined

25

OSBYTE &04 (4)

Enable/disable cursor editing

Entry parameters:
X determines the status of the editing keys

*FX 4,0 X=0 Enable cursor editing (default setting)
*FX 4,1 X=1 Disable cursor editing and make them return
normal ASCII values like the other keys.

The cursor control keys will return the
following codes:

COPY &87(135)
LEFT &88(136)
RIGHT &89 (137)
DOWN &8A (138)
UP &8B (139)

*FX 4,2 X=2 Disable cursor editing and make the keys act
as soft keys with the following soft key

associations :
COPY 11
LEFT 12
RIGHT 13
DOWN 14
up 15

On exit:
A'is preserved

X contains the previous status of the editing keys
Y and C are undefined

26

OSBYTE &05 (5)

Select printer destination

Entry parameters:
X determines print destination

*FX 5,0 X=0 Printer sink (printer output ignored)
*FX 5,1 X=1 Parallel output

*FX 5,2 X=2 RS423 output (sink if RS423 enabled)
*FX'5,3 X=3 User printer routine (see section 6.5)
*FX 5.4 X=4 Net printer (see section 6.5)

*FX 5,5 to *FX5,255 User printer routine (see section 6.5)

Default setting: *FX 5,0

On Exit:
A'is preserved
X contains the previous *FX 5 setting
Y and C are undefined
Interrupts are enabled by this call
This call is not reset to default by a soft break

OSBYTE &06 (6)

Set character ignored by printer

Entry parameters:
X contains the character value to be ignored

*FX 6,10 X=10 This prevents LINE FEED characters being
sent to the printer, unless preceded by VDU 1
(this is the default setting)

On exit:
A'is preserved
X contains the previous *FX 6 setting
Y and C are undefined

This is not reset by soft BREAK.

27

OSBYTE &07 (7)

Set RS423 baud rate for receiving data

This routine is not implemented on the unexpanded Electron. If
this OSBYTE is used on the electron an unknown OSBYTE
service call is made to the paged ROMs.

This call is reserved for future expansion.

OSBYTE &08 (8)

Set RS423 baud rate for data transmission

This routine is not implemented on the unexpanded Electron. If
this OSBYTE is used on the Electron an unknown OSBYTE
service call is made to the paged ROMs.

This call is reserved for future expansion.

OSBYTE &09 (9)

Set duration of the mark state of flashing colours
(Duration of first named colour)

Entry parameters:
X determines duration

*FX 9,0 X=0 Sets mark duration to infinity
Forces mark state if space is set to 0
*FX 9,n X=n Sets mark duration to n VSYNC periods
(n=25 is the default setting)

On exit:
A'is preserved
X contains the old mark duration
Y and C are undefined

28

OSBYTE &0A (10)

Set duration of the space state of flashing colours
(Duration of second named colour)

Entry parameters:
X determines duration

*FX 10,0 X=0 Sets space duration to infinity. Forces space
state if mark is set to 0

*FX 10,n X=n Sets space duration to n VSYNC periods
(n=25 is the default setting)

On exit:
A is preserved
X contains the old space duration
Y and C are undefined

OSBYTE &O0B (11)

Set keyboard auto-repeat delay

Entry parameters:
X determines delay before repeating starts

*FX 11,0 X=0 Disables auto-repeat facility
*FX 11,n X=n Sets delay ton centiseconds (n=50 is the
default setting)

After call,
A'is preserved
X contains the old delay setting
Y and C are undefined

29

OSBYTE &0C (12)

Set keyboard auto-repeat period

Entry parameters:
X determines auto-repeat periodic interval

*FX 12,0 X=0 Resets delay and repeat to default values
*FX 12,n X=n Sets repeat interval to n centiseconds (n=8 is
the default value)

On exit:
A'is preserved
X contains the old *FX 12 setting
Y and C are undefined

OSBYTE &0D (13)

Disable events
Entry parameters : X contains the event code, Y=0

*FX 13,0 X=0 Disable output buffer empty event

*FX 13,1 =1 Disable input buffer full event

*FX 13,2 =2 Disable character entering buffer event
*FX 13,3 X=3 Disable ADC conversion complete event
*FX 13,4 X=4 Disable start of vertical sync event

*FX 13,5 X=5 Disable interval timer crossing 0 event
*FX 13,6 X=6 Disable ESCAPE pressed event

*FX 13,7 X=7 Disable RS423 RX error event

*FX 13,8 X=8 Disable network error event

*FX 13,9 X=9 Disable user event

See section 6.4 for information on event handling.

On exit:
A is preserved
X contains the old enable state (0=disabled)
Y and C are undefined

30

OSBYTE &0E (14)

Enable events

Entry parameters: X contains the event code, Y=0

*FX 14,0
“FX 14,1
*FX 14,2
*FX 14,3
*FX 14,4
*FX 14,5
*FX 14,6
*FX 14,7
*FX 14,8
*FX 14,9

After call,

X=0
X=1
X=2

el e o e
Yo N N 7 R

Enable output buffer empty event
Enable input buffer full event

Enable character entering buffer event
Enable ADC conversion complete event
Enable start of vertical sync event
Enable interval timer crossing 0 event
Enable ESCAPE pressed event

Enable RS423 RX error event

Enable network error event

Enable user event

A is preserved
X contains the old enable state (>0= enabled)
C is undefined

See section 6.4 for information on event handling.

OSBYTE &OF (15)

Flush selected buffer class

Entry parameters:

X value selects class of buffer

X=0 All buffers flushed
X=1 Input bufter flushed only

See OSBYTE call &16/*FX 21

On exit,

Buffer contents are discarded
A'is preserved
X, Y and C are undefined

31

OSBYTE &10 (16)

Select ADC channels which are to be sampled

This routine is not implemented on the unexpanded Electron but is
passed on to paged ROMs as an unknown OSBYTE paged ROM
service call.

On an Electron fitted with the Plus 1 expansion, this call selects

the number of analogue to digital conversion channels, where X is
a number in the range 0 (no channels) to 4 (all four channels).

OSBYTE &11 (17)

Force an ADC conversion

This routine is not implemented on the unexpanded Electron but is
passed on to paged ROMs as an unknown OSBYTE paged ROM
service call.

On an Electron fitted with the Plus 1 expansion, this call forces
analogue to digital conversion to restart for channels 1 to X.

OSBYTE &12 (18)

Reset soft keys

This call clears the soft key buffer so the character strings are no
longer available.

No parameters
On exit:

A andY are preserved
X and C are undefined

32

OSBYTE &13 (19)

Wait for vertical sync
No parameters

This call forces the machine to wait until the start of the next
frame of the display. This occurs 50 times per second on the UK
Electron. Its main use is to help produce flicker free animation on
the screen. The flickering effect is often due to changes being
made on the screen halfway through a screen refresh. Using this
OSBYTE call graphics manipulation can be made to coincide with
the flyback between screen refreshes.

N.B. User trapping of IRQ1 may stop this call from working.

On exit:
A'is preserved
X, Y and C are undefined

OSBYTE &14 (20)

Explode soft character RAM allocation
Entry parameters: X value explodes/implodes memory allocation

In the default state 32 characters may be user defined using the
VDU 23 statement from BASIC (or the OSWRCH call in machine
code). These characters use memory from &C00 to &CFF.
Printing ASCII codes in the range 128 (&80) to 159 (&9F) will
cause these user defined characters to be printed up (these
characters will also be printed out for characters in the range
&A0-&BF, &C0-&DF, &E0-&FF), In this state the character
definitions are said to be imploded.

If the character definitions are exploded then ASCII characters
128 (&80) to 159 (&9F) can be defined as before using VDU 23
and memory at &C00. Exploding the character set definitions
enables the user to uniquely define characters 32 (&20) to 255

33

(&FF) in steps of 32 extra characters at a time. The operating
system must allocate memory for this which it does using memory
starting at the ‘operating system high-water mark” (OSHWM).
This is the value to which the BASIC variable PAGE is usually set
and so if a totally exploded character set is to be used in BASIC
then PAGE must be reset to OSHWM+&600 (i.e. PAGE = PAGE
+ &600).

ASCII characters 32 (&20) to 128 (&7F) are defined by memory
within the operating system ROM when the character definitions
are imploded.

See OSBYTE &83 (131) for details about reading OSHWM from
machine code.

The memory allocation for ASCII codes in the expanded state is
as follows:
ASCII code Memory allocation

*FX 20,0 X=0 &80-&8F &CO00 to &CFF (imploded)

*FX 20,1 X=1 &A0-&BF OSHWM to OSHWM+&FF
(+above)

*FX 20,2 X=2 &C0-&DF OSHWM-+&100 to
OSHWM+&I1FF (+above)

*FX 20,3 X=3 &EO0-&FF OSHWM+&200 to
OSHWM+&2FF (+above)

*FX 20,4 X=4 &20-&3F OSHWM+&300 to
OSHWM+&3FF (+above)

*FX 20,5 X=5 &40-&5F OSHWM+&400 to
OSHWM+&4FF (+above)

*FX 20,6 X=6 &60-&7F OSHWM-+&500 to
OSHWM+&SFF (+above)

The explosion state can be determined using OSBYTE &B6.
Before the OSHWM is changed during a font explosion a service

call is made to the paged ROMs warning them of the impending
change.

34

On exit:
A'is preserved
X contains the new OSHWM (high byte)
Y and C are undefined

OSBYTE &15 (21)

Flush specific buffer

While the unexpanded Electron only has a single sound channel
the operating system has been designed to enable the
implementation of an external sound system. Each time any of the
sound buffers are flushed a paged ROM service call is issued with
A=&]17. In the unexpanded Electron there is a single effective
buffer which may be addressed as any of the four channels. Thus
flushing any of the four buffers will extinguish any sound being
produced at that time.

See section 10.1 for more information regarding the Electron
sound paged ROM service calls.

Entry parameters:
X determines the buffer to be cleared

*FX 21,0 X=0 Keyboard buffer emptied

*FX 21,1 X=1 RS423 input buffer emptied
*FX 21,2 X=2 RS423 output buffer emptied
*FX 21,3 X=3 Printer buffer emptied

*FX 21,4 X=4 Sound channel 0 buffer emptied
*FX 21,5 X=5 Sound channel 1 buffer emptied
*FX 21,6 X=6 Sound channel 2 buffer emptied
*FX 21,7 X=7 Sound channel 3 buffer emptied
*FX 21,8 X=8 Speech buffer emptied

See also OSBYTEs &O0F (*FX15) and &80 (128).
On exit:

A and X are preserved
Y and C are undefined

35

OSBYTE &16 (22)

Increment paged ROM polling semaphore

This call increments the semaphore which when non-zero makes
the operating system issue a paged ROM service call with A=&15
at centi-second intervals.

See paged ROM service call &15, chapter 10.

Entry parameters:
None

On exit:
A and X are preserved
Y and C are undefined

Semaphore is incremented once per call.

OSBYTE &17 (23)

Decrement paged ROM polling semaphore
This call decrements the semaphore which when non-zero makes
the operating system issue a paged ROM service call with A=&15
at centi-second intervals.
See paged ROM service call &15, chapter 10.
Entry parameters:
None
On exit:
A and X are preserved

Y and C are undefined

Semaphore is decremented once per call.

36

OSBYTE &18 (24)

Select external sound system

This call is used to select a sound system which is implemented
by an external hardware/software sound system.

Entry parameters:
X contains an undefined parameter

On exit:

A is preserved
All other registers are undefined

OSBYTE &73 (115)

Blank/restore palette

This call is used to temporarily turn all colours in the palette
black. It should be useful for NMI users who want to generate
NMIs with a high resolution screen display. This will ensure that
there is no snow seen on the screen.

Entry parameters:

X=0 Restores the palette
X<>0 Set palette to all black if in high res. mode
On exit:

All registers undefined

OSBYTE &74 (116)

Reset internal sound system
This call can be used to reset the internal sound system.

Entry parameters:
X contains an undefined parameter

On exit:
All registers are undefined

37

OSBYTE &75 (117)

Read VDU status
No entry parameters

On exit the X register contains the VDU status. Information is
conveyed in the following bits :

Bit 0 Printer output enabled by a VDU 2
Bit 1 Scrolling disabled e.g. during cursor editing
Bit 2 Paged scrolling selected
Bit 3 Software scrolling selected i.e. text window
Bit 4 reserved
Bit 5 Printing at graphics cursor enabled by VDU 5
Bit 6 Set when input and output cursors are separated (i.e.
cursor editing mode).

Bit 7 Set if VDU is disabled by a VDU 21
On exit:

A and Y are preserved

C is undefined

OSBYTE &76 (118)
Reflect keyboard status in keyboard LEDs

This routine is hardware dependent and is implemented differently
on the BBC microcomputer and the Electron. This call should not
be used on either machine.

38

OSBYTE &77 (119)
Close any SPOOL or EXEC files

This call closes any open files being used as *SPOOLed output or
*EXECed input to be closed. This call is first offered to paged
ROMs via a service call with A=&10. If the call is claimed then
the operating system takes no further action. If the call is not
claimed by a paged ROM the operating system closes any EXEC
or SPOOL files itself. This call should be made by filing systems
if they are deselected.

On exit:
A is preserved
X, Y and C are undefined

OSBYTE &78 (120)

Write current keys pressed information

This call should only be made by filing systems which have
recognised a key pressed with BREAK and are initialising
accordingly (see paged ROM service call with A=&03, section
10.1). This call should be used to write the old key pressed value
to prevent its entry into the keyboard buffer.

The operating system operates a two key roll-over for keyboard
input (recognising a second key press even when the first key is
still pressed). There are two zero page locations which contain the
values of the two key-presses which may be recognised at any one
time. If no keys are pressed, location &EC contains 0 and location
&ED contains 0. If one key is pressed, location &EC contains the
internal key number+128 (see table below for internal key
numbers) and location &ED contains 0. If a second key is pressed
while the original key is held down, location &EC contains the
internal key number+128 of the most recent key pressed and
location &ED contains the internal key number+128 of the first
key pressed.

39

Internal Key Numbers

hex. dec. key hex. dec. key

&00 O SHIFT &40 64 CAPS LOCK
&01 1 CTRL &41 65 A

&02 2 bit0 &42 66 X

&03 3 bitl &43 67 F

&04 4 bit2 &44 68 Y

&05 5 Dbit3 &45 69]

&06 6 bitd &46 70 K

&07 7 bits &47 71 @

&08 8 bité &48 72

&09 9 bit7 &49 73 RETURN
&10 16 Q &50 80 SHIFT LOCK
&11 17 3 &51 81 S

&12 18 4 &52 82 C

&13 19 5 &53 83 G

&14 20 f4 &54 84 H

&15 21 8 &55 85 N

&16 22 {7 &56 86 L

&17 23 - &57 87

&18 24 &58 88]

&19 25 leftcursor &59 89 DELETE
&20 32 10 &60 96 TAB
&21 33 W &61 97 Z

&22 34 E &62 98 SPACE
&23 35 T &63 99 V

&24 36 7 &64 100 B

&25 37 1 &65 101 M

&26 38 9 &66 102

&27 39 0 &67 103 .

&28 40 &68 104 /

&29 41 down cursor &69 105 COPY
&30 48 1 &70 112 ESCAPE
&31 49 2 &71 113 f1

&32 50 D &72 114 2

&33 51 R &73 115 f3

&34 52 6 &74 116 15

&35 53 U &75 117 f6

&36 54 O &76 118 f8

&37 55 P &77 119 19

&38 56 | &78 120 \

&39 57 upecursor &79 121 right cursor
40

Bits 0 to 7 refer to the start up option byte. See OSBYTE &FF for
further information about this byte.

To convert these internal key numbers to the INKEY numbers
they should be EOR (Exclusive ORed) with &FF (255).

Entry parameters :
X and Y contain values to be written

Value in X is stored as the old key information.
Value in Y is stored in the new key information.

See also OSBYTE calls with A=&AC and A=&AD.
On exit:

A, X and Y are preserved
C is undefined

OSBYTE &79 (121)

Keyboard scan

The keyboard is scanned in ascending numerical order. This call
returns information about the first pressed key encountered during
the scan. Other keys may also be pressed and a further call or calls
will be needed to complete the entire keyboard scan.

Entry parameters:
X determines the key to be detected and also determines the
range of keys to be scanned.

Key numbers refer to internal key numbers in the table above (see
OSBYTE &78).

41

To scan a particular key:
X=key number EOR &80
on exit X<O0 if the key is pressed

To scan the matrix starting from a particular key number:
X=key number

On exit X=key number of any key pressed or &FF if no key
pressed

On exit:
A is preserved

X contains key value (see above)
Y and C are undefined

OSBYTE &7A (122)

Keyboard scan from 16 decimal
No entry parameters

Internal key number (see table above) of the key pressed is
returned in X.

This call is directly equivalent to an OSBYTE call with A=&79
and X=16.

On exit:
A'is preserved
X contains key number or zero if none pressed
Y and C are undefined

42

OSBYTE &7B (123)

Inform operating system of printer driver going dormant

Entry parameters:
X should contain the value 3 (printer buffer id)

This OSBYTE call should be made by user printer drivers when
they go dormant. The operating system will need to wake up the
printer driver if more characters are placed in the printer buffer
(see section 6.5).
On exit:

A and X are preserved

Y is preserved
C is undefined

OSBYTE &7C (124)
Clear ESCAPE condition

No entry parameters

This call clears any ESCAPE condition without any further action.
See OSBYTE &T7E also.

On exit:

A, X and Y are preserved
C is undefined

43

OSBYTE &7D (125)

Set Escape condition
No entry parameters

This call partially simulates the ESCAPE key being pressed. The
Tube is informed (if active). An ESCAPE event is not generated.

On exit:

A, X and Y are preserved
C is undefined

OSBYTE &7E (126)

Clear ESCAPE condition with side effects

No entry parameters

This call attempts to clear the ESCAPE condition. All active
buffers will be flushed, any open EXEC files closed, the VDU

paging counter will be reset and the VDU queue will be reset.

See OSBYTE &E6 (230) also.

On exit:
X=&FF if the ESCAPE condition cleared
X=0 if no ESCAPE condition found

A is preserved
Y and C are undefined

44

OSBYTE &7F (127)

Check for end-of-file on an opened file
Entry parameters:
X contains file handle

On exit;
X<>(If end-of-file has been reached
X=0 If end-of-file has not been reached

A and Y are preserved (Y not passed across Tube)
C is undefined

OSBYTE &80 (128)
Read ADC channel (ADVAL) or get buffer status

On the unexpanded Electron this call will generate an unknown
OSBYTE paged ROM service call when passed a positive value in
the X register. If this service call is not claimed then the values in
page 2 of memory allocated to storing ADC information are
returned. On an Electron fitted with a Plus 1 this call is
implemented identically to on the BBC microcomputer.

For positive values of X, the call operates the same as on a BBC
microcomputer but information about buffers not present on an
unexpanded Electron will be meaningless.

Entry parameters:
X determines action and buffer or channel number

If X=0 on entry:

Y returns channel number (range 1 to 4) showing which channel
was last used for ADC conversion, Note that OSBYTE calls with
A=&10 (16) and A=&11 (17) set this value to 0. A value of 0
indicates that no conversion has been completed. Bits 0 and 1 of
X indicate the status of the two ‘fire buttons’.

45

If X=1 to 4 on entry:

X and Y contain the 16 bit value (X-low, Y-high) read from
channel specified by X. This call may only be used from machine
code (not from a *FX call).

If X<0 and Y=&FF on entry:

If X contains a negative value (in 2’s complement notation) then
this call will return information about various buffers.

X=255 (&FF) keyboard buffer
X=254 (&FE) RS423 input buffer
X=253 (&FD) RS423 output buffer
X=252 (&FC) printer buffer
X=251 (&FB) sound channel 0
X=250 (&FA) sound channel 1
X=249 (&F9) sound channel 2
X=248 (&F8) sound channel 3
X=249 (&F7) speech buffer

For input buffers X contains the number of characters in the buffer
and for output buffers the number of spaces remaining.

On exit:

A'is preserved
C is undefined

OSBYTE &81 (129)

Read key with time limit (INKEY)

This call is functionally equivalent to the BASIC statement
INKEY, It can be used to get a character from the keyboard within

a time limit, scan the keyboard for a particular key press or return
information about the OS type.

46

(a) Read key with time limit

Entry parameters:
X and Y specify time limit in centiseconds

If a time limit of n centiseconds is required,

X=n AND &FF (LSB)
Y=n DIV &100 (MSB)

Maximum time limit is &7FFF centiseconds (5.5 minutes approx.)
On exit:
If key press detected, X=ASCII key value, Y=0 & C=0
If key press not detected by timeout then Y=&FF & C=1
If Escape is pressed then Y=&1B (27) and C= 1
(b) Scan keyboard for key press
Entry parameters:
X=negative INKEY value for key to be scanned
Y=&FF
On exit:
X =Y = &FF, C= 1 if the key being scanned is pressed.
X =Y =0, C=0 if key is not pressed.
(c) Return information about OS type

Entry parameters:

X=0
Y=&FF

On exit:
X=0 BBC OS 0.1
X=1 Electron OS 1.00
X=&FF BBC OS 1.00 or OS 1.20
X=&FE US BBC OS 1.20

47

OSBYTE &82 (130)

Read machine high order address
No entry parameters

This call yields the high order address required for the most
significant 16 bits of the 32 bit addresses used for filing systems.
The high order address is different in a second processor to that in
an i/o processor. The Tube operating system intercepts this call to
return the second processor high order address.

On exit:
X and Y contain the address (X-high, Y-low)

A'is preserved
C is undefined

OSBYTE &83 (131)
Return current OSHWM

The OSHWM (operating system high water mark) represents the
top of memory used by the operating system. This value is set
after the paged ROMs have claimed workspace and any font
explosion carried out. On a second processor this value represents
the OSHWM on the i/0 processor.

The OSHWM indicates the start of user memory and so this call is
made by BASIC to initialise the value of PAGE.

No entry parameters

On exit:
X and Y contain the OSHWM address (X= low-byte , Y =
high-byte)

A is preserved
C is undefined

48

OSBYTE &84 (132)

Return HIMEM

HIMEM is an address indicating the top of the available user
RAM. This is usually the bottom of screen memory address. On a
second processor this will be the bottom address of any code
copied across from the I/O processor and executed.

No entry parameters

On exit:
X and Y contain the HIMEM address (X-low, Y-high)

A'is preserved
C is undefined

OSBYTE &85 (133)

Read bottom of display RAM address for a specified mode
This call may be used to investigate the consequences of an
intended MODE change. This enables languages to determine
whether the selection of a new MODE should be allowed.

Entry parameters:
X determines mode number

On exit:
X and Y contain the address (X-low byte, Y-high byte)

A is preserved
C 1s undefined

49

OSBYTE &86 (134)
Read text cursor position (POS and VPOS)

When in cursor editing mode this call returns the position of the
input cursor not the output cursor.

No entry parameters
On exit:
X contains horizontal position of the cursor (POS)

Y contains vertical position of the cursor (VPOS)

A is preserved
C is undefined

OSBYTE &87 (135)

Read character at text cursor position and screen MODE
No entry parameters
On exit:

X contains character value (0 if character not recognised)

Y contains graphics MODE number

A'is preserved
C 1s undefined

OSBYTE &88 (136)

Execute code indirected via USERV (*CODE equivalent)

This call JSRs to the address contained in the user vector (USERV
&200). The X and Y registers are passed on to the user routine.

See *CODE, section 6.1.

50

OSBYTE &89 (137)
Switch cassette relay (*“MOTOR equivalent)

Entry parameters:
X=0 relay off
X=1 relay on

The cassette filing system calls this routine with Y=0 for write
operations and Y= 1 for read operations. This enables the
implementation of a dual cassette system with additional hardware
and software

On exit:
A'is preserved
X, Y and C are undefined

OSBYTE &8A (138)

Insert value into buffer

Entry parameters:
X identifies the buffer (See OSBYTE &15)
Y contains the to be value inserted into buffer

On exit:
C=0 if value successfully inserted
C=1 if value not inserted e.g. if buffer full
A is preserved

OSBYTE &8B (139)

Select file options (*OPT equivalent)

Entry parameters:
X contains file option number Y contains the option value
required

On exit:
A is preserved
C is undefined

51

OSBYTE &8C (140)

Select tape filing system (*TAPE equivalent)
No entry parameters
On exit:

A is preserved
C is undefined

OSBYTE &8D (141)
Select ROM filing system (*ROM equivalent)
No entry parameters

On exit:

A'is preserved
X, Y and C are undefined

OSBYTE &SE (142)
Enter language ROM

Entry parameters:
X determines which paged ROM is entered

The language ROM is entered via its entry point with A=1.
Locations &FD and &FE in zero page are set to point to the
copyright message in the ROM.

There is no exit from this call.

52

OSBYTE &SF (143)

Issue paged ROM service call
See Service ROMs section 10.1.
Entry parameters:
X=reason code
Y=parameter passed with service call
On exit:
Y may contain return argument (if appropriate) X=0 if a
paged ROM claimed the service call

A'is preserved
C is undefined

OSBYTE &90 (144)

Alter display parameters (*TV equivalent)

On the Electron this call is not implemented and returns with
registers preserved.

OSBYTE &91 (145)

Get character from buffer
Entry parameters:

X contains buffer number (see OSBYTE &15)
On exit:

Y contains the extracted character.

If the buffer was empty then C= 1 otherwise C=0.

A is preserved

53

OSBYTESs &92 to &97 (146 to 151)
Read or Write to mapped 1/0

Entry parameters:
X contains offset within page
Y contains byte to be written (for write calls)

OSBYTE call Memory addressed ~ Name
read write

&92 (146) &93 (147) &FCO00 to &FCFF FRED
&94 (148) &95 (149) &FDO00 to &FDFF JIM
&96 (150) &97 (151) &FEO00 to &FEFF SHEILA

Refer to the hardware section for details about these 1 MHz buses.
On exit:
Read operations return with the value read in

the Y register

A is preserved
C is undefined

OSBYTE &98 (152)

Examine Buffer status

Entry parameters: X contains buffer number

On exit:
Y=character value read from buffer if buffer not empty
Y is preserved if buffer empty
C=1 if buffer empty otherwise C=0

A and X are preserved

54

OSBYTE &99 (153)

Insert character into input buffer, checking for ESCAPE
Entry parameters:
X contains buffer number (0 or 1 only) Y contains the
character value

X=0 keyboard buffer
X=1 RS423 input

If the character is an ESCAPE character and ESCAPEs are not
protected (using OSBYTE &C8/*FX 200 or OSBYTE
&E5/*FX229) then an ESCAPE event is generated instead of the
keyboard event.

On exit:

A'is preserved
X, Y and C are undefined

OSBYTE &9A (154)

Reset flash cycle

This call resets the flash cycle to the beginning of the mark state
(i.e. to the first named colour of the pair) by manipulating the
ULA registers.

There are no entry parameters.

On exit:
All registers are undefined

OSBYTE &9B (155)
Write to video ULA palette register and OS copy (BBC micro)

On the Electron this call is ignored by immediately executing an
RTS instruction.

55

OSBYTE &9C (156)

Read/update 6850 control register and OS copy (BBC micro)
On the Electron this call causes the operating system to issue an

unknown OSBYTE paged ROM service call but makes no further
actions.

OSBYTE &9D (157)
Fast Tube BPUT

The byte to be output is channeled through the standard BPUT
routine.

Entry parameters:
X = byte to be output
Y = file handle

On exit:

A'is preserved
X, Y and C are undefined

OSBYTE &9E (158)

Read from speech processor
On the Electron this call causes the operating system to issue an

unknown OSBYTE paged ROM service call but makes no further
actions.

OSBYTE &9F (159)

Write to speech processor
On the Electron this call causes the operating system to issue an

unknown OSBYTE paged ROM service call but makes no further
actions.

56

OSBYTE &A0 (160)
Read VDU variable value

This call is implemented on the Electron but is officially
undefined and may change in future issues of the OS.

Entry parameters:
X contains the number of the variable to be read

On exit:
X=low byte of variable A'is preserved
Y=high byte of variable C is undefined

OSBYTE &A3 (163)

Disable/Enable printer and ADC

This call is not implemented on the unexpanded Electron. On an
Electron fitted with a Plus 1 interface, the call enables or disables
input/output through the Plus 1:

*FX163,128,0 - enables printer and ADCs
*FX163,128,1 - disables printer and ADCs

OSBYTEs &A6 (166) and &A7 (167)

Read start address of OS variables
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This call returns the start address of the memory used by the
operating system to store its internal variables.

On exit:
X=low byte A is preserved
Y=high byte C is undefined

57

OSBYTESs &AS8 (168) and &A9 (169)
Read address of ROM pointer table

This call is implemented on the BBC microcomputer and the
Electron. When used across the Tube the address returned refers to
the I/O processor’s memory.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This table of extended vectors consists of 3 byte vectors in the
form Location (2 bytes), ROM no. (1 byte). See Paged ROM
section 10.3 for a complete description of extended vectors.

On exit:
X=low byte
Y=high byte
A'is preserved
C is undefined

OSBYTEs &AA (170) and &AB (171)

Read address of ROM information table
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This call returns the origin of a 16 byte table, containing one byte
per paged ROM. This byte contains the ROM type byte contained
in location &8006 of the ROM or contains 0 if a valid ROM is not
present.

On exit:
X=low byte A is preserved
Y=high byte C is undefined

58

OSBYTEs &AC (172) and &AD (173)

Read address of keyboard translation table

This call is implemented on the BBC microcomputer and the
Electron. However it should be noted that this call is hardware
specific due to the different keyboard matrix layout on different
machines. When used across the Tube the address returned refers
to the I/0 processor’s memory.

Use of this call is not recommended.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

On exit:

X=low byte
Y=high byte

OSBYTEs &AE (174) and &AF (175)

Read VDU variables origin
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This call returns with the address of the table of internal VDU
variables.

On exit;

X=low byte
Y=high byte

59

OSBYTE &B0 (176)

Read/write CFS timeout counter
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This counter is decremented once every vertical sync pulse (50
times per second) which is also used for OSBYTE &13/*FX 19.
The timeout counter is used to time interblock gaps and leader
tones.

OSBYTE &B1 (177)

Read input source flags
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location should contain 0 for keyboard input and 1 for RS423
input (i.e. contains buffer no.) and is used for OSBYTE &2.
OSBYTE &2 should be used to change the input source as writing
the flag with this call does not enable the relevant interrupts.

OSBYTE &B2 (178)

Enable/disable keyboard interrupt
*FX178,0,0 Turns off keyboard interrupt
*FX178,255,0 Turns on keyboard interrupt

With keyboard interrupts disabled, the machine runs significantly
faster, however the keyboard will no longer be scanned by the OS.
To detect keypresses it is necessary to read the hardware directly
(see Chapter 14).

60

OSBYTE &B3 (179)
Read/write primary OSHWM (for imploded font)

This call should not be used as it has been re-allocated on other
products in the Acorn-BBC range.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location contains the OSHWM page value for an imploded
font (even when character definition RAM explosion has been
selected) but after paged ROM workspace allocation has been
made.

See OSBYTE &B4 and OSBYTE &14.

OSBYTE &B4 (180)

Read OSHWM (similar to OSBYTE &83)

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

This call returns the page number of OSHWM in X.

This location is updated by any character definition RAM
explosion which may have been selected and returns with the high

byte of the OSHWM address (the low byte always being 0).
See OSBYTE &14.

61

OSBYTE &BS (181)

Read/write RS423 mode

On the unexpanded Electron this call will have no effect unless a
suitable hardware and software expansion has been performed to
implement R5423.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

Flag=0 ESCAPEs are recognised soft keys are expanded
character entering input buffer event generated cursor
editing performed

Flag=1 All characters enter input buffer
(default) character entering buffer event not generated

OSBYTE &B6 (182)

Read character definition explosion state

Use of this call is not recommended as this OSBYTE has been
reallocated on other products in the Acorn BBC range.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location contains the state of font explosion as set by
OSBYTE call with A=&14/*FX 20.

62

OSBYTE &B7 (183)

Read cassette/ROM filing system flag
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location contains 0 for *TAPE selection and 2 for *ROM
selection. Other values are meaningless, and should not be used.

OSBYTE &BS (184)

This call is undefined on the Electron.

OSBYTE &B9 (185)

Read/write timer paged ROM service call semaphore
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location contains a semaphore. If the contents of this location
are non-zero the operating system will generate a paged ROM
service call with a reason code of &15. This semaphore should
only be read using this call. See OSBYTEs &16 and &17 for
information about setting semaphore and service ROMs chapter
10 for information about the paged ROM service call.

63

OSBYTE &BA (186)
Read ROM number active at last BRK (error)
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location contains the ROM number of the paged ROM that
was in use at the last BRK.

OSBYTE &BB (187)
Read number of ROM socket containing BASIC
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

BASIC is recognised by the fact that it is a language ROM which
does not possess a service entry. This ROM is then selected by the
*BASIC command. If no BASIC ROM is present then this
location contains &FF.

OSBYTE &BC (188)

Read current ADC channel

This call is not implemented in the unexpanded Electron.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location contains the number of the ADC channel currently

being converted. This call should not be used to force ADC
conversions, use OSBYTE &11/*FX 17.

64

OSBYTE &BD (189)

Read maximum ADC channel number.
This call is not implemented in the unexpanded Electron.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

The maximum channel number to be used for ADC conversions in
the range 0 to 4. Set by OSBYTE &16/*FX 10.

OSBYTE &BE (190)

Read ADC conversion type, 12 or 8 bits.
This call is not implemented in the unexpanded Electron.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X
The old value is returned in X. The contents of the next location
are returned in Y.

Set to &00, default (12 bit)

Set to &08, 8 bit conversion
Set to &0C,12 bit conversion

OSBYTE &BF (191)

Read/write RS423 use flag.

This location is reserved for expansion software on the Electron.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

65

OSBYTE &CO0 (192)

Read RS423 control flag
This location is reserved for expansion software on the Electron.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

OSBYTE &C1 (193)

Read/write flash counter.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location contains the number of 1/50th sec. units until the
next change of colour for flashing colours.

OSBYTE &C2 (194)
Read/write space period count.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

Similar to OSBYTE &0A.

66

OSBYTE &C3 (195)

Read/write mark period count.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

Similar to OSBYTE &09.

OSBYTE &C4 (196)

Read/write keyboard auto-repeat delay.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This call is used by OSBYTE &0B.

OSBYTE &C5 (197)
Read/write keyboard auto-repeat period (rate).
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This call is used by OSBYTE &0C.

67

OSBYTE &C6 (198)

Read *EXEC file handle.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This call should be used only to read this location as writing to it

may have undefined effects. This location contains zero if no file
handle has been allocated by the operating system.

OSBYTE &C7 (199)

Read *SPOOL file handle.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This call should be used to read this location only. This location

contains the file handle of the current SPOOL file or zero if not
currently spooling.

68

OSBYTE &C8 (200)
Read/write ESCAPE, BREAK effect
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

bit0=0 Normal ESCAPE action

bit0=1 ESCAPE disabled unless caused by OSBYTE
&7D/125

bits[to 7=0 Normal BREAK action

bitslto 7=1 Memory cleared on BREAK

e.g. A value 0000001x (binary) will cause memory to be cleared on
BREAK.

OSBYTE &C9 (201)

Read/write keyboard disable.

This call should only be made by the Econet filing system.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

If this location contains 0 then the keyboard is scanned normally
otherwise lock keyboard (all keys ignored except BREAK).

This call is used by the *REMOTE Econet facility.

69

OSBYTE &CA (202)
Read/write keyboard status byte.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

bit 4=0 if CAPS LOCK active
bit 5=1 if Fn active

bit 6=1 if SHIFT active

bit 7=1 if CTRL active

All bits except the CAPS LOCK bit will only change transiently
and are subsequently unlikely to be of use.

See also OSBYTE with A=&76 (118).

OSBYTE &CB (203)
Read/write the ULA Interrupt Mask

See chapter 7 for a description of the interrupt handling routine.

OSBYTE &CC (204)

Read/write Firm Key Pointer
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

The value contained in this location is a pointer into the currently

expanding firm key. For more information about the firm keys see
language ROMs section 9.2.

70

OSBYTE &CD (205)

Read/write Length of current Firm key string.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location contains the length of the string currently being

expanded from a Firm key. For more information about Firm keys
see language ROMs section 9.2.

OSBYTE &CE (206)

Read/write Econet OS call interception status.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

If bit 7 of this location is set then all OSBYTE and OS WORD

calls (except those sent to paged ROMs) are indirected through
the Econet vector (&224) to the Econet. Bits 0 to 6 are ignored.

OSBYTE &CF (207)

Read/write Econet read character interception status.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

If bit 7 of this location is set then input is pulled from the Econet
vector.

71

OSBYTE &D0 (208)

Read/write Econet write character interception status.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

If bit 7 of this location is set then output is directed to the Econet.

Output may go through the normal write character on return from
the Econet code.

OSBYTE &D1 (209)

Read/write speech suppression status.

This location is not used in the unexpanded Electron and is
reserved for future expansion.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

OSBYTE &D2 (210)

Read/write sound suppression status.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

Setting X to zero allows sound to be generated. Setting X nonzero
will prevent any further sound being produced.

The old value is returned in X. The contents of the next location
are returned in Y.

72

OSBYTE &D3 (211)

Read/write BELL (CTRL G) channel.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location contains the channel number to be used for the
BELL sound. Default value is 3.

OSBYTE &D4 (212)

Read/write BELL (CTRL G) SOUND information.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location contains a byte which determines either the
amplitude or the ENVELOPE number to be used by the BELL
sound. If an ENVELOPE is specified then the value should be set
to (ENVELOPE no.-1)*8. Similarly an amplitude in the range 15
to 0 must be translated by subtracting 1 and multiplying by 8.

The least significant three bits of this location contain the H and 5
parameters of the SOUND command (see User Guide).

Note that the internal sound system on the Electron will not allow
the amplitude of the sound to be varied.

Default value 144 (&90) on the Electron.

73

OSBYTE &D5 (213)

Read/write bell (CTRL G) frequency.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This value contains the pitch parameter (as used by SOUND
command third parameter) used for the BELL sound.

Default value 101 (&65) on the Electron.

OSBYTE &D6 (214)

Read/write bell (CTRL G) duration.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This value contains the duration parameter (as for SOUND
command) used for the BELL sound.

Default value 6 on the Electron.

OSBYTE &D7 (215)

Read/write start up message suppression and !BOOT option
status.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

74

bit 0 If clear then ignore OS startup message. If set then print up
OS startup message as normal.

bit 7 If set then if an error occurs in a !BOOT file in *ROM,
carry on but if an error is encountered from a disc !BOOT
file because no language has been initialised the machine
locks up.
If clear then the opposite will occur, i.e. locks up if there is
an error in *ROM.

This can only be over-ridden by a paged ROM on initialisation or
by intercepting BREAK, see OSBYTE calls &F7 to &F9.

OSBYTE &DS (216)

Read/write length of soft key string.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location contains the number of characters yet to be read
from the soft key buffer of the current soft key. To clear input
buffer use *FX 15/0SBYTE &OF.

OSBYTE &D9 (217)

Read/write number of lines since last halt in page mode.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location contains the number of lines printed since the last
page halt. This value is used by the operating system to decide
whether to halt scrolling when paged mode has been selected.
This location is set to zero during OSWORD call &00 to prevent a
scrolling halt occurring during input.

75

OSBYTE &DA (218)

Read/write number of items in the VDU queue.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This contains the 2’s complement negative number of bytes still
required for the execution of a VDU command.

Writing 0 to this location can be a useful way of abandoning a

VDU queue, otherwise writing to this location is not
recommended.

OSBYTE &DB (219)
Read/write External sound flag
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location contains a flag indicating that an external sound
system has been selected using OSBYTE &18.

76

OSBYTE &DC (220)

Read/write Escape character.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location contains the ASCII character (and key) which will
generate an ESCAPE condition or event.

e.g. *FX 220,32 will make the SPACE bar the ESCAPE key.
Default value &1B (27).

OSBYTEs &DD (221) to &E0 (224)

Read/write I/P buffer code interpretation status.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

These locations determine the effect of the character values &CO0
(192) to &FF (255) when placed in the input buffer. See
OSBYTEs &E1 (225) to &E4 (228) for details about the different
effects which may be selected. Note that these values cannot be
inserted into the input buffer from the keyboard. RS423 input or a
user keyboard handling routine may place these values into the
input buffer.

OSBYTE &DD affects interpretation of values &CO to &BF
OSBYTE &DE affects interpretation of values &DO0 to &CF
OSBYTE &DF affects interpretation of values &EO to &EF
OSBYTE &EO affects interpretation of values &F0 to &FF

Default values &01, &DO0, &EO and &FO0 (respectively)

77

OSBYTE &E1 (225)

Read/write function key status (soft keys/codes/null).

Changes the effect of typing the user-defined function keys as
follows:

*FX225,0 - ignores the function keys

*FX225,1 - the function keys will generate the character
string defined by the user using *KEY

*FX225,2-255 - the function keys will generate an ASCII code
based on the second parameter: fl generates a
code one more than the second parameter, {2 a
code two more, etc

OSBYTE &E2 (226)

Read/write firm key status (soft key or code).

Changes the effect of typing function keys in the range A to P
(input buffer characters &90 to &9F), as follows:

*FX226,0 - ignores function keys in this range

*FX226,1 - function keys in this range will generate the
BASIC keywords marked on their keycaps

*FX226,2-255- function keys in this range will generate an
ASCII code based on the second parameter
FUNC A produces a code the same as the second
parameter, FUNC B a code one higher, etc.

OSBYTE &E3 (227)

Read/write firm key status (soft key or code).
Changes the effect of typing the remaining function keys (Q to Z

plus :;, - ./) (Input buffer characters &AO0 to &AF), according to
the same logic as OSBYTE &E2.

78

OSBYTE &E4 (228)

Read/write CTRL+SHIFT+F key Status (soft key or code).
Input buffer characters &BO0 to &BF.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location

are returned in Y. These locations determine the action taken by
the OS when a function key is pressed.

value 0 totally ignore key.

value 1 expand as normal soft key.

value 2 to &FF add n (base) to soft key number to provide
ASCII code.

The default settings are:

fn keys alone &01 expand using soft key strings

fn keys+ SHIFT &01 expand using firm key strings

fn keys+CTRL &01 expand using firm key strings

fn keys+SHIFT+CTRL &00 key has no effect

When the BREAK key is pressed a character of value &CA is
entered into the input buffer. The effect of this character may be
set independently of the other soft keys using OSBYTE &DD
(221). One of the other effects of pressing the BREAK key is to
reset this call, so the usefulness of this facility is limited.

OSBYTE &ES5 (229)

Read/write status of ESCAPE key (escape action or ASCII
code).

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

If this location contains 0 then the ESCAPE key has its normal
action. Otherwise treat currently selected ESCAPE key as an
ASCII code.

79

OSBYTE &E6 (230)

Read/write flags determining ESCAPE effects.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

If this location contains 0 then when an ESCAPE is
acknowledged (using OSBYTE &7E/*FX 126) then :

EXEC file is closed (if open)

Purge all buffers (including input buffer)
Reset paging counter (lines since last halt)
Reset VDU queue

Any current soft key expansion is cleared

If this location contains any value other than 0 then ESCAPE
causes none of these.

OSBYTE &E7 (231)
Read/write IRQ bit mask for the user 6522 (BBC micro)
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location is reserved for future Acorn expansion on the
Electron.

OSBYTE &ES8 (232)

Read/write sound semaphore
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

This location contains the sound semaphore.

80

OSBYTE &E9 (233)

Read/write soft key pointer
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

This location contains the soft key pointer.

OSBYTE &EA (234)

Read flag indicating Tube presence.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location contains 0 if a Tube system is not present and &FF if
Tube chips and software are installed.

No other values are meaningful or valid.

OSBYTE &EB (235)

Read flag indicating speech processor presence.

This location is used differently on the BBC micro and the
Electron.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location is reserved for future Acorn expansion on the
Electron.

81

OSBYTE &EC (236)

Read/write write character destination status.
<NEW VALUE>=(<OLD VALUE>AND Y) BOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This call is used by OSBYTE &3/*FX 3.

OSBYTE &ED (237)

Read/write cursor editing status.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This call is used by OSBYTE &4/*FX 4.

OSBYTEs &EE (238) and &EF (239)

Read/write OS workspace bytes.

These locations are reserved for future Acorn expansion on the
Electron.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

82

OSBYTE &F0 (240)

Read country code
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location contains a value indicating the country for which
this version of the operating system has been written.

country code country
0 United Kingdom
1 United States

OSBYTE &F1 (241)

Read/write User flag location.
<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This call is not used by the operating system and is unlikely to be
used by later issues either. This location is reserved as a user flag
for use with *FX 1.

Default value 0.

OSBYTE &F2 (242)

Read RAM copy of location &FE07
<NEW VALUE>=(<OLD VALUE> AND Y) BOR X

This location contains a RAM copy of the last value written to the
ULA at address &FEQ7.

The old value is returned in X. The contents of the next location
are returned in Y.

83

OSBYTE &F3 (243)

Read timer switch state.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

The OS maintains two internal clocks which are updated
alternately, As the OS alternates between the two clocks it toggles
this location between values of 5 and 10. These values represent
offsets within the OS workspace where the clock values are
stored. This OS workspace location should not be interfered with.

OSBYTE &F4 (244)

Read/write soft key consistency flag.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

If this location contains 0 then the soft key buffer is in a consistent
state. A value other than 0 indicates that the soft key buffer is in an
inconsistent state (the operating system does this during soft key
string entries and deletions). If the soft keys are in an inconsistent
state during a soft break then the soft key buffer is cleared
(otherwise it is preserved).

OSBYTE &F5 (245)

Read/write printer destination flag.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y. This call is used by OSBYTE &5/*FX 5. Using
this call does not check for the printer previously selected being
inactive or inform the user printer routine. See section 6.1.

84

OSBYTE &F6 (246)

Read/write character ignored by printer.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y. This call is used by OSBYTE &6/*FX 6.

OSBYTEs &F7 (247), &F8 (248) and
&F9 (249)

Read/write BREAK intercept code.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

The contents of these locations must be a JMP instruction for
BREAKS to be intercepted (the OS identifies the presence of an
intercept by testing the first location contents equal to &4C -
JMP). This code is entered twice during each break. On the first
occasion C=0 and is performed before the reset message is printed
or the Tube initialised. The second call is made with C=1 after the
reset message has been printed and the Tube initialised.

OSBYTEs &FA (250) and &FB (251)

Read/write OS workspace locations.

These locations are reserved for future Acorn expansions on the
Electron.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

85

OSBYTE &FC (252)

Read/write current language ROM number.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location is set after use of OSBYTE &8E/*FX 126. This
ROM is entered following a soft BREAK or a BRK (error).

OSBYTE &FD (253)

Read hard/soft BREAK.
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y

This location contains a value indicating the type of the last
BREAK performed.

value 0 - soft BREAK

value 1 - power up reset
value 2 - hard BREAK

OSBYTE &FE (254)

Read/write available RAM (BBC micro)
<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location is reserved for future Acorn expansion. Default
value 0 in the unexpanded Electron.

86

OSBYTE &FF (255)

Read/write start up options.

<NEW VALUE>=(<OLD VALUE>AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

On the Electron the default value of this location is &FF (255) and
this OSBYTE is the only way of resetting the start up options.

bits 0 to 2 screen MODE selected following reset. (MODE

bit 3

bits 4-5

bit 6

bit 7

number = 3 bit value)

Auto-boot. If this bit is 1, pressing SHIFT BREAK
will cause the filing system (eg the ADFS) to auto-
boot (do something with the file '""BOOT') and
pressing BREAK alone will not cause an auto-boot. If
the bit is zero, the action is reversed and pressing just
BREAK will cause the auto-boot action. The default
is SHIFT BREAK to cause an auto-boot.

These select the speed at which the read/write head of
the disc steps between tracks. The possible values are:

Bit 5 Bit 4 Speed (mS)
1 1 6

1 0 12

0 1 20

0 0 30

The default is 6mS, suitable for the built-in drive in
the Plus 3 unit (if fitted).

This selects whether write pre-compensation is
required when writing data to the disc. A value of 1
means it is required and 0 means it isn't. The Plus 3
drive does require write pre-compensation, and the
default value of the bit is 1.

This is unused by the current Electron operating
system and by ADFS.

87

4 OSWORD Calls

The OSWORD routines are very similar in concept to the
OSBYTE routines. The major difference arises in the way of
passing parameters. Instead of being passed in the X and Y
registers, they are placed in a parameter block, The address of this
parameter block is sent to the routine in the X (for the low byte)
and Y (for the high byte) registers.

OSWORD OS call specified by contents of A taking
parameters in a parameter block.

Call address &FFF1 Indirected through &20C

On entry,
A selects an OSWORD routine.
X contains low byte of the parameter block address.
Y contains high byte of the parameter block address.

OSWORDs which are called with accumulator values in the range
&EO0 (224) to &FF (255) are passed to the USERV (&200). The
routine indirected through the USERV is entered with the register
contents unchanged from the original OSWORD call.

Other unrecognised OSWORD calls are offered to the paged
ROMs (see service ROMs section 10.1, reason code 8).

OSWORD summary

A=0 Read line from currently selected input into memory.
A=1 Read system clock.

A=2 Write system clock.

A=3 Read interval timer.

A=4 Write interval timer.

A=5 Read byte of I/O processor memory.

A=6 Write byte of I/O processor memory.

A=T7 Perform a SOUND command.

A=8 Define an ENVELOPE.

88

A=9 Read pixel value.

A=&A Read character definition.

A=&B Read palette value for a given logical colour.

A=&C Write palette value for a given logical colour.
A=&D Read previous and current graphics cursor positions.

OSWORD call with A=&0 Read line from input

This routine takes a specified number of characters from the
currently selected input stream. Input is terminated following a
RETURN or an ESCAPE. DELETE (&7F/127) deletes the
previous character and CTRL U (&15/21) deletes the entire line.
If characters are presented after the maximum line length has been
reached the characters are ignored and a BEL (ASCII 7) character
is output.

The parameter block

XY+ 0 Buffer address for input LSB
1 MSB
2 Maximum line length
3 Minimum acceptable ASCII value
4 Maximum acceptable ASCII value

Only characters greater or equal to XY+3 and less than or equal to
XY+4 will be accepted.

On exit:
C=0 if a carriage return terminated input.
C=1 if an ESCAPE condition terminated input.
Y contains line length, excluding carriage return if used.

OSWORD call with A=&1 Read system clock

This routine may be used to read the system clock (used for the
TIME function in BASIC). The five byte clock value is written to
the address contained in the X and Y registers. This clock is
incremented every hundredth of a second and is set to 0 by a hard
BREAK.

89

OSWORD call with A=&2 Write System Clock
This routine may be used to set the system clock to a five byte
value contained in memory at the address contained in the X and
Y registers.
OSWORD call with A=&3 Read interval timer
This routine may be used to read the interval timer (used for
events, see section 6.4). The five byte clock value is written to the
address contained in the X and Y registers.
OSWORD call with A=&4 Write interval timer
This routine may be used to set the interval timer to a five byte
value contained in memory at the address in the X and Y registers.
OSWORD call with A=&5 Read 1/0 processor memory
A byte of I/O processor memory may be read across the Tube
using this call. A 32 bit address should be contained in memory at
the address contained in the X and Y registers.
XY+ 0 LSB of address to be read
1
2
3 MSB of address to be read

If the I/O processor uses 16 bit memory addressing only least
significant two bytes need to be specified.

On exit:
The byte read will be contained in location XY-+4.

90

OSWORD call with A=&6 Write I/0 processor memory

This call permits I/O processor memory to be written across the
Tube. A 32-bit address is contained in the parameter block
addressed by the X and Y registers and the byte to be written
should be placed in XY+4. For compatibility with future products
it is recommended that XY+2 and XY+3 be set to zero.

OSWORD call with A=&7 SOUND command

This routine takes an 8 byte parameter block addressed by the X
and Y registers. The 8 bytes of the parameter block may be
considered as the four parameters used for the SOUND command

in BASIC.
e.g. To perform a SOUND 1,-15,200,20

XY+0 Channel LSB 1 &01
1 MSB &00
2 Amplitude LSB -I5 &F1
3 MSB &FF
4 Pitch LSB 200 &C8
5 MSB &00
6 Duration LSB 20 &14
7 MSB &00

This call has exactly the same effect as the SOUND command.

OSWORD call with A=&8 Define an ENVELOPE

The ENVELOPE parameter block should contain 14 bytes of data
which correspond to the 14 parameters described in the
ENVELOPE command. This call should be entered with the
parameter block address contained in the X and Y registers.

91

OSWORD call with A=&9 Read pixel value

This routine returns the status of a screen pixel at a given pair of
X and Y co-ordinates. A four byte parameter block is required and
the result is contained in a fifth byte.

XY+ 0 LSB of the X co-ordinate
1 MSB of the X co-ordinate
2 LSB of the Y co-ordinate
3 MSB of the Y co-ordinate
On exit:

XY+4 contains the logical colour at the point or &FF if
the point specified was outside the window.

OSWORD call with A=&A Read character definition

The 8 bytes which define the 8 by 8 matrix of each character
which can be displayed on the screen may be read using this call.
The ASCII value of the character definition to be read should be
placed in memory at the address stored in the X and Y registers.
After the call the 8 byte definition is contained in the following 8
bytes.

XY+ 0 Character required

1 Top row of character definition
2 Second row of character definition
8 Bottom row of character definition

92

OSWORD call with A=&B Read palette

The physical colour associated with each logical colour may be
read using this routine. On entry the logical colour is placed in the
location at XY and the call returns with 4 bytes stored in the
following four locations corresponding to a VDU 19 statement.

e.g. Assuming that a VDU 19,2,3,0,0,0 had previously been
issued then OSWORD &B with 1 at XY would yield
XY+ 0 2 logical colour

physical colour
padding for future expansion

AW~
S OO W

OSWORD call with A=&C Write palette

This call performs the same task as a VDU 19 command (which
can be used from machine code using OSWRCH). The advantage
of using this OSWORD call rather than the conventional VDU
route is that there is a significant saving in time. Another
advantage is that OSWORD calls can be used in interrupt routines
while VDU routines cannot. This call works in the same way as
OSWORD &B (see above); a parameter block should be set up
with the logical colour being defined at XY, the physical colour
being assigned to it in XY+1 and XY+2 to XY+4 containing
padding Os.

93

OSWORD call with A=&D Read last two graphics cursor
positions

The operating system keeps a record of the last two graphics
cursor, positions in order to perform triangle filling if requested.
These cursor positions may be read using this call. X and Y should
provide the address of 8 bytes of memory into which the data may
be written.

XY+ 0 previous X co-ordinate, low byte
1 high byte
2 previous Y co-ordinate , low byte
3 high byte
4 current X co-ordinate, low byte
5 high byte

current Y co-ordinate, low byte
high byte

~N

94

S Filing System Calls

Any filing system implemented on the Electron offers its facilities
by intercepting the standard OS filing system calls. The tape and
*ROM filing system code is contained within the operating
system ROM. Other filing system software may be implemented
in service type paged ROMs. The currently selected filing system
must place pointers to relevant routines in the vectors provided for
this purpose in page two of memory.

The description of the filing system calls given in this chapter
covers a general filing system. The actual implementation will
differ slightly between filing systems depending on the suitability
of certain calls to their filing system medium.

The filing system calls are:

name call address indirection vector
OSFILE &FFDD &212

OSARGS &FFDA &214

OSBGET &FFD7 &216

OSBPUT &FFD4 &218

OSGBPB &FFD1 &21A

OSFIND &FFCE &21C

OSFSC n/a &21E

Each of these calls should respond in an appropriate and relevant
manner as described in the sections below. Even though the nature
of certain filing systems’ hardware implementation may appear to
vary widely, the user is presented with a standard filing system
interface wherever possible. Software can be written which
functions identically using a number of different filing systems.
Where both X and Y are used to point to a parameter block. X
holds the low byte and Y holds the high byte of the address.

95

5.1 OSFILE Read/write entire file or its attributes
Call address &FFDD Indirected through &212

This routine is used to manipulate an entire file. The precise
function performed by this routine depends on the value in the
accumulator. This call can be used to load a file into memory, save
a file from memory, delete a file and re-write the file’s attributes
(e.g. load address, execution address, name etc.). Any information
required by the routine to perform its task should be placed in
memory. The address of this information should then be passed to
the routine in the X and Y registers.

Entry parameters:
A contains a value indicating what action is required
X+Y contain the address of a parameter block

The format of the information placed in the parameter block
addressed by X and Y is as follows:

&00 - &01 Address of file name
&02 - &05 Load address of file
&06 - &09 Execution address of file

&0A - &0D Start address of data (write operations) or Length
of file (read operations)

&OE - &11 End address of data (read/write operations) or
File attributes (write attributes operation)

The file name should be stored in another part of memory (not
sideways ROMs) and be terminated by a carriage return character
(&0D) or a space (&20). The least significant byte of the address
should be stored in the first of the two bytes. All other parameters
are stored in the same order, least significant byte stored first.

96

The file attributes when required should be provided in the last
four bytes of the parameter block. The least significant 8 bits (i.e.
the first byte) have the following meanings:

Bit Meaning if set

not readable by you
not writable by you
not executable by you
not deletable by you
not readable by others
not writable by others
not executable by others
not deletable by others

NN P WN—=O

The term you here means the originator of the call and the term
others means other users of a network filing system.

The action codes passed to OSFILE in the accumulator have the
following effects:

A=0
Save a section of memory as a named file using the information
supplied in the parameter block.

A=1

Re-write the catalogue information of an existing file using the
information provided in the parameter block. i.e. load and
execution addresses.

A=2
Re-write the load address (only) of an existing file identified by
the name passed in the parameter block.

A=3

Re-write the execution address (only) of an existing file identified
by the name passed in the parameter block.

97

A=4
Re-write the file attributes (only) of an existing file identified by
the name passed in the parameter block.

A=5
Read the named file’s catalogue entry and return the file type in
the accumulator. These are as follows:

0 returned in A Nothing found

1 returned in A File found

2 returned in A Directory found
A=6
Delete the named file.
A=T7

Create a file with a catalogue entry representing the parameter
block information but instead of transferring any data pad with
null characters.

A=&FF

Load the named file into memory. If the first byte of the execution
address field of the parameter block is zero then load to the load
address given in the parameter block. If the first byte of the
execution address is non-zero then use the file’s own load address.

During this call if an error occurs a BRK instruction will be
executed which may be trapped if required. During this call
interrupts may be enabled but the interrupt status is preserved.

On exit:
A contains the file type
X and Y are preserved
C, N, V and Z are undefined
Information may be written to the parameter block
addressed by X+Y.

98

5.2 OSARGS Read/write open file’s attributes
Return current filing system

Call address &FFDA Indirected through &214

This routine is used to manipulate files which are being used for
random access. Files used in this way have to be opened using the
OSFIND call. When data is being written to or read from the file
OSBPUT, OSBGET and OSGBPB can be used but this call
should be used to move the sequential pointer used by these calls
when data is not transferred. This call is the only way of moving
the sequential pointer backwards through a file. OSARGS may
also be used to force an update of files onto the medium in use i.e.
ensuring that the latest copy of the memory buffer is saved. A
number of other functions are performed by this call as detailed
below.

Entry parameters:
A contains a value determining the call’s actions
X contains a zero page address of a parameter block
Y contains the file handle (see OSFIND) or zero

The parameter block in zero page should be in the user’s
allocation of zero page. A block of four bytes is required, this will
contain the value of the sequential file pointer for read operations
or should be set up with a value prior to the call for a write
operation. It should be noted that because filing systems should
not be languages and so are not copied across to a second
processor this parameter block will always exist in the I/O
processor even when a Tube is active. If called from the second
processor, the parameter block will be copied across into the I/0
processor before the filing system is called.

Interrupts may be enabled during a call but the interrupt status will
be preserved.

If Y=0 and A=0 then return the current filing system in A.

value returned filing system
0 no current filing system
1 1200 baud cassette

99

2 300 baud cassette
3 ROM filing system
4 Disc filing system
5 Econet filing system
6 Telesoftware filing system
7 IEEE filing system
8 ADFS
9 Reserved
10 Acacia RAM filing system

If Y=0 and A= 1 then return the address in the I/O processor of the
rest of the command line will be returned in the two least
significant bytes of the zero page parameter block. This enables
software to access the parameters passed with “*’ commands.

If Y=0 and A=&FF then update all files onto the filing system
medium; this ensures that the medium has the latest copy of the
buffers.

IfY is non-zero then the value in Y is assumed to be a file handle
(see OSFIND). The value passed in A determines the action on the
open file specified by Y

A=0

Read sequential file pointer (written to the zero page parameter
block). This pointer is the same as that used by BASIC called
PTR#.

A=1

Write sequential file pointer.

A=2

Read length of sequential file. This value is the same as that
returned by EXT# in BASIC.

100

A=3

Write length of sequential file. This call is not implemented in all
filing systems but where implemented may be used either to
truncate a file or to extend it (in which case it will be padded with
zeroes).

A= &FF
Update this file onto the filing system medium.

On exit:
A'is preserved except on a call with A=0 and Y=0
X and Y are preserved

C, N, V and Z are undefined
D=0

5.3 OSBGET Get a single byte from an open file
Call address &FFD7 Indirected through &216

This routine returns the value of a byte read from a file opened for
random access. The file should have been previously opened
using OSFIND, The file handle required by this call will have
been provided from this OSFIND call.

Entry parameters:
Y contains file handle

A byte is read from that point in the file determined by the
sequential file pointer. During each call of OSB GET the
sequential file pointer is incremented by one. Thus successive
OSBGET calls can be used to read bytes from the file
sequentially. This pointer may be read or written using the
OSARGS call thus enabling the use of random access.

Interrupts may be enabled during a call but the interrupt status will
be preserved.

101

A is returned containing the value of the byte read.

On exit:
X and Y are preserved
C=1 if the end of file was reached i.e. invalid call , in
which case A=&FE.

N, V and Z are undefined

5.4 OSBPUT Write a single byte to an open file
Call address &FFD4 Indirected through &218

This call is the complement to the OSBGET call described above.
A file handle should be provided from a prior OSFIND call and
the sequential file pointer is used to locate the point in the file
where the byte is written.

Entry parameters:
A contains the byte to be written to the file.
Y contains the file handle.

During the call a byte will be written to the file and the sequential
pointer will be incremented. If the sequential file pointer reaches
the end of the file the file will be extended to accommodate any
new data written where possible.

Interrupts may be enabled during a call but the interrupt status will
be preserved over a call.

On exit:
A, X and Y are preserved

C, N, V and Z are undefined

102

5.5 OSGBPB Read/write a group of bytes to/from an open file
Call address &FFD1 Indirected through &21A

This routine enables the transfer of a group of bytes to or from an
open file. This routine is implemented particularly for filing
systems which have a high time overhead associated with each
data transfer e.g. the Econet.

Entry parameters:
A contains a value which determines the action
performed
X+Y contain a pointer to a parameter block in memory

The parameter block should contain information in the following
format:

&00 file handle

&01 - &04 address of data for transfer

&05 - &08 number of bytes to transfer

&09 - &0C sequential file pointer to be used

The bytes in each parameter should be placed least significant
byte first.

The address should include a high order address (see OSBYTE
&82) to indicate if the data is in an i/o0 processor or a second
processor.

The sequential file pointer passed in the parameter block will only
replace the old value of this pointer when appropriate.

The action codes passed to the routine will have the following
effects:

103

A=1

Write a group of bytes to the open file. The sequential pointer
given will indicate the point in the file where these bytes are put
and this pointer will be incremented by the number of bytes
written.

A=2

Write a group of bytes to the open file without using the
sequential file pointer value given in the parameter block. The
existing value of the pointer will mark the point in the file where
these bytes are put and the pointer will then be incremented by the
number of bytes written.

A=3

Read a group of bytes from an open file. The sequential pointer
given in the parameter block will indicate where the bytes should
be read from within the file. The pointer will then be incremented
by the number of bytes read.

A=4

Read a group of bytes from an open file disregarding the
sequential file pointer value given in the parameter block. The
existing pointer value will be used and subsequently incremented
by the number of bytes read.

A=5

Return the title associated with the currently active medium and
return boot/startup attribute, This information is written to the
address pointed at by the X and Y registers. The format of the data
is:

&00 n, the length of the title string
&01 - n+1 the title string, ASCII characters
n+2 value indicating boot/start up options

The start up information is filing system dependent.

104

A=6

Return the currently selected directory and device identity. Two
items of data are written to the parameter block. The format of the
data is:

&00 n, the length of the directory name
&01 -n+1 directory name, ASCII string
n+2 m, the length of the device identity

nt3 -n+tm+3 the device identity
A=T7

Read the currently selected library, and device, The data format is
the same as that used for A=6.

A=8

This call is used to read file names from the current directory. The
parameter block should be set up so that the number of file names
to transfer is placed in the ‘No. of bytes to transfer’ field, For the
first call the ‘sequential file pointer’ field should be set to zero.
The sequential file pointer is incremented each time this call is
made so that it points to the next file name for transfer.

The data is transferred to the specified address in the form of a list
of file names. Each file name takes the form of an ASCII string
preceded by a single byte value indicating the length of the string.
The number of filenames in this list is determined by the value
passed in the parameter block unless the end of the directory is
reached.

This call also returns a cycle number in the ‘file handle’ field of

the parameter block. This cycle number represents the number of
times the current catalogue has been written to.

105

Exit conditions:
A, X and Y are preserved
N, V and Z are undefined
C=1 if the transfer could not be completed

In the event of a transfer not being completed the parameter block
contains the following information:

(a) the number of bytes or names not transferred in the ‘number
of bytes to transfer’ field

(b) the ‘address’ field contains the next location of memory due
for transfer

(c) the ‘sequential pointer’ field contains the sequential file
pointer value indicating the next byte in the file due for
transfer

5.6 OSFIND Open or close file for random access
Call address &FFCE Indirected through &21C

This call is used to allocate a file handle for subsequent use by
OSARGS, OSBGET, OSBPUT and OSGBPB. This call should
also be used to close a file when no further access is required. In
this instance the file handle is released for re-allocation and the
file medium is updated from the buffers in memory.

The file handle is a single byte value which uniquely identifies an
open file. This provides a less cumbersome method of addressing
the file in question than using the filename each time. The number
of files which can be open at any one time is filing system
dependent. The actual range of handle values allocated by each
filing system is different. The ranges which have been allocated
by Acorn are listed under OSFSC with A=&07.

106

Entry parameters
(a) To open a file

The accumulator contains a code indicating the type of access for
which the file should be opened:

A=&40 input only
A=&280 output only (i.e. will attempt to delete file first)
A=&CO0 input and output

X and Y contain the address of a file name string (low byte, high
byte). The filename string should be terminated by a carriage
return character (&0D).

The accumulator will be returned containing the file handle which
has been allocated or zero if the file could not be opened. Note
that if the filename is syntactically bad, or involves a non-existent
directory, a BRK ‘Not found’ error may occur.

(b) To close a file

A=0 Y contains the handle of the file to be closed or Y=0 to
close all currently open files.

On exit:
A returns file handle on opening otherwise preserved
X and Y are preserved

C, N, V and Z are preserved
Interrupts may be enabled during call, status preserved

5.7 OSFSC Miscellaneous filing system control

No OS call address Indirected through &21E

This vector contains an entry point into the current filing system
which may be used to invoke a number of miscellaneous filing

system functions. Because there is no direct call address this call
can only be made from within an I/O processor and is not

107

available for code running on a second processor. However many
of the facilities are indirectly available via other OS calls which
subsequently make calls through this vector.

Entry parameters:

The accumulator contains an action code determining which
control function is performed.

A=0 *OPT command

The operating system makes this call in response to ‘“*OPT’ being
submitted to the command line interpreter or in response to
OSBYTE &8B. X and Y contain the parameters passed with the
“*OPT’ command.

A= 1 Check for end of file (EOF)

This call is made by the operating system in response to OSBYTE
&7F. The call is entered with a file handle value in the X register.
The X register should be returned containing the value &FF if an
EOF condition exists, otherwise it should be returned containing
Zero.

A=2 ‘*/” command

The filing system should attempt to *RUN the file whose name
follows the ‘/’ character. The operating system command line
interpreter will make this call in response to a command
beginning ‘*/°. The X and Y registers contain the address of the
file name string (not including the ‘*/* characters).

A=3 Unrecognised *command

The operating system issues this call when an unrecognised
command has been submitted to the command line interpreter.
This call is made after the “unrecognised *command’ paged ROM
service call has been made (see paged ROMs section 10.1). The
command name string is addressed by the X and Y registers.

108

Filing systems will respond to this call by attempting to *RUN the
file having the command name. The idea behind this is to enable
the implementation of command like utilities which are stored on
the filing system media. However in the case of a filing system
being unable to execute the file without delay the filing system
should respond to this call with a ‘Bad Command’ message
instead.

A=4 *RUN attempted

The operating system passes on the file name given with a *RUN
command to the current filing system using this call. The X and Y
registers contain the address of the file name string, The filing
system should then load and execute the code in this file.

A=5 *CAT attempted

This call is made by the operating system in response to a *CAT
command. The X and Y registers contain the address of the rest of
the command string where any parameters required by the routine
may be found.

A=6 New filing system selected

This call is issued when the current filing system is being
changed. The deselected filing system should respond by closing
any *SPOOL or *EXEC files using OSBYTE &77 and prepare
itself for the handover.

A=7 Return handle range
This call may be made to determine the range of values allocated

as file handles by the currently selected filing system. Below is a
list of the handle ranges that have been allocated by Acorn.

filing system handle range, inclusive
Tape filing system 1 (&01) 2 (&02)
*ROM filing system 3 (&03) 3 (&03)
Teletext filing system 14 (&0E) 15 (&O0F)
Disc filing system 17 (&12) 21 (&15)
Network filing system 32 (&20) 39 (&29)

109

Winchester DFS 48 (&30) 57 (&39)

reserved values 64 (&40) 71 (&49)
Acacia RAM filing system 96 (&60) 101 (&65)
IEEE filing system 240 (&F0) 255 (&FF)

The X register is returned with the lowest value which may be
allocated as a file handle and the Y register returned with the
highest value used.

A=8 OS *command about to be processed

The operating system makes this call prior to executing a
*command. Acorn DFS uses this call to implement the
“*ENABLE’ protection mechanism. This call may also be used by
filing systems to output extra messages e.g. ‘Compaction
recommended’ when free space has become highly fragmented on
a disc.

On exit:
Registers returned as described above
Otherwise registers undefined
Status flags undefined
Interrupts may be enabled, status preserved

110

6 Operating System

Vectors

Many of the operating system routines are indirected through
addresses stored in RAM. This enables other software to intercept
these calls as they are made.

During a reset the operating system stores the addresses of its
internal routines for such things as reading and writing characters
in locations in page two. The official entry point of these routines
point to instructions like JMP (vector). If another piece of
software replaces the address stored in the vector then each
subsequent call is passed to the intercepting software.

Consider the following example:

This program assembles a routine which intercepts ‘$’ and ‘£’
characters passed to the OSWRCH routine and exchanges them.

10

DIM code% 100

20 WRCHV=&20E

30
40
50
60
10
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220

FOR opt%=0 TO 3 STEP3
P%=code%

[
OPT opt%
.init LDA WRCHV
STA ret_vec
LDA WRCHV+1
STA ret_vec+1
LDX #intrcpt AND &FF
%EY #intrcpt DIV &100
STX WRCHV
STY WRCHV+1
CLI
RTS
. intrcpt CMP #ASC” &~
BEQ pound
CMP #ASC” §$”
BEQ dol lar
JWP (ret_vec)

111

lo byte of vector

ke a copy

hi byte of vector

ke a copy

=lo byte of new routine
¥ Y=hi byte of new routine
¥ disable interrupts

¥ store new routine address
¥ in WRCH Vector

¥ enable interrupts

¥ finished initialisation
¥ trying to print a & ?

¥ if so branch

¥ trying to print a § ?

¥ if so branch

¥ neither goto old routine

230 .pound LDA #ASC” $” ¥ replace & with $

240 JWP (ret_vec) ¥ goto old routine

250 .dollar LDA #ASGC” & ¥ replace § with &

260 JMP (ret_vec) ¥ goto old routine

%;8 jret_vec EQUW O ¥ space for return vector
290 NEXT

300 CALL init

This program, although not very long, illustrates a few points
regarding the way in which vectors should be intercepted.

One of the most important aspects concerning the interception of
calls through vectors is to make sure that the call is passed on to
the previous owner of the vector. There are occasions when a
routine is intended to be the sole replacement of a vector but as a
rule it is good programming practice to copy the old vector
contents to a returning vector. By returning via the old vector
contents any number of intercepting routines can be daisy chained
into the operating system call.

While the initialising routine is changing the vector contents to
point at the new routine it is wise to disable interrupts, It would
obviously be quite catastrophic if the OSWRCH routine were to
be called when the vector was only half changed. An interrupt
handling routine is unlikely to use the WRCHYV but there is no
reason why it should not.

The intention in this section has been to make programmers aware
of the problems which may occur when intercepting these vectors.
They have been implemented so that they may be used to insert
extra code into some of the operating system routines and
individuals should not be afraid of using them to this end.
However, careful thought is required; take full account of the
ramifications of altering the operating systems usual response to
calls. If in doubt try out a routine. Play about with trivial examples
such as the one given above. There is nothing to be lost and much
to be learnt.

112

OS and filing system calls indirection
vectors

The vector addresses associated with those operating system calls
which are indirected are given in the detailed description of each
call in chapter 2. The entry conditions with which the routine
whose address is contained within these vectors will be unchanged
from the initial OS call.

Other page 2 vectors

The other vectors reserved for containing the addresses of other
operating system and miscellaneous routines are described below.
These are:

Name addr. description

USERV &200 The user vector

BRKV &202 The BRK vector

IRQ1V &204 Primary interrupt vector

IRQ2V &206 Unrecognised IRQ vector

FSCV &21E File system control entry

EVNTV &220 Event vector

UPTV &222 User print routine

NETV &224 Econet vector

VDUV &226 Unrecognised VDU commands
KEYV &228 Keyboard vector

INSV &22A Insert into buffer vector

REMV &22C Remove from buffer vector

CNPV &22E Count/purge buffer vector

IND1V &230 unused/reserved for future expansion
IND2V &232 unused/reserved for future expansion
IND3V &234 unused/reserved for future expansion

113

6.1 The User Vector &200

The user vector is called by the operating system in three
circumstances:

(a) When *CODE is passed to the command line interpreter

The *CODE command takes two parameters which are placed in
the X and Y registers. The user vector is then called with an
accumulator value of zero. OSBYTE &88 may also be used to
generate a *CODE command.

(b) When *LINE is passed to the command line interpreter

The *LINE command takes a line of text as a parameter. The user
vector is entered with the X and Y registers containing the address
of this text and A= 1.

(¢) When an OSWORD call &EO to &FF has been made.

The user vector is entered with the register values they were when
the original OSWORD call was made.

The default address stored in this vector points to a routine which
generates an error with the message ‘Bad command’ and error
number &FE.

This vector is fully implemented on the BBC microcomputer and
the Electron. On a Tube machine only the vector on the I/0
processor is offered these calls.

Listed below is a program which assembles a routine to intercept
calls made to the user vector. It may be noticed that this routine
does not offer the calls back to the original vector routine, this is
because the default routine generates an error. There should only
be one user vector handling routine active at any one time.

114

240
250
260
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

REM

FOR opt%=0 TO 3 STEP 3

T%Zcode%

OPT opt%
.init

.userrt

. loop

. code

. osword

. loop1

User vector handling routine
DIM code% &100
OSASCI=&FFE3
USERV=&200

LDX #tuserrt AND &FF ¥ X=lo byte of routine addr.
LDY #tuserrt DIV &100 ¥ Y=hi byte of routine addr.

SEI

STX USERV
STY USERV+1
CLI

RTS

CMP #1

BCC code
BNE osword
STX &70
STY &1

LDY #&FF
INY

LDA (&70),Y
JSR 0SASCI
CMP #8&D
BNE loop
RTS

TXA

JSR prntbt
JSR space
TYA

JSR prntbt
JUP new_In
PHA

LDX #&FF
INX

LDA string, X
JSR 0SASCI
CMP #ASG” &~
BNE 1oop1
PLA

JSR prntbt
JMP new_In

115

¥
¥

¥
¥
¥
¥
¥

A A WS S A HS S < HS S < S WS S A HS S < S HS < <

disable interrupts
set up vector with addr.

enable interrupts

and return

compare contents of A withi
A<1 then must be *CODE

now if AOT must be OSWORD
*LINE routine

store text address in page0
set Y as loop counter
beginning of loop Y=Y+1
load first byte of string
print it

was character a cr?

if not get the next char.
if it was return

A=X

print value of X

print a space

print value of Y

print newline and return
save contents of A

set X as loop counter
beginning of loop, X=X+1
load character from string
print it

& char. is end of string
loop if not end of string
reload the value of A
print it out in hex

print cr and return

450 .space LDA #820

460 JMP 0SASCI
470 .new_In LDA #&D
480 JMP 0SASCI

490 .string EQUS “OSWORD & “

499 ¥sxkx This routine prints hex
500 .prntbt PHA

510 LSR A

520 LSR A

530 LSR A

540 LSR A

550 JSR nibble
560 PLA

570 .nibble AND #&OF
580 CMP #&0A
590 BCC number
600 ADC #806
610 . number ADC #&30
620 JMP 0SASCI
630]

640 NEXT

650 CALL init

¥ A=space character

¥ print space and return

¥ A=carriage return character
¥ print cr and return

¥ string for OSWORD routine

number given in A
¥ save copy of accumulator

¥ shift nibble hi to lo

¥ print hi nibble hex digit
¥ reload accumulator

¥ mask out high nibble

¥ digit or letter?

¥ AK10 print number

¥ otherwise add 7 (C=1)

¥ add &30 to convert to ASCII
¥ print character and return

Once assembled this routine will respond to *CODE by printing

out the parameters passed with the command. A *LINE command
will result in the parameter string being repeated on the screen and
an OSWORD in the region &EO to &FF will print out the number
of the call.

e.g.

>*CODE 1, 2

01 02

>xLINE SOME TEXT
SOME TEXT
>A%=&E0:CALL &FFF1
gSWORD &E0

116

6.2 The BRK Vector &202

When a BRK instruction (op code value 0) is executed an
interrupt is generated. The operating system stores the address of
the byte following the BRK instruction in &FD and &FE, offers
the BRK to paged ROMs with service call &06, stores the ROM
number of the currently active paged ROM for recovery using
OSBYTE &BA (ROM active at last BRK), restores registers,
selects the current language ROM and then passes the call to the
BRKYV code.

The BRK instruction is normally used on Acorn machines to
represent an error condition and the BRK vector routine is an error
handling routine. In BASIC this error handling routine starts off
by putting its house in order and then prints out an error message.

In addition to the use of BRKs for the generation of errors it is
often useful in machine code programming to include BRKs
(break-points) as a debugging aid.

If a BRK instruction is executed on the Electron, the BRK vector
is entered with the following conditions:

(a) The A, X and Y registers are unchanged from when the BRK
instruction was executed.

(b) An RTI instruction will return execution to the address two
bytes after the BRK instruction (i.e. jumps over the byte following
the BRK). The RTI instruction also restores the status register
value from the stack.

(c) The address of the byte following the BRK instruction is
stored in zero page locations &FD and &FE, This address can
then be used for indexed addressing.

Error handling BRK routines should not return to the code which
executed the BRK but should reset the stack (using a TXS
instruction) and JMP into a suitable reset entry point. In fact the
convention used by Acorn is to follow the BRK instruction by:

117

a single byte error number
an error message
a zero byte to terminate the message

and the BRK routine prints out the error name. The BRK
handling routine should normally be implemented by the current
language. Service paged ROMs should copy a BRK instruction
followed by the error number and message down into RAM when
wishing to generate an error. This has to be done because
otherwise the current language ROM is paged in and the BRK
handling routine tries to print out the error message from the
wrong ROM. The bottom of page 1 is often used and is quite safe
as long as the BRK handling routine resets the stack pointer.

The use of BRKs as break-points in machine code programming
can be of great use to the machine code programmer. The example
below shows how a BRK handling routine may be used to print
out the register values. This routine could be further enhanced by
printing out the value of the byte following the BRK instruction
which would then give the programmer 256 individually
identifiable break-points.

10 REM Primitive BRK handling routine
20 DIM code% &100

30 OSASCI=&FFE3

40 OSRDCH=&FFEO

50 BRKV=&202

60 FOR opt%=0 TO 3 STEP 3

70 P%=code%

[
90 OPT opt%
100 . init LDX #tbrkrt AND &FF ¥ load registers with address

110 LDY #brkrt DIV &100

120 SEI ¥ disable interrupts

130 STX BRKV ¥ set up BRK vector

140 STY BRKV+1

150 CLI ¥ enable interrupts and return
160 RTS

170 .brkrt PHA ¥ save A CX and Y not used)
180 STA byte ¥ store A in workspace

190 LDA #ASC” A” ¥ register id

200 JSR prntrg ¥ print register value

210 STX byte ¥ store X in workspace

220 LDA #ASC” X” ¥ register id

118

230 JSR prntrg ¥ print register value
240 STY byte ¥ store Y in workspace
250 LDA #ASC” Y” ¥ register id

260 JSR prntrg ¥ print register value
270 JSR newln ¥ print carriage return
280 JSR OSRDCH ¥ wait for key press
290 PLA ¥ restore A

300 RTI ¥ return

310 .prntrg JSR OSASCI ¥ print register id
320 LDA #ASC” :”

330 JSR 0SASCI ¥ print colon

340 JSR space ¥ print space

350 LDA #ASC” &”

360 JSR 0SASCI ¥ print ampersand

370 LDA byte ¥ get register value
380 JSR prntbt ¥ print hex number

390 JSR space

400 JSR space ¥ print two spaces

410 RTS

420 .space LDA #820

430 JMP OSASCI ¥ print space

440 .newln LDA #&D

450 JMP OSASCI ¥ print carriage return
460 .prntbt PHA ¥ for comments refer to
470 LSR A ¥ previous example

480 LSR A

490 LSR A

500 LSR A

510 JSR nibble

520 PLA

530 .nibble AND #&0F

540 CMP #&0A

550 BCC number

560 ADC #806

570 . number ADC #&30

580 JMP 0SASCI

590 . byte EQUB 0 ¥ workspace byte

600 . test BRK ¥ cause an error

610 EQUB 0 ¥ RTI returns to next byte
620 DEX ¥ Loop X times

630 BNE test ¥ if X=0 Loop again
640 RTS

650]

660 NEXT

670 CALL init

680 A%=1:X%=8:Y%=&FF:CALL test

119

6.3 The interrupt vectors, IRQ1V &204 and IRQ2V &206

The interrupt system on the Electron is described in chapter 7. The
function of the two interrupt vectors are described there.

6.4 The event vector, EVNTYV &220

This vector is called by the operating system during its interrupt
routine to provide users with an easy to use interrupt, A number of
‘events’ may cause the event handling routine to be called via this
vector but unlike an interrupt the reason for the call is passed to
the routine. The value in the accumulator indicates the type of
event:

event no. cause of event

output buffer becomes empty
input buffer becomes full
character entering input buffer
ADC conversion complete
start of VSYNC

interval timer crossing zero
ESCAPE condition detected
RS423 error detected

Econet event

user event

OO0 IN NPk WN—O

To avoid unnecessary and time consuming calls to the event
vector two OSBYTE calls are used to enable and disable these
event calls being made. These are &D (13) for disabling and &E
(14) for enabling events.

The event handling routine should not enable interrupts and not
last for more than about 2 milliseconds. So that event handling
routines may be daisy chained they should preserve registers and
return using the old vector contents.

120

Output buffer empty 0

This event enters the event handling routine with the buffer
number (see OSBYTE &15/*FX21) in X. It is generated when a
buffer becomes empty (i.e. just after the last character is
removed).

Input buffer full 1

This event enters the event handling routine with the buffer
number (see OSBYTE &15, *FX 21) in X. It is generated when
the operating system fails to enter a character into a buffer
because it is full. Y contains the character value which could not
be inserted.

Character entering input buffer 2

This event is normally generated by a key press and the ASCII
value of the key is placed in Y. It is generated independently of the
input stream selected.

ADC conversion complete 3

When an ADC conversion is completed on a channel this event is
generated. The event handling routine is entered with the channel
number on which the conversion was made in Y. This event is
generated by the Plus 1 expansion software.

Start of vertical sync 4

This event is generated 50 times per second coincident with
vertical sync. One use of this event is to time the change to a
video ULA register so that the change to the screen occurs during
fly back and not while the screen is being refreshed. This avoids
flickering on the screen.

121

Interval timer crossing zero 5

This event uses the interval timer (see OSWORD calls &3 and
&4, in chapter 4). This timer is a 5 byte value incremented 100
times per second. The event is generated when the timer reaches
Zero.

ESCAPE condition detected 6

When the ESCAPE key is pressed or an ESCAPE is received from
the RS423 (if RS423 ESCAPEs are enabled) this event is
generated.

RS423 error event 7

This event should be generated by software servicing expansion
RS423 hardware.

Network error event 8

This event is generated when a network event is detected. If the
net expansion is not present then this could be used for user
events.

User event 9

This event number has been set aside for the user event, This is
most usefully generated from a user interrupt handling routine to
enable other user software to trap an interrupt easily (e.g. an event
generated from an interrupt driven utility in paged ROM). An
event may be generated using OSEVEN, see section 2.10

6.5 User print vector, UPTV &222

A user print routine can be implemented by intercepting this
vector, Whenever a change in printer type is made using OSBYTE
&05 the print vector is called. A user print routine should respond
when printer type 3 is called.

122

The operating system will activate the user printer routine and
there after call it regularly at intervals of 10 milliseconds.
Characters will be placed in the printer buffer and it is up to the
user printer routine to remove characters and send them to the
printer hardware. When the printer routine finds that the buffer is
empty it should then declare itself inactive. The operating system
will then re-activate the routine when characters start entering the
buffer again.

The user printer driver should preserve all registers and return via
the old UPTV value.

On entry:
X contains the buffer number to be used
Y contains the printer number (i.e. the *FX 5 value)

N. B. The routine should only respond if it recognises the printer
number as its own.

The accumulator contains a reason code for the call:
A=0

When the printer driver is active the operating system makes this
call every 10 ins. The printer driver should examine its hardware
and if it is ready for another character should remove a character
from the assigned buffer and send it to the printer. A call to the
REMYV vector should be made to obtain the character (see section
6.9.2) or use OSBYTE &91, When the printer driver has emptied
the printer buffer it should then declare itself inactive by making
an OSBYTE call &7B. This will allow the user to select a new
printer driver using OSBYTE &35, will stop further calls with A=0
and thereafter when the printer buffer is used again will cause a
call with A=1 to be made (see below).

A=1
When a printer driver is inactive this call is made to tell the
routine that the printer buffer is no longer empty and the printer

driver should now become active. If the printer driver is able to
become active it should remove a character from the assigned

123

buffer and if the buffer is still not empty it should return with the
carry flag clear to indicate that it is now active. Having thus

signalled itself as active the printer driver will receive the 10 ms
calls with A=0.

A=2

When the VDU drivers receive a VDU?2 this call is made.
Characters may be printed even when this control character has
not been received if certain *FX3 options are selected.

A=3
This call is made when a VDU3 is received.
A=5

The selection of a new printer driver will cause this call to be
made to the printer vector. Any OSBYTE &S5 call causes this call
to be made.

6.6 Econet vector, NETV &224

The Econet vector allows the Network filing system to intercept a
wide range of operating system functions. This vector is called
with a reason code in the accumulator. The conditions under
which this vector is called are:

A=0,1,2,3 and 5

These codes are used to control the net printer. These calls are
made under identical circumstances as for the user print vector
described above. The net printer is assigned the printer number 4.

A=4
OSWRCH call made. This call is indirected through the net vector
after OSBYTE &DO has been used. The Y register contains the

value originally passed in the accumulator. If, on exit, the carry
flag is set then the output call is not performed.

124

A=6

OSRDCH call made. This call is indirected through the net vector
after OSBYTE &CF has been used. The ASCII value for a key
read should be returned in the accumulator.

A=T7

OSBYTE call made. This indirection is performed after OSBYTE
&CE has been used. The OSBYTE parameters are stored in
locations &EF, &F0 and &F1. If the overflow flag is set on return
from this call then the OSBYTE call is not performed.

A=8

OSWORD call made. Circumstances as for call with A=7.
A=&0D

After completion of a line of input using OSWORD &01 this call

is made. This is implemented so that the Network filing system
doesn’t takeover the RDCH routine in the middle of line input.

6.7 VDU extension vector, VDUV &226

This vector is called when the VDU drivers are presented with an
unknown command or a known command in a non-graphics
MODE.

A VDU 23,n command with a value of n in the range 2 to 31 will
cause a call to be made to this vector with the carry flag set. The
accumulator will contain the value n.

An unrecognised PLOT command or the use of a PLOT command
in a non-graphics MODE will result in this call being made with
the carry flag clear. The accumulator will contain the PLOT
number used.

125

6.8 The keyboard vector, KEYV &228

This vector is used whenever the keyboard is being looked at.
There are four different calls made through this vector on the
Electron.

(a) Test SHIFT and CTRL keys On entry: C=0, V=0

Should exit with the N (negative) flag set if the CTRL key is
pressed and with the V (overflow) flag set if the SHIFT key is
pressed.

(b) Scan keyboard as for OSBYTE &79
On entry: C=1, V=0 other parameters identical to OSBYTE &79

Should exit with the appropriate register values (see OSBYTE
details) but with A=X.

(c) Timer interrupt service with keys active
On entry: C=1, V=1

This entry is actually used for the bulk of all keyboard processing.
After an interrupt the actual keyboard scan is carried out during
this call. If the user’s program does not require use of the
keyboard, intercepting this call to the KEY'V routine and returning
it speeds up the machine enormously. Alternatively, OSBYTE 178
may be used to switch off the interrupt altogether (see Chapter 3).
The keyboard may still be read by direct access to it, see section
14.2.

(d) Timer interrupt service with no keys active

On entry: C=0, V=1

126

6.9 The buffer maintenance vectors

This vector and the two following vectors enable the user to
intercept or use the operating system buffer maintenance routines.

The operating system uses buffers for keyboard input, RS423
input and output, the printer, the sound system (4 buffers) and the
speech system. These buffers contain data which should be
processed by the various routines. Even though the servicing
routine may not be able to respond to the request immediately the
calling routine returns (unless the buffer is full) and is able to get
on with its foreground task. While a buffer contains a queue of
data for processing, the interrupt routine (the background task)
sees to it that the relevant routines service this data.

In this way the user is able to type ahead when the machine is
unable to respond immediately and may initiate sounds which
then continue while he issues further commands.

Buffers operate on a first in first out (FIFO) basis for obvious
reasons.

The Acorn BBC range of machines use the following numbers as
buffer IDs:
title
keyboard buffer
RS423 input buffer
RS423 output buffer
printer buffer
SOUND channel 0 buffer
SOUND channel 1 buffer
SOUND channel 2 buffer
SOUND channel 3 buffer
speech buffer

=
=
=
=3
o
H

O NN WN—O

On the BBC microcomputer and the Electron memory is reserved
for each of these buffers even though the software/hardware using
the buffer may not be present. The buffer maintenance calls still
service these buffers but the contents will not be processed by the
relevant service routine. The expansion software/hardware will
use the appropriate buffer when installed. Thus when the speech
expansion is fitted on a BBC microcomputer the speech buffer is

127

used and on an Electron with a Plus 1 the printer buffer is used.

The following OSBYTE calls may also be of interest when
considering the buffer facilities:

Description OSBYTE number
flush selected buffer class &OF (15)

flush particular buffer &15 (21)

get buffer status &80 (128)

insert value into buffer &8A (138)

get character from buffer &91 (145)
examine buffer status &98 (152)

insert value into i/p buffer &99 (153)
6.9.1 Insert value into buffer vector, INSV &22A

This vector contains the address of a routine which inserts a value
into a selected buffer.

Entry parameters:
A=value to be inserted
X=buffer id

On exit:
A and X are preserved
Y is undefined
C flag is set if insertion failed (i.e. buffer full)
6.9.2 Remove value from buffer vector, REMYV &22C
This vector contains the address of a routine which removes a
value from the selected buffer. This routine may also be used to

examine the next character to be removed from a buffer without
actually removing it.

128

Entry parameters:
X=buffer ID
V=1 (overflow flag set) if only examination requested

On exit:
A contains next byte to be removed (examination call)
(A undefined for removal call)
X is preserved
Y contains the value of the byte removed from the buffer
(Y undefined for examination call)
C flag is set if buffer empty when call made

6.9.3 Count/purge buffer vector, CNPV &22E

This vector contains the address of a routine which may be used to
clear the contents of a buffer or to return information about the
free space or contents of a buffer.

Entry parameters:
X=bufter ID
V=1 (overflow flag set) to purge buffer
V=0 (overflow flag clear) for count operation
C=1 count operation returns amount of free space
C=0 count operation returns length of buffer contents

On exit:
X and Y contain value of count (low byte, high byte)
X and Y are preserved for a purge operation
A is undefined
V and C are preserved

6.9.4 Using the buffer vectors

It should be noted that none of the buffer maintenance routines
check for valid buffer IDs. Using a buffer ID outside the assigned
range will have undefined effects unless specifically intercepted.
None of these vectors are implemented on second processors and

so none of the buffer maintenance calls are sent across the Tube.
Calls using the buffer vectors should always be made by code

129

resident in the I/O processor. It should be noted that considerable
manipulation of the buffers may be carried out using OS routines
such as OSBYTE, OSWRCH, OSWORD etc. which may affect
buffer contents either directly or indirectly. Routines intercepting
these vectors must always be resident on the I/O processor, ideally
in service type paged ROMs.

The program below illustrates how the buffer vectors can be
intercepted to implement a much larger printer buffer. The
standard printer buffer is less than &100 bytes long and since
printers as a rule tend to be quite sluggish peripherals this buffer
rapidly fills up. A buffer is required which will hold a reasonable
sized listing, or a document before filling up and refusing to
accept further input. Having placed the item for printing in an
enlarged buffer the user may return to word processing or
programming leaving the operating system to get on with the
printing.

The routine used below creates a buffer of variable size as defined
by the variable ‘size’. The usefulness of this program is limited.
For the reasons given above it will only work when run on a non-
Tube machine. It will only work as long as its code is not
corrupted; this means that renumbering the program after it has
been run will crash the machine as BASIC tramples all over the
area originally reserved for the assembled code. Similarly another
language ROM is unlikely to allow the routine to run in peace. If
this routine becomes corrupted the machine is totally disabled
because each time a key is pressed this routine is called.
Experimenting with this example will provide valuable experience
in the use of critical operating system routines. One note of
warning however, be sure to save a copy of the program before
trying to run it; it is quite possible for the program to corrupt itself
or even crash the machine irrevocably so that a power on reset is
required (that is, the machine will have to be turned off, then on
again).

This program consists of three main routines which intercept the
buffer maintenance calls for the printer buffer. Calls for any of the
other buffers are carefully handed on to the original routines
pointed to by the contents of the buffer vectors. An area of RAM
is reserved for use as a buffer by using a DIM statement. Four
bytes of zero page memory are used to house two 16 bit pointers.

130

One pointer is used as an index for the insertion of values into the
buffer and the other pointer is used as an index for the removal of
bytes. When a pointer reaches the end of the buffer it is pointed to
the beginning again, In this way the two pointers cycle through
the buffer space. A full buffer is detected by incrementing the
input pointer and comparing it to the output pointer. If the two
pointers are equal the buffer is full, the character cannot be
inserted; the input pointer is restored. If after the removal of a
character the output pointer becomes equal to the input pointer
then the buffer is now empty. By using this system the full size of
the buffer is always available to contain data.

10 REM user printer buffer routine
20 MODE7

30 size=&2000

40 DIM buffer size

50 DIM code% &400

60 INSV™&22A

70 RMV=822C

80 CNPV=&22E

90 ptrblk=&80: !ptrblk=buffer+bufferx&10000
100 ip_ptr=ptrblk:op_ptr=ptrblk+2
110 FOR I=0 TO 3 STEP 3

120 P%=code%

130 [

140 OPT 1

150 . init LDA INSV ¥ make copies of old vector
160 STA retl ¥ contents to pass on calls
170 LDA INSV+1

180 STA retl+1

190 LDA RMV

200 STA ret2

210 LDA RMV+1

220 STA ret2+1

230 LDA CNPV

240 STA ret3

250 LDA CNPV+1

260 STA ret3+1

270 LDX #ins AND &FF ¥ store address of new
280 LDY #ins DIV &100 ¥ routines in vectors
290 SEI ¥ disable interrupts
300 STX INSV

310 STY INSV+1

320 LDX #trem AND &FF

330 LDY #rem DIV &100

340 STX RMV

350 STY RMV+1

360 LDX #tcnp AND &FF

131

370 LDY #cnp DIV &100

380 STX CNPV

390 STY CNPV+1

400 CLI ¥ enable interrupts

410 RTS ¥ finished

420 .wrkbt EQUB 0 ¥ byte of RAM workspace

430 .retl EQUW 0 ¥ reserve space for vectors

440 .ret2 EQUW O

450 .ret3 EQUW O

460 .wrngbf! PLP:PLA:JMP (retl) ¥restore S & A, call 0S
470 ¥New insert char. into buffer routine

480 . ins PHA:PHP ¥ save A and status register
490 CPX #3 ¥ is buffer id 3 ?

500 BNE wrngbf| ¥ if not pass to old routine
510 PLP ¥ not passing on, tidy stack
520 LDA ip_ptr ¥ A=lo byte of input pointer
530 PHA ¥ store on stack

540 LDA ip_ptr+l ¥ A=hi byte of input pointer
550 PHA ¥ store on stack

560 LDY #0 ¥ Y=0 so ip_ptr incremented
570 JSR inc_ptr ¥ by the inc_ptr routine
580 JSR compare ¥ compare the two pointers
590 BEQ insfail ¥ if ptrs equal, buffer full
600 PLA:PLA:PLA ¥ don’ t need ip_ptr copy now
610 STA (ip_ptr),Y ¥ A off stack, insrt in bufr
620 CLC ¥ insertion success, =0
630 RTS ¥ finished

640 . insfail PLA ¥ buffer was full so must
650 STA ip_ptr+1 ¥ restore ip_ptr which was
660 PLA ¥ stored on the stack

670 STA ip_ptr

680 PLA

690 SEC ¥ insertion fails so C=a

700 RTS ¥ finished

710 . wrngbf2 PLP:JMP (ret2) ¥ restore 5, call 0S

720 ¥New remove char. from buffer routine

730 .rem PHP ¥ save status register

740 CPX #3 ¥ is buffer id 3 ?

750 BNE wrngbf2 ¥ if not use 0S routine

760 PLP ¥ restore status register
770 BVS examine ¥ V=1, examine not remove
780 .remsr JSR compare ¥ compare i/p and o/p ptrs
790 BEQ empty ¥ if the same, buffer empty
800 LDY #2 ¥ Y=2 so that increment ptr
810 JSR inc_ptr ¥ routine inc’ s op_ptr

820 LDY #0 ¥ Y=0, for next instruction
830 LDA (op_ptr),Y ¥ fetch character from bufr
840 TAY ¥ return it inY

850 CLC ¥ buffer not empty, C=0

860 RTS ¥ return

132

870 .empty SEC
880 RTS
890 . examine LDA op_ptr
900 PHA

910 LDA op_ptr+1
920 PHA

930 JSR remsr
940 PLA

950 STA op_ptr+1
960 PLA

970 STA op_ptr
980 TYA

990 RTS

1000 . wrngbf3 PLP:JMP (ret3)

¥ buffer empty, C=a

¥ return

¥ examine only, so store a
¥ copy of the oip pointer
¥ on the stack to restore
¥ ptr after fetch

¥ fetch byte from buffer

¥ restore ptr from stack
¥ (if buffer was empty

¥ C=1 from fetch call)

¥ examine requires ch, in A
¥ finished
¥ restore 5, call 0S

1010 ¥ New count/purge buffer routine

1020 . cnp PHP

1030 CPX #3

1040 BNE wrngbf3
1050 PLP

1060 PHP

1070 BVS purge
1080 BCC len
1090 LDA ip_ptr
1100 PHA

1110 LDA ip_ptr+1
1120 PHA

1130 LDX #0

1140 STX wrkbt
1150 LDY #0

1160 . loopl JSR inc_ptr
1170 JSR compare
1180 BEQ finshdl
1190 INX

1200 BNE no_inc
1210 INC wrkbt

1220 .no_inc JMP loopi
1230 . finshd| PLA

1240 STA ip_ptr+1
1250 PLA

1260 STA ip_ptr
1270 LDY wrkbt
1280 PLP

1290 RTS

1300 . len LDA op_ptr
1310 PHA

1320 LDA op_ptr+1
1330 PHA

1340 LDX #0

1350 STX wrkbt
1360 LDY #2

1370 . loop2 JSR compare

¥ save status reg. on stack
¥ is buffer id 3 ?

¥ if not pass to old subr

¥ restore status register

¥ save again

¥ if V=1, purge required

¥ if C=0, amount in buffer
¥ o/w free space request

¥ store ip_ptr on stack

¥ X=0 for use as counter
¥ wrkbt=0 for hi counter
¥ Y=0, so ip_ptr incr’ d
¥ increment ip_ptr

¥ does it equal op_ptr

¥ if so count™free space
¥ X=X+1

¥ if X=0 don’ t inc wrkbt
¥ hi byte of count inc’ d
¥ loop round again

¥ restore ip_ptr off stack

¥ Y=hi byte of free space
¥ restore status register
¥ finished

¥ store op_ptr on stack

=0 for use as counter

rkbt=0 hi byte of count
=2 so op_ptr incremented
r

X
W
Y
are ptrs equal ?

¥
¥
¥
¥

1380 BEQ #nshd2 ¥ if so buffer empty

1390 JSR inc_ptr ¥ increment op_ptr

1400 INX ¥ increment count

1410 BNE no_inc2 ¥ if X=0 then increment hi
1420 INC wrkbt ¥ byte of count

1430 . no_inc2 JMP loop2 ¥ loop round again

1440 . finshd2 PLA ¥ restore op_ptr off stack
1450 STA op_ptr+1

1460 PLA

1470 STA op_ptr

1480 LDY wrkbt ¥ Y=hi byte of length

1490 PLP ¥ restore status register
1500 RTS ¥ finished

1510 .purge LDA #buffer AND &FF¥ to purge buffer reset
1520 STA ip_ptr ¥ oip and i/p ptrs to

1530 STA op_ptr ¥ start of buffer

1540 LDA #buffer DIV &100

1550 STA ip_ptr+1

1560 STA op_ptr+1

1570 PLP ¥ restore status register
1580 RTS ¥ return

1590 ¥ Increment pointer routine. Y=0 op_ptr, Y=2 ip_ptr
1600 . inc_ptr CLC ¥ C=

1610 LDA ptrblk, Y ¥ A=? (ptrblk+Y)

1620 ADC #1 ¥ A=A+1+C

1630 STA ptrblk, Y ¥ ?(ptrblk+Y)=A

1640 LDA ptrblk+1,Y ¥ A=? (ptrblk+1+Y)

1650 ADGC #0 ¥ A=A+0+C

1660 STA ptrblk+1,Y ¥ 7 (ptrblk+1+Y)=A

1670 CMP #(buffer+size) DIV &100 ¥ hi byte end of bufr
1680 BNE home ¥ not end of buffer

1690 LDA ptrblk, Y ¥ A=low byte of pointer
1700 CMP # (buffer+size) AND &FF ¥ end of buffer ?
1710 BNE home

1720 LDA #tbuffer AND &FF ¥ if the end of buffer has
1730 STA ptrblk, Y ¥ been reached set pointer
1740 LDA #tbuffer DIV &100 ¥ to the beginning again
1750 STA ptrblk+1,Y

1760 . home RTS ¥ return

1770 ¥ Compare pointers, if equal Z=1 don’ t care otherwise
1780 . compare LDA ip_ptr+1

1790 CMP op_ptr+1 ¥ compare ptr high bytes
1800 BNE return ¥ if not equal return

1810 LDA ip_ptr

1820 CMP op_ptr ¥ compare pointr low bytes
1830 . return RTS ¥ return

1840]

1850 NEXT

1860 CALL init

134

This program requires the presence of the Plus 1 expansion to be
of any use. It could however be modified to replace any of the
operating system’s buffers. A paged ROM version of this program
can be found in chapter 10.

6.10 Unused vectors, IND1V, IND2V & IND3V &230

These vectors are reserved by Acorn for future expansion.
Software which uses these vectors cannot be guaranteed to be
compatible with any future versions of operating system software
or other Acorn products.

6.11 The default vector table

The BBC microcomputer operating system (version 1.2 onwards)
and the Electron operating system contain a table of default values
in a block of data. This may be accessed using the following
addresses:

&FFB6 - contains the length of the data in bytes

&FFB7 - contains the low byte of the data’s address
&FFBS - contains the high byte of the data’s address

135

7 Interrupts

7.1 An introduction to interrupts

An interrupt is a hardware signal to the microprocessor. It informs
the 6502 that a hardware device, somewhere in the Electron or on
an expansion module, requires immediate attention. When the
microprocessor receives an interrupt, it suspends whatever it was
doing, and executes an interrupt servicing routine. Upon
completion of the servicing routine, the 6502 returns to whatever
it was doing before the interrupt occurred.

A simple analogy of an interrupt is a man working hard at his
desk writing a letter (a foreground task). Suddenly the telephone
rings (an interruption). The man has to stop writing and answer
the telephone (the interrupt service routine). After completion of
the call, he has to put the telephone down, and pick up his writing
exactly where he left off (return from interrupt).

In an Electron, the main objective is to perform foreground tasks
such as running BASIC programs. This is equivalent to writing
the letter in the above example. The computer may however be
concerned with performing lots of other functions in the
background (equivalent to the man answering the telephone). An
Electron which is running the house heating system for example
would not wish to keep on checking that the temperature in every
room is correct — this would take up too much of its processing
time. However, if the temperature gets too high or too low in any
of the rooms it must do something about it very quickly. This is
where interrupts come in. The thermostat could generate an
interrupt, causing the computer to jump quickly to the interrupt
service routine, switch a heater on or off, and return to the main
program.

There are two basic types of interrupts available on the 6502.
These are maskable interrupts (IRQs) and non-maskable interrupts
(NMils). To distinguish between the two types, there are two
separate pins on a 6502. One of these is used to generate IRQs
(maskable) and the other is used to generate NMIs (non-
maskable).

136

7.1.1 Non-Maskable Interrupts

In order to generate a non-maskable interrupt, a piece of hardware
must pull the NMI line low. This forces the 6502 to stop whatever
it was doing, and to start executing the NMI service routine at
&0DO00. NMIs are extremely powerful, because they cannot be
turned off under software control. If the ULA is currently
accessing RAM to produce the video display in modes 0 to 3, it is
also forced to give the memory back to the 6502. NMlIs can
therefore create snow on the screen - the urgency of this signal is
such that even the screen cannot take priority over the interrupting
device.

Only very high priority devices, such as the Floppy Disc or
Econet interfaces, are allowed to generate NMIs. This ensures that
the 6502 is only interrupted in very urgent situations. These high
priority devices are then guaranteed to get immediate attention
from the 6502. To return to the main program from an NMI, an
RTT instruction is executed. It is always necessary to ensure that
all of the 6502 registers are restored to their original state before
returning to the main program. If they are modified, the main
program will suddenly find garbage in its registers in the middle
of some important processing. It is highly probable that a total
system crash would result from this.

7.1.2 Maskable Interrupts

Maskable interrupts are similar to non-maskable interrupts in most
respects. A hardware device can generate a maskable interrupt to
which the 6502 must normally respond. The difference is that the
6502 can choose to ignore all maskable interrupts, if it so desires,
using software control. To disable interrupts (only the maskable
ones though), an SEI (set interrupt disable flag) instruction is
executed. Interrupts can be re-enabled at a later time using the
CLI (clear interrupt disable flag) instruction.

When an interrupt is generated, the processor knows that an
interrupt must have come from either the ULA, or an expansion
module device. Initially though, it can’t tell where the interrupt
has come from. If there was only one device that could have
caused the interrupt, then there would be no problem. However,

137

since there is more than one device causing interrupts in the
Electron, each device must be interrogated. Each device is asked
whether it caused the interrupt. This is normally quite easy,
because all of the standard Electron devices are controlled by the
ULA register at address &FE00. Any other devices connected to
the expansion bus would have to be interrogated separately.

When the interrupt processing routine has discovered the source
of a maskable interrupt, it must decide upon the type of action is
required. This usually involves transferring some data to or from
the cassette interface, incrementing the clock, or flashing the
colours on the screen. The interrupt condition must then be
cleared by writing to &FEO05. This is because most devices
(except the cassette receive and transmit registers) continue to
signal an interrupt until they have been serviced. The completion
of servicing often has to be signalled by the processor writing to a
special register in the device, or, in the case of interrupts from the
ULA, to address &FEOS5.

Interrupts must never affect the interrupted program. All of the
processor registers and flags must therefore be exactly the same
after return from an interrupt routine as they were before the
interrupt occurred. Thus an interrupt routine must either not alter
any registers (which is difficult) or restore all register contents to
their original values before returning.

Interrupt routines are entered with interrupts disabled. An
additional interrupt will therefore not be recognised whilst the first
interrupt routine is still processing. If the interrupt service routine
is going to take an appreciable time, this could create problems.
Other more urgent interrupts may occur, and have to wait until the
previous one has finished processing. The solution is normally to
ensure that interrupt routines are not too long. However, if care is
taken, interrupts can be re-enabled inside a long interrupt routine.
In this case, fixed memory locations must not be used to store
variables within the routine, because these locations will be
overwritten if another interrupt routine uses them (or indeed if the
same interrupt occurs again!). All variables should therefore be
stored on the stack so they can be restored at the end of any
routine.

138

7.2 Interrupts on the Electron

Interrupts are required on the Electron to process all of the
background operating system tasks. These tasks include
incrementing the clock, processing envelopes, or transferring keys
pressed to the input buffer. All of these tasks must continue whilst
the user is typing in, or running his program. Using interrupts
gives the impression that there is more than one processor; one for
the user, one for updating the clock, one for processing envelopes,
etc.

As was mentioned in the introduction, normal (maskable)
interrupts can be disabled. Interrupts should only be disabled for
critical operations. For example, when changing the two bytes of a
vector. If an interrupt occurs in the middle of the change, it might
be indirected to an erroneous address.

When interrupts are disabled, the clock stops, and all other
interrupt activities cease. Interrupts are disabled by the SEI
assembler instruction, and re-enabled with CLI. Most devices that
generate interrupts will continue to signal an interrupt until it is
serviced. The cassette read register is one exception. If it isn’t
serviced within 2ms, data from the cassette will almost certainly
be lost forever.

7.3 Using Non-Maskable Interrupts

Generally, NMIs are reserved for specialised pieces of hardware
which require very fast response from the 6502. NMIs are not
used on a standard system. They are used on DISC and ECONET
systems. An NMI causes a jump to location &0DO0O0 to be made.

7.4 Using Maskable Interrupts

Most of the interrupts on the Electron are maskable. This means
that a machine code program can choose to ignore the interrupts
by disabling them. Since all of the operating system features such
as scanning the keyboard, updating the clock, and running the
cassette system are run on an interrupt basis, interrupts should
never be disabled for more than about 2ms.

139

There are two levels of priority for maskable interrupts, defined
by two indirection vectors in page &02. The priority of an
interrupt indicates its relative importance with respect to other
interrupts. If two devices signal an interrupt simultaneously, the
higher priority interrupt is serviced first.

7.5 Intercepting interrupts

Maskable interrupts can be intercepted on the Electron, and re-
directed to a user specified address. This interception process
consists of changing the value of a vector.

There are two interrupt interception vectors called IRQ1V and
IRQ2V, The first of them is indirected via the vector stored at
&204,5 and the second via &206,7. If either of the vectors stored
in these locations is changed to point at a user supplied routine,
that user routine will be called when there is next an interrupt.

Interrupt Request Vector 1 (IRQ1V)
Indirects through &204,5

This is the highest priority vector through which all maskable
interrupts are indirected, This is nominally reserved for the system
interrupt processing routine, which copes with all of the interrupts
from the ULA. Any interrupt which cannot be dealt with by the
operating system routine (those which are generated by a user
expansion module) are passed on through the second interrupt
vector, IRQ2V. Occasionally, IRQ1V can be intercepted before the
operating system gets hold of it. This will only be necessary for
high priority user interrupts.

Interrupt Request Vector 2 (IRQ2V)
Indirects through &206,7

This vector is normally used to deal with any interrupts which
cannot be dealt with by the operating system. On an unexpanded
Electron, the vector simply points to a couple of lines of code to
restore the A register from &FC, then return from the interrupt
service.

140

Several points should be born in mind when producing interrupt
service routines.

a)

b)

d)

When the vector value is changed to point at the new user
supplied routine, the previous contents of the vector should be
saved somewhere. This will allow the user routine to go on to
the correct address after it has finished, Note that this method
of linking into IRQ1V or IRQ2V allows several independent
routines to link in separately. Each stores the previous
contents of the vector (which point to the next routine).

Disable interrupts using the SEI instruction before changing
the contents of the interrupt vectors, This is merely a
precaution to guard against the possibility of interrupts
occurring between writing the low and high bytes of the
vector If an interrupt were to occur in the middle of this
operation, the indirection vector would be erroneous, and
would probably cause the machine to crash.

The conditions which will be in force when the user routine is
entered are that; the original 6502 status byte and return
address are already stacked on the 6502 stack (ready for an
RTTI instruction to resume normal operation). The X and Y
registers are still in their original states, but haven’t been
saved anywhere. The original A register contents are in
location &FC.

Operating system calls should not normally be made from
within an interrupt service routine, This is because they may
not be re-entrant (eg. if any zero page locations are used).
Most OSBYTEs and some OSWORDs are ‘IRQ-proof’.
Avoid *FX0, OSBYTE &S81 (positive INKEY), fast Tube
BPUT, OSWORD 0, and all VDU OSWORDs except palette
write/read. Such use of OS calls will often cause the
foreground task to be disturbed and crash.

The user’s interrupt routine should be re-entrant. This means
that if there is a possibility of interrupts being re-enabled
during the routine (eg. because it is very long), the code can
be run again without affecting the first foreground interrupt.
This can only be done by pushing the X and Y registers plus

141

the contents of &FC onto the stack, and restoring them after the
call. It is also important to ensure that no fixed memory locations
are used for storing variables, since these will be overwritten by
an interrupting routine.

The following example illustrates most of these points. When run,
it will cause the Electron to make a continuous decreasing pitch
tone.

Several points in the program are worthy of note. The first is that
IRQ1V is used instead of IRQ2V. On an unexpanded Electron, all
interrupts are serviced by IRQ1V, so the OS doesn’t bother to pass
them on to IRQ2V, When the tone is running, switch the listing to
page mode (by pressing CTRL N). Then list the program. The
sound is totally messed up because the OS is writing to the ULA
as well. This illustrates one of the reasons why the official

operating system calls should normally be used —to avoid clashes
like that.

10 REM Interrupt utilisation example
20 REM Must operate in mode 6

30 MODE 6

40 REM Allocate space for program

50 DIM M% 100

60 FOR opt%= 0 TO 3 STEP 3

70 P%=M%

80 [

90 OPT opt%

100 .init SEI ¥ Disable interrupts

110 LDA &204 ¥ Save old IRQ1V vector
120 STA oldv

130 LDA &205

140 STA oldv+1

150 LDA #int MOD 256 ¥ Low byte of address

160 STA 8204 ¥ [RQ1V Low

170 LDA #int DIV 256 ¥ High byte of address

180 STA &205

190 CLI ¥ Turn interrupts on again
%82 RTS ¥ Exit initialisation routine
210 ¥ This is the interrupt service routine

220 .int TXA ¥ Save X register

230 PHA

240 TYA ¥ Save Y register

250 PHA

260 INC &70 ¥ Counter in zero page

270 LDA &70

142

280 STA &FE06 ¥ Load into ULA counter

290 LDA #&32 ¥ Set sound mode

300 STA &FE07 ¥ Write to ULA control register
310 PLA ¥ Restore the registers

320 TAY

330 PLA

340 TAX

ggg JWP (oldv) ¥ Go on to next service routine
ggg .oldv EQUW O ¥ Reserve space for old vector

]
380 NEXT opt%
390 REM Grab the interrupt vector

400 CALL init
410 REM Bleeping should now start
420 END

143

8 Paged ROMs

The Acorn Electron and the BBC micro both support the concept
of a number of ROM based programs being resident in a machine
in the same address space. Each ROM is paged in as required and
then paged out as software in another ROM is required.

Paged ROMs work broadly in one of two ways. They act either as
languages such as BASIC and LISP or they act as utilities such as
filing systems and device drivers. Languages may also include
such things as word processors and CAD graphics packages.

At any one time only one language should be active. Thus most
Electrons will enter BASIC as the default language. The current
language has access or control over the user RAM which it in turn
may allocate to users e.g. for BASIC programs or word processing
text.

While the one language is active any other ROM offering a
service may be called upon as is appropriate, When a request for a
service is generated the operating system interrogates each paged
ROM in turn until the request is acknowledged and acted upon.
Different types of request are indicated to each ROM by the
operating system entering the service entry point of that ROM
with an accumulator value representing the reason. These calls are
called paged ROM service calls. If the service entry point is
entered with A=7 this indicates that someone has asked the
operating system for an OSBYTE call which the operating system
failed to recognise and so is now asking the paged ROMs if they
wish to claim it. If a service call is recognised then the ROM
should act upon it and clear the accumulator before returning
control back to the operating system. If the ROM does not wish to
claim the call it should return control to the operating system with
the accumulator value unchanged.

There are two sets of paged ROMs, service ROMs and language
ROMs. All language ROMs should respond to paged ROM
service calls and so should be service ROMs as well. BASIC is an
exception to this rule and the operating system recognises it by
virtue of the fact that it is a language ROM not offering a service
entry.

144

8.1 Paged ROM header format

In order to enable the operating system to recognise ROM types
and treat them accordingly, a protocol has been drawn up for a
standard ROM format.

ROM offset size description

0 3 language entry (JMP address)

3 3 service entry (JMP address)

6 1 ROM type flag

7 1 copyright string offset pointer
(=10+t+v)

8 1 version number (binary)

9 [t] title string

9+t 1 zero byte

10+t [v] version string

10+t+v 1 zero byte

11+t+v [c] copyright string

11+t+v+c 1 zero byte

16+t+v+c 4 2nd Processor relocation
address

16+t+vtc.... rest of ROM, code and data

Below is a full description of each field of the paged ROM format.

8.2 Language Entry

This should consist of a three byte JMP instruction referring to the
language entry point. This code is called upon when a language is
initialised, When a Tube is active the language may be copied
across to the second processor and then entered, When a language
is copied across the tube it may be relocated to a different address
(see section 8.4 below).

If a ROM is not a language ROM this field should contain zeros.

145

8.3 Service Entry

This should consist of a three byte JMP instruction referring to the
service entry point. This should point to code which responds to
paged ROM service calls acting if and when appropriate.

If a ROM is not a service ROM this field may contain user code.

8.4 ROM Type Byte

The value of this byte gives information to the operating system
about the nature of the ROM. The setting of each bit indicates a
separate thing.

Bit No. Meaning if set

0 processor/language bit

1 ditto

2 ditto

3 ditto

4 Controls Electron firm key expansions

5 Indicates that ROM has a relocation address
6 Indicates that this is a language ROM

7 Indicates that this ROM has a service entry

The first 4 bits indicate the processor type for which the code is
intended, This is of importance to second processors who may get
languages copied across to them. A second processor will look for
the correct value of these bits before attempting to run the
language. The following values have been assigned:

0 6502 BASIC

1 reserved

2 6502 code (not BASIC)
3 68000 code

8 Z80 code

9 16032 (or 32016)

146

If bit 5 is set this indicates that the language code in this ROM has
been assembled at a different address and the ROM should be
copied across the Tube to the second processor to this address.
Service routines are not executed from the Tube copy.

If bit 6 is set this indicates that this is not a language ROM. This
does not mean that the ROM cannot have a language entry point.
If this bit is not set a language will not be considered for
initialisation following a hard reset. However, if the language is
entered via a service call (i.e. *<name>) a soft reset will
reinitialise that language.

8.5 Copyright Offset Pointer

This is an offset value from the beginning of the ROM to the zero
byte preceding the copyright string, It is important that this points
to a zero byte followed by ‘(’, ‘C’ and)’ ASCII character values
because the operating system uses this fact to determine whether a
ROM physically exists in a ROM position.

8.6 Binary Version Number

This eight bit version number of the software contained in a ROM
helps identify software. This byte is not used by any operating
system and need not correspond to the version string.

8.7 Title String

This is a string which is printed out as the operating system enters
the ROM as a language.

147

8.8 Version String (optional)

This should be a string identifying the release number of the
software. The format of this string should be A.BB where A and B
are ASCII characters of decimal digits.

On entry to a language the error pointer is set to this or if there is
no version string the error pointer is directed to the copyright
string.

8.9 Copyright String

This string is essential for the operating system recognition of a
paged ROM (see section 8.5 above). The copyright string should
always be preceded by a zero byte and start with the characters
‘(C)’.

8.10 The Tube Relocation address

This is the address which is used when a ROM is relocated when
copying across the Tube to a second processor.

The language code should be assembled to run at that address but
the service code should be assembled to run from &8000 as it will
be executed within the ROM in the I/O processor.

Executing Software in Paged ROMs

It is possible to execute machine code in a paged ROM in one of
three ways, via the language entry point after a reset, via the
service entry point when the operating system performs a service
call or via an extended vector (which is usually set up by a paged
ROM in response to a service call). The following two chapters
describe how the two types of paged ROMs may be implemented.

148

9 Language ROMs

The term language ROM is something of a misnomer given most
peoples’ idea of what a language is. In the context of paged ROM
software the language is the primary paged ROM. Other paged
ROMs may perform functions transiently but control is then
returned to the current language ROM. The language ROM
receives a large allocation of zero page workspace and is allocated
pages 4 through to 7 as private workspace. In addition to this the
language has control of the user RAM which may or may not be
used as additional workspace. BASIC, for example, uses a
variable portion of the user RAM (from LOMEM to HIMEM) for
the storage of program variables.

Languages are most typically implemented in language ROMs as
would be expected. Thus BASIC, FORTH, LISP and BCPL are all
language ROMs but other software implemented as language
ROMs include word processors and terminal emulators.

No paged ROM software should be executed unless a service call
has been performed first with the possible exception of a language
entered following a reset. The language entered after a hard reset
will be the language ROM identified by the ROM type byte in its
header occupying the highest priority socket. Following a soft
reset the language active when the reset occurred will be
reinitialised. Any language should respond to a *command to
enable its activation when this command is issued. This
mechanism allows the user to switch between languages. This
command would be unrecognised by the operating system which
would then issue an unrecognised * command paged ROM service
call to which the language ROM would respond via its service
entry point.

9.1 Language initialisation

A language ROM will be entered via the language entry point with
an accumulator value of &01 when the language is selected. The
language is entered with a JMP instruction and no return is
expected. The stack pointer should be reinitialised as the stack
state is undefined on entry.

149

The language ROM should also be able to respond to service calls
which may affect it (see below) e.g. be able to respond to the
service call which warns of a changing OSHWM due to font
explosion.

9.2 Firm keys

On the Electron the function keys are implemented as a
combination key press requiring the use of the CAPS LK/FUNC
key with the number keys. In addition to these soft keys there are a
number of non-programmable firm keys which also produce text
strings when pressed. The other character keys (A to Z plus the
comma, full stop and slash keys) pressed in combination with the
CAPS LOCK/FUNC key constitute the firm keys.

A language ROM indicates that it has the facility to expand these
keys by bit 4 of the ROM type byte being set (see section 8.4).

When the operating system detects that a firm key has been
pressed it calls the language via its entry point to request the
expansion of the key. The language should then yield the firm key
string one character at a time in response to further calls.

The two calls made through the language entry point are:

A=2 This call expects the next key in the firm key expansion to be
returned in Y.

A=3, Y=firm key code This call is an initialising call. The
language should return the length of the firm key string in Y.

150

The key values passed to the language with this call are:

&90 to &A9 FUNC+A to FUNC+Z

&AA FUNC+:
&AB FUNC+;
&AC FUNC+,
&AD FUNC+=
&AE FUNC+.
&AF FUNC+/

The operating system inserts these key values into the input buffer
as they are received.

OSBYTE &CC (204) may be used to read or write the OS copy of
its firm key pointer and OSBYTE &CD (205) may be used to read
or write the length of the current firm key string being expanded.

9.3 Language ROM compatibility

It is quite feasible to write a language ROM which will work with
the entire range of Acorn machines supporting paged ROMs in all
their configurations.

The first question that a programmer should consider before
implementing software in a Language type ROM is whether it
actually needs to be a language ROM? Many utilities are only
required transiently and it is better to implement them as service
type ROMs. A routine in a service type ROM can then be used
from the language environment.

As has been mentioned above the language should have a service
entry point so that it may be selected by a *command and be able
to respond to changes in OSHWM. For information about service
type ROMs read the next chapter. It must be remembered however
that a language ROM is copied across to the second processor
when a Tube is active. Therefore, when executing, the language
must not rely on receiving service calls (i.e. the only

151

ones the language code should respond to are those of relevance
when on an I/O processor such as the font explosion warning).
The service code should not share or use the language work space
(&400-&7FF or language zero page) because the service code is
executed in the I/O processor of a Tube machine where the Tube
code has the status of the current ‘language’ and the actual
language is across on the second processor. The language code
should not attempt to perform any manipulation of hardware by
direct poking because this would make it machine dependent. The
programmer may wish to implement hardware dependent routines
in the service section of the ROM. The language code should
communicate with the service code using unknown OSBYTE calls
etc. for this purpose.

It is always easier to write ROM code to create software with
limited compatibility. It is often the case that software written
originally with just one machine or configuration in mind will be
just as useful on another machine. A programmer should always
have confidence in his or her skills such that they consider the
extra effort worthwhile. The discipline in thought required to
adhere to the compatibility protocols represents a professional
attitude. The Electron and other Acorn products were designed by
experts, and while ultimately human and thus fallible, have put
great consideration into making it possible to run software over a
wide a range of machines.

152

10 Service ROMs

Service ROMs are ROMs which contain code which is entered via
the service entry point. Service ROM code will always be
executed in the ROM itself i.e. always in the I/O processor c.f.
language ROMs. The calls made by the operating system to
service ROMs are called paged ROM service calls but will usually
be referred to as just ‘service calls’.

The type of software which might be implemented in service type
ROMs are filing systems, user printer drivers, extension VDU
commands and languages; in fact just about anything. It should be
noted that extreme care should be taken to implement routines in
service ROMs correctly.

To understand how software can be incorporated into a paged
ROM, be interfaced correctly with the operating system and thus
executed at the appropriate time an understanding of paged
ROM service calls is essential.

When a hard reset occurs the operating system makes a note of
where physical ROMs exist in paged ROM sockets. Subsequently
as the machine carries out its various tasks each time something
which may be of significance to software in paged ROMs occurs
these ROMs are given an opportunity to respond.

10.1 Paged ROM service calls

The mechanism by which this is performed is as follows. The
operating system pages in each paged ROM in turn starting with
that ROM in the highest priority socket (paging is performed by
writing a value to a hardware latch, the hardware responds to the
value written to this location and performs the relevant switching
of the chip select signals). If the ROM has a service entry point
this code is executed. Before entering the code the accumulator is
loaded with a reason code, the X register will contain the current
ROM number (a ROM is thus able to tell which socket it is in)
and the Y register will be loaded with any further relevant
information. The paged ROM can return control to the operating
system following an RTS instruction. If the ROM has responded

153

and does not wish any further action to be taken, the accumulator
should be set to zero to claim the call otherwise all registers
should be unchanged.

Below is a list of the reason codes which may be presented to a
paged ROM when a service call is performed.

Reason code &00: No operation

No operation, this service call should be ignored because a higher
priority ROM has already claimed it.

Reason code &01: Absolute filing system space claim

This call is made during a reset. The operating system is
interrogating each ROM to determine how much workspace
memory would be required if that ROM was called. This
workspace is available temporarily while the filing system ROM
is active. Pages &E00 and above are available as a fixed area on
the BBC micro and the Electron. Each paged ROM is entered with
A=&01 , X=ROM number and Y=top of fixed area. For the
highest priority ROM on a BBC micro the Y register will contain
&E. The Y register value should be increased in accordance to the
requirements of the ROM. If the Y register setting is sufficient or
greater than required then the service routine should return the Y
register unaltered.

Before using this workspace, the new filing system ROM should
deselect the old filing system with OSFSC with A=6 (indirected
through (&20E), see section 5.7); and the workspace must be
claimed with OSBYTE &8F, X=&0A (see Reason Code &0A of
this section).

Reason code &02: Relative space claim

This call is made by the operating system during a reset to
determine how much private RAM workspace is required by each
ROM. The position of this private area will start from the top of
the absolute space claimed by the ROMs and on the relative

154

space claimed by higher priority ROMs. This call is made with the
Y register containing the value of the first available page. This
value should be stored in the ROM workspace table at &DFO to
&DFF (for ROMs 0 to 15 respectively) and the Y register returned
increased by the number of pages of private workspace required.

Reason code &03: Auto-boot call

This call is issued during a reset to allow each service ROM to
initialise itself. This enables the highest priority filing system to
set up its vectors automatically rather than require explicit
selection with a *command. To allow lower priority services to be
selected the service ROM should examine the keyboard and
initialise only if either no key is pressed or if its own ROM
specific key is being pressed (e.g. D*BREAK for Acorn DFS). If
the ROM initialises it should attempt to look for a boot file
(typically 'BOOT) to RUN, EXEC or LOAD if the Y register
contains zero. This call is made during a reset after the start-up
messages have been printed.

Reason code &04: Unrecognised *command

When a line of text is offered to the command line interpreter
(CLI) the operating system will pass on any unrecognised
command firstly to each of the paged ROMs and then if still
unrecognised to the currently active filing system. When the
unrecognised command is offered to the paged ROMs this service
call is made.

Entry parameters:
A=&04
X=ROM number
Y contains an offset which if added to the contents of &F2 and
&F3 point to the beginning of the text with the asterisk and
leading spaces stripped off and terminated with a carriage
return

On exit:
Registers restored
A=0 if recognized

155

Filing systems should not intercept filing system commands
(which will be common to all filing systems) using this service
call but may intercept some filing system utilities (e.g. *DISC,
*NET).

Reason code &05: Unknown interrupt

An interrupt which is not recognised by the operating system or
which has been masked out by software will result in this call
being generated. A service ROM which services devices which
might cause interrupts should interrogate such devices to
determine if they have generated this interrupt. If the interrupt has
been recognised and processed the accumulator should be
returned with zero to prevent other ROMs being offered the
interrupt. The routine should terminate with an RTS not an RTI.

Reason code &06: BRK has been executed

If a BRK instruction is encountered this call will be generated
before indirecting through the BRK vector (BRKYV, &202). BRKs
are usually used to indicate that an error condition has occurred,
service ROMs are informed before the current language is able to
respond to the BRK via BRKV.

Entry parameters:
A=&06
X=ROM number
Y is undefined but should be preserved.
&FO0 contains the value of the stack pointer.
&FD and &FE point to the error number which is not
necessarily in the current ROM (OSBYTE &BA yields this
ROM number)

On exit:
All registers should be preserved

156

Reason code &0: Unrecognised OSBYTE call

When an OSBYTE call has been made and is not recognised by
the operating system it is offered to the paged ROMs by this
service call. The contents of the A, X and Y registers at the time of
the OSBYTE call are stored in locations &EF, &F0 and &F1
respectively.

Reason code &08: Unrecognised OSWORD call

This service call is performed in response to the user issuing an
OSWORD call not catered for in the operating system. The
contents of the A, X and Y registers at the time of the call are
stored in locations &EF, &F0 and &F1 respectively. Unrecognised
OSWORD calls with accumulator values greater than or equal to
&EO are offered to the user vector (USERYV, &200). An OSWORD
call with A=7 (equivalent to the SOUND command in BASIC)
given an unrecognised channel will also generate this service call.

Reason code &09: *“HELP command interception

When the *HELP command is passed through the CLI this service
call is generated. The remainder of the command line is pointed to
by the address stored in locations &F2 and &F3 plus an offset in
Y. Each ROM is required to respond to this call. If the remainder
of the command line is blank the ROM should print its name and
version number followed by a list of subheadings to which the
ROM will respond.

e.g. Acorn DFS (version 0.90) outputs:

DFS 0.90
DFS
UTILS

Indicating that this ROM responds to *HELP DFS and *HELP
UTILS

157

If the rest of the command line is not blank the service routine
should compare it against its subheadings and if a match occurs
should output the information under that subheading.

e.g. Acorn DFS responds to *HELP UTILS with:

DFS 0. 90
BUILD <fsp>
DISC
DUMP <fsp>
TYPE <fsp>

If there is more than one item on a line then the ROM should deal
with them individually. All registers should be preserved across
the service routine.

Reason code &0A: Claim absolute workspace

This service call originates from a paged ROM which requires the
use of the absolute workspace. When a filing system ROM is
active and requires use of this workspace it should perform an
OSBYTE call &8E with X=&0A which will generate this service
call. The previous owner of the absolute workspace is then able to
save any valuable contents of this memory in its own private data
area in the relative workspace. The previous owner should also
update a flag within its private data area indicating that it no
longer owns the absolute workspace.

The active filing system is selected independently of the
ownership of the absolute workspace. Thus while a filing system
ROM may have ownership of this workspace the tape filing
system may be selected (the tape FS does not require any absolute
workspace). Problems may arise when the active filing system
paged ROM is called upon but does not have ownership of the
absolute workspace. The active filing system should then issue
this service call to obtain the use of the absolute workspace. This
call should only be made by a filing system starting (see also
Reason code &01).

158

Reason code &0B: NMI released

This service call also originates from paged ROMs and should be
generated by performing an OSBYTE call &8F. This call should
be issued when a ROM no longer requires the NMI. This releases
the zero page locations &A0 to &A7 and the space for the NML
routine in page &D00. On entry the Y register contains the filing
system number of the previous owner (see OSARGS, section 5.2)
and this should be compared to the ROM’s own identity before
reasserting control of the NMI.

Reason code &0C: NMI claim

This call should be generated by a paged ROM using OSBYTE
&8F when it wishes to take possession of the NMI. The service
call should be generated passing &FF in the Y register (i.e.
OSBYTE A=&S8F, X=&0C and Y=&FF). The current owner
should relinquish control returning its filing system number in the
Y register in response to this call.

Reason code &0D: ROM filing system initialise

When the ROM filing system (RFS) is activated in response to a
*ROM command this call will be issued when a file is being
searched for. On entry the Y register contains 15 minus the ROM
number of the next ROM to be scanned. If this ROM number is
less than the current ROM’s ID this call should be ignored.
Otherwise the active ROM number should be stored in &F5 (in
the form 15-ROM number) where the RFS active ROM number is
stored. The current ROM should indicate that the service call has
been claimed by returning zero in the accumulator and should
store a pointer to the data stored within the ROM in locations &F6
and &F7 set aside for use by the RFS.

See chapter 11.

159

Reason code &O0E: ROM filing system get byte

This service call may be issued after a ROM containing RFS data
has been initialised with service call &0D, A ROM should respond
only if it is the active RFS ROM as indicated by the value in
location &F5 (stored in the form 15-ROM number). The fetched
byte should be returned in the Y register.

See chapter 11.

Reason code &0F: Vectors claimed

This service call should be generated by any paged ROM (using
OSBYTE &8F) which has been initialised and then changed any
operating system vector. This call warns paged ROMs that a
vector change has occurred.

Reason code &10: SPOOL/EXEC file closure warning

This service call should be produced by the operating system prior
to closure of any SPOOL or EXEC files when there is a change of
the current filing system. This enables any paged ROM using such
a file to respond to the possibly premature closure of these files.
SPOOL/EXEC file closure may be prevented by returning a zero
in the accumulator otherwise all registers should be preserved.

Reason code & 11 : Font implosion/explosion warning

When OSBYTE &14 is used to change the RAM allocation for
user defined characters this service call is issued. This call is
issued to warn languages that the OSHWM has been changed and
thus the user RAM allocation has changed.

160

Reason code &12: Initialise filing system

This call enables third party software to switch between one or
more filing systems without having to issue *commands. A
program may want to switch between two filing systems in order
to transfer files. A filing system ROM should respond to this call
if the value in the Y register corresponds to its filing system
number. All filing systems should allow files to be open while
inactive and so on receiving this call should restore any such files.

Reason code &13: Character placed in RS423 buffer

This call is made when the Electron OS has placed a character in
the RS423 buffer. Expansion software handling RS423 hardware
should respond to this call. If not claimed the operating system
purges the RS423 buffer.

Reason code &14: Character placed in printer buffer

This call is made when the Electron OS has placed a character in
the printer buffer. Expansion software controlling printer hardware
should respond to this call.

Reason code &15: 100 Hz poll

The Electron operating system will provide a 100 Hz polling call
for the use of paged ROMs. A paged ROM requiring this call
should increment the polling semaphore using OSBYTE &16 (22)
on initialisation and decrement it using OSBYTE &17 (23) when
it no longer requires polling. The operating system will issue this
service call when the semaphore is non-zero. The semaphore itself
may be read using OSBYTE &B9 (185). This facility is
implemented mainly so that hardware devices may be supported
as a background task without being interrupt driven. This would
be suitable for hardware not requiring particularly urgent
servicing.

161

The Y register contains the semaphore value, and should be
decremented by the service routine if it is being polled. If a
service routine finds it has decremented the Y register to zero, it
should claim the call (set A to 0) to improve machine speed (there
are no more ROMs which require polling).

Reason code &16: A BEL request has been made

When the external sound flag (OSBYTE &DB/219) is set this call
is issued by the OS in response to an ASCII BEL code being
output (VDU 7). This is to enable the external sound system to
respond appropriately.

Reason code &17: SOUND buffer purged

This call is made when an external sound system is flagged on the

Electron and an attempt has been made to purge any of the
SOUND buffers.

Reason code &FE: Post initialisation Tube system call

The operating system makes this call during a reset after the
OSHWM has been set. The Tube service ROM responds to this by
exploding the user defined character RAM allocation.

Reason code &FF: Tube system main initialisation

This call is issued only if the Tube hardware has been detected.
This call is made prior to message generation and filing system
initialisation.

The fact that these calls are shared by all the service ROMs can
lead to wide spread consequences if a service call is misused by
one of the ROMs. The programmer should consider the
consequences of his ROM claiming calls (or not claiming calls)
when present.

162

10.2 Service ROM example

The program below is a ROM based version of the enlarged
printer buffer program originally described in chapter 6, and will
only be of use to machines with the Plus 1 expansion. It is short
by paged ROM standards but the assembler program is not a short
example.

This program should only be taken as an illustration of the use of
some of the service calls described above : it does not conform to
paged service ROM standards, as it uses Econet zero page
workspace. This may be of little consequence to the vast majority
of Electrons, but properly implemented service ROMs should
never assume that they won’t be used with any particular system
configuration.

10 REM Assembler program printer buffer ROM
20 DIM code% &400

30 INSV=&22A:n1=8&2A/2
40 RMV=&22C:nR=82C/2
50 CNPV=&22E:nC=8&2E/2
60 ptrblk=890

70 ip_ptr=ptrblk+2

80 op_ptr=ptrblk+4

90 old_bfr=&880

100 begin=old_bfr

110 end=old_bfr+2

120 wrkbt=old_bfr+4

130 size=old_bfr+5

140 vec_cpy=old_bfr+6
150 |ine=&F2

160 OSASCI=&FFE3

170 OSBYTE=&FFF4

180 FOR I=4 TO 7 STEP 3
190 P%~8&8000: 0%=code%

200 [

210 OPT 1

220 . romstrt EQUB 0 ¥ null language entry point
230 EQUB 0

240 EQUB 0

250 JWP service ¥ service entry point

260 EQUB &82 ¥ ROM type byte, service ROM
270 EQUB (copyr—romstrt)¥ offset to copyright string

163

280 EQUB 0 ¥ null byte

290 .title EQUB &A ¥ title string

300 EQUS “BUFFER”

310 EQUB &0 ¥ null byte

320 EQUS “1.00” ¥ version string

330 EQUB &D ¥ carriage return

340 .copyr EQUB 0 ¥ terminator byte

350 EQUS “(C) 1984 Mark Holmes” ¥ copyright message
360 EQUB 0 ¥ terminator byte

370 ¥ End of ROM header, start of code

380 .name EQUS “REFFUB”

¥ command name

390 ¥ Service handling code, A=reason code, X=ROM id & Y=data

400 .service CMP 4

410 BEQ command
420 CMP #9

430 BEQ help
440 CMP #2

450 BEQ wkspclIm
460 CMP #3

470 BNE notboot
480 JMP autorun

490 . notboot RTS

is reason unknown command?
if so goto ‘command’

is reason *HELP

if so goto ‘help’

is reason private wrkspace
if so goto ‘wkspclm’

is reason autoboot call

if NOT goto ‘notboot’

BEQ autorun, out of range
other reason, pass on

A A W < A< HS #<

500 ¥ Unknown command, is it *BUFFER ?
510 ¥ (command line address in &F2,&F3 (line) + offset Y)

520 . command

530 LDX #6

540 . loopl LDA (Line),Y
550 CMP name-1, X
560 BNE notme
570 INY

580 DEX

590 BNE loop1
600 BEQ parmch
610 .notme PLA:TAX:PLA:TAY
620 LDA #4

630 RTS

TYA:PHA:TXA:PHA ¥ save registers
¥ X=length of name

¥ A=next Letter of command

¥ compare with my name

¥ not equal, goto ‘notme’

¥ for next letter of command
¥ for next Letter of name

¥ if X>0 round again

¥ 6 Letters matched, do jump
¥ no match, restore registrs
¥ restore reason code

¥ pass on call

640 ¥ *HELP response (parameters as for call above)

650 . he:p TYA:PHA: TXA:PHA
660 LDX #0

670 . loop2 LDA title, X

680 BNE over1

690 LDA #8&20

700 .overl JSR OSASCI

¥ save registers

¥ use X as index counter

¥ A=next Letter from title §
¥ if AOO jump next instrctn
¥ replace 0 by space char.

¥ write character

710 INX ¥ increment index counter

720 CPX #(copyr—titLe) ¥ end of title ?

730 BNE 1oop2 ¥ if not get another char.
740 PLA:TAX:PLA:TAY ¥ restore registers

750 LDA #9 ¥ restore A

760 RTS ¥ pass on *HELP call

770 ¥ Opportunity to claim private workspace
780 ¥ (Y=1st page free, call inc’ s Y by no. pages claimed)

790 . wkspcimTYA ¥ copy page no. to A

800 STA &DFO, X ¥ table for ROMs’ workspace
810 PHA ¥ save page no. on stack
820 LDA #8&FD

830 LDX #0

840 LDY #&FF ¥ OSBYTE call to read last
850 JSR OSBYTE ¥ BREAK type

860 CPX #0 ¥ X=0 after soft reset

870 BEQ softrst ¥ soft brk, dont reset size
880 LDA #8 ¥ 8 pages for printer buffr
890 STA size ¥ location for buffer size
900 . softrst CLC ¥ clear carry, for add

910 PLA ¥ original Y on stack

920 ADC size ¥ A=A+7size

930 TAY ¥ Y=A

940 LDX &F4 ¥ X=ROMid

950 LDA #2 ¥ restore A (reason code)
960 RTS ¥ pass on workspace cal |
970 ¥ *BUFFER command issued, reset buffer size

980 .parmch LDA (line),Y ¥ get char. from cmnd |ine
990 CMP #&D ¥ car.ret.? end of line ?
1000 BNE ok_init ¥ if not, cont. line input
1010 LDA #1 ¥ no parameters so set
1020 JWP default ¥ default buffer size

1030 . ok_init INY ¥ increment index counter
1040 CMP #&20 ¥ was char. a space?

1050 BEQ parmch ¥ if so get next character
1060 SEC ¥ set carry for subrtact
1070 SBC #&30 ¥ A=A-ASC” 0”

1080 CMP #0 ¥ was character zero

1090 BEQ deinit ¥ if so, switch off

1100 BMI rngerr ¥ char.<0, out of range
1110 CMP #6 ¥ compare char. to 6

1120 BPL rngerr ¥ A>=6, out of range

1130 . default CLC ¥ clear carry for ASL

1140 ASL A:ASL A:ASL A ¥ A=Ax8

1150 STA size ¥ store for buffer size
1160 . prntmes LDA #&87 ¥ Use OSBYTE &87 to read
1170 JSR OSBYTE ¥ current screen MODE

165

1180
1190
1200
1210
1220
1230

1240 .

1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350

1360 .

1370
1380
1390
1400
1410
1420
1430
1440
1450
1460

| oop6

TYA

TAX

LDY #&F8

LDA #&FF

JSR 0SBYTE
TAX

INX

LDA message, X
JSR 0SASCI
CMP #&D

BNE |oop6
PLA:TAX:PLA:TAY
LDA #0

RTS

.message EQUB &A
EQUS “Press BREAK to change buffer size”

.rngerr
loop7

EQUB &D

LDX #&FF

INX

LDA errdata, X
STA &100, X
CMP #&FF

BNE loop7

JMP &100

.errdata EQUB 0

EQUB 0

=Y
=A

se OSBYTE &FF to write
ODE selected on reset

¥ (i.e. MODE preserved)

¥ X=8&FF

¥ increment index counter

¥ A=next byte of message

¥ print character

¥ was it carriage return

¥ if not get next character
§ restore registers
¥
¥

¥ A
¥ X
¥ U
¥M

claim call, 0 reason code
return _
message string

set index counter
increment index counter
A=character from string
copy to bottom of stack
¥ was byte terminator

¥ if not Loop again

¥ goto &100 CBRK)

¥ BRK opcode

¥ error number 0

H < < H<

EQUS “Invalid buffer size” Y¥error message

EQUB 0
EQUB &FF

¥ message string end
¥ terminator byte

1470 ¥ Routine for deselecting buffer ROM routines
1480 . deinit LDA #3

1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590

. loop8

JSR 0SASCI
SEI

LDY #0

STY size
LDA vec_cpy, Y
STA INSV,Y
INY

CPY #6

BNE 1oop8
CLI

JWP prntmes

¥ VDU3, just in case
¥ disable interrupts

¥ size=0

¥ Load old vector contents
¥ store in vector

¥ increment index counter
¥ copied 6 bytes yet

¥ if not Loop again

¥ enable interrupts

¥ print message + return

1600 ¥ Initialise buffer routines automatically
1610 . autorun TYA:PHA:TXA:PHA

1620
1630
1640

LDA size
BEQ no_init
LDA #884

¥ preserve registers
¥ A=buffer size in pages
¥ A=0, don’ t initialise
¥ HIMEM OSBYTE number

1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780
1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2150

JSR OSBYTE
STY end
LDA #&83
JSR OSBYTE
CPY end
BCC room
JMP no_room
. room JSR init
.no_init PLA:TAX:PLA:TAY
LDA #3
RTS
LDA #&A8
LDX #0
LDY #&FF
JSR OSBYTE
STX ptrblk
STY ptrblk+I
LDY #3#nl
LDA #ins AND &FF

SEI
(ptrblk),Y

STA
INY

LDA #ins DIV &100
STA (ptrblk),Y
INY

LDA &F4

STA (ptrblk),Y
INY

LDA #rem AND &FF
STA (ptrblk),Y
INY

LDA #rem DIV &100
STA (ptrblk),Y
INY

LDA &F4

STA (ptrblk),Y
INY

LDA #cnp AND &FF
STA (ptrblk),Y
INY

LDA #cnp DIV &100
STA (ptrblk),Y
INY

LDA &F4

STA (ptrblk),Y
TAX

LDY #0

LDA INSV,Y

STA vec_cpy, Y

INY

CPY #6

.init

. loop3

167

¥ make cal |

¥ store page address

¥ OSHWM OSBYTE number
make cal |

is OSHWM > HIMEM

if so continue

no room so cause error
call initialise routine
restore registers
restore A

return

R S HS < <

OSBYTE to read address of
extended vector table

set up zero page Locations
for indirect indexed adr.
offset into table CINSV)
¥ address of new routine

¥ disable interrupts

¥ copy address to vector

¥ Y=Y+1

¥ high byte of address

¥ copy to extended vector

¥ Y=Y+1

¥ A=ROMid

¥ complete extended vector
¥ Y=Y+1

¥ REMV new routine address
¥ lo byte to extended vector
¥ YY+1

¥ Hi byte of new routine

¥ place in extended vector
¥ Y=Y+|

¥ A=ROMid

¥ complete REMV 3 byte vect.
¥ Y=Y+1

¥ repeat, store address of
¥ new CNPV routine in the

¥ extended vector together
¥ with ROM number.

H H < H< H<

¥ X=ROMid

¥ Y=0

¥ A=old vector contents
¥ copy to workspace

¥ Y=Y+1

¥ copied 6 bytes yet ?

2160 BNE Loop3
2170 LDA &DFO, X
2180 STA begin+1
2190 CLC

2200 ADC size
2210 STA end+1:DEC end+1
2220 LDY #&10
2230 STY begin
2240 LDY #&FF
2250 STY end
2260 JSR rstptrs
2270 LDA #nl=3
2280 STA INSV
2290 LDA #nR*3
2300 STA RMV
2310 LDA #nCx3
2320 STA CNPV
2330 LDA #&FF
2340 STA INSV+1
2350 STA RMV+1
2360 STA CNPV+1
2370 CLI

2380 RTS

2390 . noroom GLI

2430 . loop9 LDA nrmerr, X
2440 STA &100, X
2450 INX

2460 CMP #&FF
2470 BNE loop9
2480 JMP &100
2490 . nrmerr EQUB 0
2500 EQUB 0
2510 EQUS

2520 EQUB 0
2530 EQUB &FF

¥ if not loop again

¥ A=workspace addr. hi byte

¥ store in zero page

¥ clear carry for add

¥ add begin+size

¥ store in zero page, -1

¥ lo byte of begin

¥(room for return vect’ s)

¥ lo byte of end

store in zero page

reset ip+op ptrs

for the extended vector
system the vectors must
now point to &FFO0 +
vector number#*3

H < < HS #<

enable interrupts
return

clear interrupts

fetch next byte of data
store at bottom of stack
increment index counter
reached terminator ?

if not loop again
execute BRK (not in ROM)
BRK instruction opcode
error number 0

S < A S WS < S HS < <

“Not enough room for print buffer, Press BREAK”

¥ string terminator
¥ data end

2540 ¥ Purge buffer by setting i/p + o/p ptrs to buffer start

2550 . rstptrs LDA begin

2560 STA ip_ptr

2570 STA op_ptr

2580 LDA begin+1

2590 STA ip_ptr+1

2600 STA op_ptr+1

2610 RTS

2620

2630 ¥ New insert char.
2640 . ins PHP: PHA

¥ |lo byte bufr start address
¥ store input pointer

¥ store output pointer

¥ hi byte of buffer start

¥ store input pointer

¥ store output pointer

¥ return

.wrngbf| PLA:PLP:JMP (vec_cpy)¥ old INSV routine

into buffer routine
¥ save 5 and A on stack

168

2650
2660
2670
2680
2690
2700
2710
2120
2130
2740
2150
2160
27170
2180
2790
2800
2810
2820
2830
2840
2850
2860

CPX #3

BNE wrngbf|
PLA:PLP:PHA
LDA ip_ptr
PHA

LDA ip_ptr+1
PHA

LDY #0

JSR inc_ptr
JSR compare
BEQ insfail
PLA:PLA:PLA

STA (ip_ptr),Y

CLC
RTS

.insfail PLA

STA ip_ptr+1
PLA

STA ip_ptr
PLA

SEC

RTS

¥
¥

S A S S S HS S < S WS < < HS <

¥
¥

is buffer id 3 ?

if not pass to old routine
not passing on, tidy stack
Alo byte of input pointer
store on stack

Ahi byte of input pointer
store on stack

YO so ip_ptr incremented
by the inc_ptr routine
compare the two pointers
if ptrs equal, buffer full
don’ t need ip_ptr copy now

A off stack, insrt in bufr
insertion success, C=0
finished

buffer was full so must
restore ip_ptr which was
stored on the stack

insertion failes so C=1
finished

2870 .wrngbf2 PLP:JMP (vec_cpy+2) ¥ old REMV routine

2880 ¥ New remove char.

2890
2900
2910
2920
2930
2940
2950
2960
2970
2980
2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120

.rem

. remsr

. empty

PHP

CPX #3

BNE wrngbf?2
PLP

BVS examine
JSR compare
BEQ empty
LDY #2

JSR inc_ptr
LDY #0

LDA (op_ptr),Y
TAY

CLC
RTS
SEC
RTS

.examine LDA opptr

PHA

LDA op_ptr+1
PHA

JSR remsr
PLA

STA op_ptr+1
PLA

169

¥

¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥
¥

from buffer routine

save status register
is buffer id 3 ?
if not use 0S routine
restore status register
V1, examine not remove
compare i/p and o/p ptrs
if the same, buffer empty
Y2 so that increment ptr
routine inc’ s op_ptr
Y0, for next instruction
fetch character from bufr
return it inY
buffer not empty, GC=0
return
buffer
return
examine only, so store a
copy of the o/p pointer
on the stack to restore
ptr after fetch
fetch byte from buffer
restore ptr from stack
(if buffer was empty
C1 from fetch call)

empty, C=1

3130
3140
3150

STA op_ptr
TYA
RTS

¥ examine requires ch, in A
¥ finished

3160 . wrngbf3 PLP:JMP (vec_cpy+4) ¥ old CNPV routine
3170 ¥ New count/purge buffer routine

3180
3190
3200
3210
3220
3230
3240
3250
3260
32170
3280
3290
3300
3310

3320 .

3330
3340
3350
3360
3370
3380
3390
3400
3410
3420
3430
3440
3450

3460 .

3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580
3590
3600

. chp PHP
CPX #3
BNE wrngbf3
PLP
PHP
BVS purge
BCC len
LDA ip_ptr
PHA
LDA ip_ptr+1
PHA
LDX #0
STX wrkbt
LDY #0
loopl JSR inc_ptr
JSR compare
BEQ finshdl
INX
BNE noinc
INC wrkbt
.no_inc JMP loop1
. finshd| PLA
STA ip_ptr+1
PLA
STA ip_ptr
LDY wrkbt
PLP
RTS
len LDA opptr
PHA
LDA op_ptr+1
PHA
LDX #0
STX wrkbt
LDY #2
. loop2 JSR compare
BEQ finshd?2
JSR inc_ptr
INX
BNE no_inc?2
INC wrkbt
.no_inc2 JMP Loop?
. finshd2 PLA

170

¥ save status reg. on stack
¥ is buffer id 3 ?

¥ if not pass to old subr

¥ restore status register

¥ save again

¥ if V=1, purge required

¥ if C=0, amount in buffer
¥ o/w free space request

¥ store ipptr on stack

¥ X=0 for use as counter
¥ wrkbtO for hi counter

¥ Y=0, so ip_ptr incr’ d
¥ increment ipptr

¥ does it equal op_ptr

¥ if so countfree space
¥ XX+1

¥ if X=0 don’ t inc wrkbt
¥ hi byte of count inc’ d
¥ Loop round again

¥ restore ip_ptr off stack

¥ Y=hi byte of free space
¥ restore status register
¥ finished

¥ store op_ptr on stack

¥ X=0 for use as counter
¥ wrkbtO hi byte of count
¥ Y=2 so op_ptr incremented
¥ are ptrs equal ?
¥ if so buffer empty
¥ increment op_ptr
¥ increment count

¥ if X=0 then increment hi
¥ byte of count

¥ loop round again

¥ restore op_ptr off stack

3610 STA op_ptr+1

3620 PLA

3630 STA op_ptr

3640 LDY wrkbt ¥ Yhi byte of length

3650 PLP ¥ restore status register
3660 RTS ¥ finished

3670 .purge JSR rstptrs ¥ reset i/p & o/p pointers
3680 PLP ¥ restore status register
3690 RTS ¥ return

3700 ¥ Increment pointer routine. Y=0 op_ptr, Y=2 ipptr
3710 . inc_ptr CLC ¥ clear carry for add
3720 LDA ip_ptr,Y

3730 ADC #1

3740 STA ip_ptr,Y

3750 LDA ip_ptr+1,Y

3760 ADC #0

3770 STA ip_ptr+1,Y ¥ pointerpointer+1

3780 CMP end+1 ¥ hi byte reached buffr end?
3790 BNE home ¥ if not finish

3800 LDA ip_ptr,Y

3810 CMP end ¥ Lo byte reached end ?
3820 BNE home ¥ if not finish

3830 LDA begin ¥ reached end of buffer
3840 STA ip_ptr,Y ¥ so reset pointer to
3850 LDA begin+1 ¥ start address of buffer
3860 STA ip_ptr+1,Y

3870 . home RTS ¥ return

3880 ¥ Compare pointers, if equal Z=1 don’ t care otherwise
3890 . compare LDA ip_ptr+I

3900 CMP opptr+1 ¥ compare ptr high bytes
3910 BNE return ¥ if not equal return

3920 LDA ipptr

3930 CMP op_ptr ¥ compare pointr low bytes
3940 . return RTS ¥ return

3950]

3960 NEXT

3970 0SCL1” *S.BRM “+STR$"code%+” “+STR$™0%
When this program is run, the ROM image blown into an EPROM

and then inserted in an Electron with a Plus 1 expansion an
enlarged printer buffer of 2k is automatically initialised.

171

Typing ‘*BUFFERn’ with n from 1 to 5 selects a buffer size of
n*2K at the next BREAK. “*BUFFERO’ deselects the enlarged
buffer and re-initialises the normal OS routines. ‘“*BUFFER’ (no
parameters) reselects the default buffer size (2K).

10.3 Extended Vectors

In the example above the operating system buffer maintenance
vectors had to be set to point to routines held within the service
ROM. The operating system supports a system of extended
vectors to enable each of the OS vectors to point to routines held
in paged ROMs.

Each OS vector is identified by a number which may be calculated
by subtracting &200 (the vector space base address) from the
vector address and dividing by two (each vector is two bytes).

The operating system vector should be pointed to a routine at
&FF00 plus the vector number multiplied by 3. This routine will
use a three byte vector stored in the extended vector space (this
address returned by OSBYTE & AS8) with an offset of the buffer
number multiplied by 3. This vector should contain the address of
the routine in the paged ROM followed by its ROM number.

The procedure for a paged ROM to intercept a vector is:

(a) Determine buffer number n

(b) Establish extended vector space, V using OSBYTE &AS8
(c) Store new routine’s address in (V+3*n)

(d) Store ROM number following address

(e) Make copy of OS vectors contents if required for return
(f) Store address (&FF00+3*n) in OS vector (&200+2*n)

It is usually a good idea to disable interrupts during this change-

over so that an interrupt routine is not able to use the vector in the
middle of the change.

172

11 Serially accessed
ROMs and the *ROM
filing system

The Electron has been designed to use software contained in
ROM cartridge packs. The ROM packs which plug into the Plus 1
expansion may contain up to two paged ROMs. The ROM pack
paged ROMs may contain up to about 16K of data and/or
programs which is paged into memory as required. On the BBC
microcomputer the facility also extends to phrase ROMs
(PHROMY) associated with the speech upgrade. When the
programs or data stored in these ROM packs are required it may
be loaded into user RAM in the same way as programs or data
may be loaded off tape or disc.

These ROM packs are intended to provide a reliable and rapidly
accessible medium for the distribution of programs. The market
for such a product being amongst owners of tape based machines
who would otherwise have to rely upon the much slower and
inherently less reliable medium.

The advantage to the software producer is that there is no need for
a special version of the program to be written. A system is
required for the formatting of the program for inclusion in a ROM
pack but no modification of the program itself is required.

The *ROM filing system is a subset of the tape filing system.
Paged ROMs are interrogated to determine whether they contain
information intended for this filing system and are then serially
accessed by the *ROM filing system.

Paged ROMs containing information intended for access via the
*ROM filing system are no different from other paged ROMs.
They are service type ROMs and as such have service entry
points. They are distinguishable as *ROM filing system ROMs
only by their response to paged ROM service calls issued by the
*ROM filing system. When the user selects the *ROM filing

173

system any further requests for files result in the *ROM filing
system section of the operating system scanning the paged ROMs
for these files. A paged ROM containing files intended for the
*ROM filing system should respond to one of two paged ROM
service calls.

The two service calls and the responses expected from ROMs
containing *ROM data are described in detail below. One call
expects the ROM to prepare to yield any data it has and the
second call is used to extract this data, one byte at a time. The data
should be formatted in a similar way to the data stored on tape but
is modified in such a way as to minimise the storage overheads
involved in using such a format. The reason for adopting this
format is to minimise the requirements for extra code in the
operating system while utilising the exhaustive error checking
already in existence. Accompanying these advantages there is a
concurrent reduction in response time performance but this is of
little importance to the users of tape based machines who are still
able to appreciate a substantial improvement on their system’s
existing performance.

11.1 Converting files to *ROM format

In order to produce a ROM containing files which will be
recognised by the *ROM filing system it is necessary to fulfill two
criteria. The first requirement is for some header code which will
recognise the *ROM filing system paged ROM service calls and
respond accordingly. The second requirement is that the data
which makes up the files is formatted in the manner in which the
*ROM filing system expects to find it.

11.2 The header code

As has been stated above a paged ROM which is to be recognised
by the *ROM filing system is a perfectly standard paged ROM
which responds to the appropriate service calls. As a result of this
requirement the first part of each *ROM filing system ROM
consists of a standard format paged ROM header followed by a
small amount of code which responds to the necessary service
calls. By convention *ROM paged ROMs do not respond to the

174

*HELP service call but should these ROMs announce their
presence in this way it would obviously leave less space for
programs and data.

The two paged ROM service calls which should elicit a response
from *ROM paged ROMs are described in the next two
paragraphs.

11.3 Paged ROM service call with A=&D

This call is the *ROM filing system initialise call. When the filing
system is active and wishes to scan the next ROM this call is
issued.

The initialise service call is made with the ROM number of the

next ROM to be scanned in the Y register. Having received this

service call a filing system ROM should only respond if its own
ROM ID (stored in location &F4) is greater than or equal to the
ROM number passed in the Y register.

Having decided to claim this service call the ROM should place
its own ROM number in location &F5 which marks it as the
currently active *ROM filing system ROM. It should then write
the address of the start of the data it contains in locations &F6 and
&F7. This provides a zero page pointer which is used by the filing
system code to extract bytes of data serially from the ROM.

Having performed these two operations the service routine should
return with the accumulator containing zero to indicate that the
call has been claimed, In the case of the paged ROM ID being less
than the ROM number in the Y register the service routine should
exit with &D in the accumulator and the operating system will
then offer the call to the next ROM.

The actual mode in which the *ROM filing system ROM numbers
are represented differs from the way in which the paged ROM IDs
are usually represented (i.e. as stored in &F4, a number 0 to 15).
The filing system ROM numbers are represented by a value which
is 15 minus the physical paged ROM number. One way of
converting numbers from one form to another is, given the
number to be converted in the accumulator,

175

EOR #&FF
AND #&F

which returns the inverted number in the accumulator. These
instructions will always convert a number into the other
representation.

11.4 Paged ROM service call with A=&E

Having obtained a response from a paged ROM to service call &D
the *ROM filing system will use this service call to read bytes
from the data contained in the ROM.

There is a difference in how the service routine can be
implemented on the BBC Microcomputer OS 1.00 and later OS
versions (including the Electron). The actual response required
from the service call is essentially the same however.

When called by OS 1.00 a paged ROM should only respond to
this call if its own ROM 1D is the same as the current *“ROM
filing system ROM number. A comparison of the contents of
memory location &F4 (current paged ROM) should be made with
the inverted contents of &F5 (current *ROM) If these are not the
same the call should be returned unclaimed.

The service routine for OS 1.00 should return the byte of data
pointed to by the pointer in &F6 and &F7 in the Y register (e.g.
LDA (&F6),Y:TAY) and increment this pointer so that it is ready
for the next call.

Later operating system versions contain a routine (OSRDRM)
which given the paged ROM ID of the current *ROM filing
system ROM in the Y register will read a byte from this paged
ROM using the pointer at &F6+&F7. Thus this paged ROM
service call may be serviced by the highest priority *ROM filing
system ROM and the operating system does not have to scan all
the ROMs before getting a response. This leads to a significant
improvement in performance of the *ROM filing system.

176

The service routines are able to determine which operating system
has called them by the value of the Y register passed with this
service call. On operating systems supporting the OSRDRM call
the Y register contains a negative value while other versions of the
operating system make this call with a positive value in the Y
register.

The example given at the end of this section shows how the
service routine at the head of a *ROM filing system ROM detects
the operating system type and responds appropriately. This
example will function on both types of operating system but will
take advantage of OSRDRM routine if available. *ROM filing
system ROMs designed for use on the earlier operating systems
will still work with later versions.

11.5 *ROM data format

The format in which data should be stored in *ROM filing system
ROMs is very similar to the tape data format. The data is divided
into blocks which may be up to 255 bytes long. Each block of data
is preceded by a header which contains information about the
block. Both the block of data itself and the header are followed by
a 16 bit cyclic redundancy check (CRC) value, The filing system
calculates its own values for these CRCs during the loading
process and compares them. If the filing system’s value differs
from the stored value then the filing system flags an error and
rejects the data. (A routine for calculating CRCs is included in the
example at the end of this section.)

177

The *ROM filing system data format is as follows:

offset description length
Block Header
0 &2A, a synchronisation byte 1
1 a file name (1 to 10 chars.) n
1+n &00, a file name terminator 1
2+n load address (low byte first) 4
6+n execution address 4
10+n block number (low byte first) 2
12+n block length (in bytes) 2
14+n block flag (see below) 1
15+n address of next file 2
17+n header CRC(1 to n + 16 incl.) 2
Block Data
19+n data m
19+n+m data block CRC 2
(next blocks)
Z &2B - end of ROM marker 1
The block flag:

bit0 Protection bit (file only allowed to be *RUN)
bit 6 Set if block contains no data
bit 7 Set if this is the last block of the file

For the *ROM filing system the headers for all but the first and
last blocks may be replaced by a single byte header of value &23
(‘#°) with no CRC. This is implemented to reduce the memory
overheads inherent with the tape style data format.

178

By convention the first file in a *ROM filing system ROM should
be a title file. This is a file of zero length which serves to identify
the ROM. The name of this file will appear on catalogue listings
of the ROM. The file name of this title file should consist of a
name and a version number preceded and followed by an asterisk
e.g. “*Mon00*’ or “**GAMES05*’.

11.6 An example of a *ROM filing system ROM

The program below is written in BASIC 2 to assemble a ROM
image which can be ‘blown’ into an EPROM and placed in a BBC
microcomputer paged ROM socket or into a ROM cartridge slot
on the Electron Plus 1 expansion.

Included in the program below is a routine for calculating CRC
values (FNdocrc). The actual CRC values required for this ROM
image are included in the comments so that the actual values may
be inserted directly if someone wanted to reduce the typing load
when trying out this example.

10 REM skskskskskskskokokokokskskskskskokokokokokskskskskskakokokokokskskskokskok

20 REM * *
30 REM %« *ROM filing system ROM example x*
40 REM * *

B0 REM skokskskskskskskskskokokokoskskskskskskskskokokokskskskskokskokokokokokskok

60 REM Assemble CRC calculating routine

70 DIM MC% &100:PROCassm

80 REM Set up constants required for ROM assembly

90 serROM=&F5
100 ROMid=&F4
110 ROMptr=_&F6
120 OSRDRM=&FFB9
130 version=0

140 REM Reserve space for ROM image and prepare to assemble
150 DIM code% &4000
160 FOR =4 TO 7 STEP3

170 P%=&8000:0%=code’%
180 [

179

190 OPT 1

200 .ROMstart EQUB 0 ¥ null language entry
210 EQUB 0
220 EQUB 0
230 JWP service ¥ service entry point
240 EQUB &82 ¥ ROM type, service ROM
250 EQUB copyr—ROMstart ¥ offset to copyrights
260 EQUB version ¥ binary version number
270 EQUS “Serial Rom” ¥ ROM title string
280 EQUB 0
290 EQUS “0” ¥ ROM version string
300 .copyr EQUB 0
310 EQUS “(C) 1982 Acorn Computers” ¥ copyright$
320 EQUB 0 ¥ end of paged ROM header
330 .service CMP #&D ¥ service routine
340 BEQ initsp ¥ initialise call?
350 CMP #&E
360 BEQ rdbyte ¥ read byte call?
370 RTS ¥ not my call
380 ¥ Routine for paged ROM service call &D
390 . initsp PHA ¥ save accumulator
400 JSR invsno ¥ invert *ROM number
410 CMP ROMid ¥ compare with ROM id
420 BCGC exit ¥ if *ROM > me, not my call
430 LDA #data AND 255 ¥ |low byte of data address
440 STA ROMptr ¥ store in pointer location
450 LDA ftdata DIV &100 ¥ high byte of data address
460 STA ROMptr+1 ¥ store in pointer location
470 LDA ROMid ¥ get my paged ROM number
480 JSR invert ¥ invert it
490 STA serROM ¥ make me current *ROM
500 .claim PLA ¥ restore accumulator/stack
510 LDA #0 ¥ service call claimed
520 RTS ¥ finished
530 .exit PLA ¥ call not claimed restore
540 RTS ¥ accumulator and return

550 ¥ Routine for paged ROM service call &E

560 . rdbyte PHA ¥ save accumulator

570 TYA ¥ copy Y to A

580 BMI 0s120 ¥ if Y —ye 0S has OSRDRM
590 ¥ this part for 0S with no OSRDRM

600 JSR invsno ¥ invert *ROM number

610 CMP ROMid ¥ is it my paged ROM no.
620 BNE exit ¥ if not do not claim call
630 LDY #0 ¥ Y=0

180

640 LDA (ROMptr),Y ¥ load A with byte

650 TAY ¥ copy AtoY

660 .claiml INC ROMptr ¥ increment ptr low byte
670 BNE claim ¥ no overflow

680 INC ROMptr+1 ¥ increment ptr high byte
690 JWP claim ¥ claim call and return
700 ¥ this part for 0S with OSRDRM

710 .0s120 JSR invsno ¥ A=current *ROM number
720 ¥ not necessarily me

730 TAY ¥ copy A toY

740 JSR OSRDRM ¥ 0S will select ROM

750 TAY ¥ byte returned in A

760 JWP claiml ¥ incremnt ptr & claim call
770 ¥ Subroutine for inverting *ROM numbers

780 . invsno LDA serROM ¥ A=+ROM number

790 .invert EOR #&FF ¥ invert bits

800 AND #&F ¥ mask out unwanted bits
810 RTS ¥ finished

820 ¥ End of header code/beginning of data

830 .data EQUB &2A ¥ synchronisation byte
840 .hdstrt EQUS “xEXAMPLEx” ¥ xROM title

850 EQUB 0 ¥ name terminator

860 EQUD 0 ¥ Load address0

870 EQUD 0 ¥ execution address=0
880 EQUW O ¥ block number0O

890 EQUW 0 ¥ block length=0

900 EQUB &CO ¥ block flag

910 EQUD eof ¥ pointer to next file
920 .hdcrc EQUW FNdocrc (hdstrt, hdcrc) ¥ CRGC C&246F)

930 . eof

940 ¥ No data block for this file

950 EQUB &2A ¥ synchronisation byte
960 . filel EQUS “TEXT” ¥ file title

970 EQUB 0

980 EQUD 0 ¥ null load address

990 EQUD 0 ¥ null execution address
1000 EQUW O ¥ first block

1010 EQUW dat2-dat| ¥ |ength of data

1020 EQUB &80 ¥ first & last block
1030 EQUD eof1 ¥ pointer to end of file
1040 . hdcrcl EQUW FNdo_crc(filel, hdc¥dIRC (&E893)

1050 . dat| EQUS “REM This is a very short text file.”

181

1060 EQUB &D ¥ The file contents
1070 . dat2 EQUW FNdocrc (dat!, dat2)¥ Block CRC (&655D)
1080 . eof1

1090 EQUB &2B ¥ end of ROM marker
1100 . eof

1110]

1120 NEXT

1130 PRINT” *S.ROM “;"code%;” “;~0%

1140 END

150 REM Define function which calculates CRC

160 REM Requires start and end of block up to 255 bytes
170 DEF FNdocrc (start, end)

180 ?7&82=(start-&8000+code%) AND &FF

190 ?7&83=(start-&8000+code%.) DIV &100

1200 ?8&84=end-start

1210 CALL crc

1220 =(1880) AND &FFFF

1
1
1
1
1

1230 REM Define procedure which assembles CRC routine
1240 DEF PROCassm

1250 startaddr=882

1260 Lo_crc=881

1270 Hi_crc=880

1280 len=884

1290 FOR 1=0 TO 3 STEP3

1300 P%=MC%

1310 [

1320 OPT 1

1330 . crc LDA #0
1340 STA Hi_crc
1350 STA Lo_crc
1360 TAY

1370 . label1 LDA Hi_crc
1380 EOR (startaddr),Y
1390 STA Hi_crc
1400 LDX #8
1410 . label2 LDA Hi_crc
1420 ROL A

1430 BCC label3
1440 LDA Hi_crc
1450 EOR #8
1460 STA Hi_crc
1470 LDA Lo_crc
1480 EOR #&10
1490 STA Lo_crc
1500 . label3 ROL Lo_crc
1510 ROL Hi_crc
1520 DEX

1530 BNE label2

182

1540 INY

1550 GPY len
1560 BNE label1
1570 RTS

1580]

1590 NEXT

1600 CALL crc:ENDPROC

When the resultant ROM is installed in the machine the following
dialogue may ensue.

>xROM
>*CAT

EXAMPLE
TEXT

>¥EXEC TEXT
>REM This is a very short text file

183

12 Memory allocation
and usage

Two fundamental points have been stressed in various parts of this
book.

The first is that programs should only use memory allocated for
their general use or memory designated for specific functions
when requiring or performing that function.

The second point is that software should not make assumptions
about its environment. The amount of user RAM available
depends on the screen MODE selected and the amount of
workspace RAM claimed by paged ROMs.

The Electron microcomputer’s memory map:

&FFFF
&FF00
&FEFF
&FE00
&FDFF
&FDO00
&FCFF
&FC00
%32%185 Operating system ROM
&BFFF
&8000
&TFFF
HIMEM

Operating system ROM

Memory mapped I/0O — “SHEILA”

Memory mapped 1/0 — “JIM”

Memory mapped 1/O — “FRED”

Paged ROM space

Screen memory (variable)

Space for user programs (variable)

OSHWM
&EO00
&DFF | NMI routine and paged ROM information
&D00 | (WARNING, not for user programs)
&CFF
&A00

Paged ROM workspace/exploded font (variable)

Operating system private workspace

184

g&?gg Sound system workspace/OS workspace
icczll(:)g Current language private workspace
&3FF Operating system private workspace
&236 | Fperating system p p
g%?)(s) OS call indirection vectors
&1FF
&100 6502 stack

&FF Zero page

&00 pag

Zero page

The zero page on the 6502 is very valuable, as many instructions
and addressing modes need to work through page zero. For this
reason, areas of zero page are allocated to each of the main
memory contenders.

Zero page is allocated thus:

&00-&S8F are allocated to the current language. BASIC reserves
locations &70-&8F for the user.

&90-&9F are allocated to the Econet system.

&A0-&AT are allocated to the current NMI owner (see section in
paged ROMs number 15.3.2). This area is not used on basic
cassette machines. It is used extensively by the disc and network
filing systems.

&A8-&AF are allocated for use by operating system commands
during execution.

&BO0-&BF are allocated as filing system scratch space. but are not
exclusively used by the currently active filing system.

&CO0-&CF are allocated to the currently active filing system. This
area is nominally private, and will not be altered unless the filing
system is changed, or the absolute workspace is claimed (see
paged ROMs chapter 15).

185

&DO0-&E1 are allocated to the VDU driver.
&DO is the VDU status as returned by OSBYTE &75.

&D1 contains a byte mask for the current graphics point. This
byte indicates which bits in the screen memory byte correspond to
the point. For example, for the rightmost pixel in a two colour
mode, this byte would contain &01, and for a sixteen colour
mode, &55.

&D2 and &D3 are the text colour bytes to be ORed and EORed
into memory, respectively. When writing text to the screen in
modes 0 to 6, the pattern byte to be written to the screen is first
ORed with the contents of &D2, and then EORed with the
contents of &D3. The pattern byte contains a bit set where the
pixel is to be the foreground colour, and a bit clear where the pixel
is to be the background colour. In four and sixteen colour modes,
the pattern byte is expanded before using these locations to take
account of the extra bits per pixel.

&D4 and &DS5 are similar in function to locations &D2 and &D3,
only they are the graphics colour bytes. By performing an OR
operation, and then an FOR operation, all the GCOL plotting
operations can be taken into account by changing the data in these
two bytes. The graphics mask at location &D1 is used to mask out
the bits in these bytes when they are used.

&D6 and &D7 contain the address of the top line of the current
graphics character cell (eight bytes long). (See location &31A)

&D8 and &D9 contain the address of the top scan line of the
current text character.

&DA-F are used as temporary workspace.
&E0-&E1 unused on the Electron
&E?2 is the cassette filing system status byte:

bit 0 Set if the input file is open. bit 1 Set if the output file is
open. bit 2 Not used.

186

bit 3 Set if currently CATaloguing.
bit 4 Not used.

bit 5 Not used.

bit 6 Set if at end of file.

bit 7 Set if end of file warning given.

&E3 is the cassette filing system options byte, as set by the *OPT
command. The byte is organised as two nibbles, the top four bits
are used for load and save operations, and the bottom four bits are
used for sequential access. The format of each nibble is:

Bits 0 and 1, the least significant bits of the nibble are used to
control what happens after a tape error. When accessing the EXEC
file the 'retry' and 'ignore error' options are ignored, so the EXEC
is always aborted. These bits have the following meanings (note
the higher bit is mentioned first:

00 Ignore errors
10 Retry after an error
01 Abort after an error

Bits 2 and 3, the most significant bits of the nibble are used to
control the printing of messages during access. These bits have the
following meanings (note the format given is high bit, low bit):

00 No messages
10 Short messages
11 Long messages

&E4-&E6 are used as general operating system workspace.

&E7 is the auto repeat countdown timer. This is decremented at
100Hz to zero, at which point the key is re-entered into the buffer.
&ES8 and &E9 are a pointer to the input buffer into which data is
entered by OSWORD &01.

&EA is the RS423 timeout counter, which can take the following
values:
=1 The cassette filing system is using 6850 =0 The
RS423 system holds 6850, but has timed out.
<0 The RS423 system holds 6850, but has not yet timed
out.

187

&EB is the 'cassette critical' flag. Bit 7 is set if the cassette filing
system is called whilst doing a BGET for EXEC or a BPUT for
SPOOL. It is used to ensure that no messages are printed during
the access.

&EC contains the internal key number of the most recently
pressed key, or zero if none is currently pressed. See the table of
internal key numbers in Appendix D.

&ED contains the internal key number of the first key pressed of
those still pressed, or zero if one or no keys are pressed. This is
used to implement two key rollover.

&EE - 1MHz bus page number

&EF contains the accumulator value for the most recent
OSBYTE/OSWORD.

&FO0 contains the X register value for the most recent
OSBYTE/OSWORD, or the stack pointer value at the last BRK
instruction.

&F1 contains the Y register value for the most recent
OSBYTE/OSWORD.

&F2 and &F3 are used as a text pointer for processing operating
system commands and filenames.

&F4 - This location contains the ROM number of the currently
active paged ROM. (The operating system maintains this as a
RAM copy of the paged ROM selection latch.)

&F5 to &F7 - These locations are used for the *ROM filing
system (see chapter 11).

&F8 and &F9 are not used.

&FA to &FC - These locations are available for use by routines
which have set the interrupt flag. The operating system interrupt
routines use these locations but do not expect the contents to
remain unchanged between calls. &FC is used as an interrupt
accumulator save register. This location is only used temporarily

188

at the very beginning of an interrupt routine while it is setting up
the stack.

&FD and &FE - These locations are written to after a BRK
instruction has been executed. They contain the address of the
next byte of memory following the BRK instruction. Thus these
locations normally point to an error message (see section 6.2).
Upon selection of a language these locations are set to point at the
version string of the newly selected language ROM.

&FF - This location contains the ESCAPE flag. Bit 7 of this
location is set to mark an ESCAPE condition. This flag is cleared
when an ESCAPE is serviced.

Page 1

This page is used for the 6502 stack. The stack grows from the
last byte in this page (& 1FF) down towards the bottom of the
page. Paged ROM service routines may use the bottom of this
page to store error messages.

Page 2

Page two is the main work zone of the operating system. It
contains all of the main vectors and user accessible operating
system variables. Page two is laid out thus:

&200-&235 are the vectors. See the vectors chapter 6 and list in
Appendix D.

&236-&28F are the main system variables, accessed by OSBYTE
calls &A6 through &FF.

&290-&291 are unused on the Electron
&292-&296 and &297-&29B are the two stored values of the
system clock, as read by ‘TIME’. Two values are kept, so one can

be read while the other is being updated by the interrupt routines.

&29C-&2A0 are the countdown interval timer value. This is used

189

to cause an event after a certain time has elapsed. See the chapters
on events, number 12, and on OSWORD, number 9, for more
details of using the countdown timer.

&2A1-&2B0 form the paged ROM type table, as pointed to by
value read by OSBYTEs &AA and &AB. Each byte contains the
ROM type of the corresponding ROM, or zero if there is no ROM
in that socket. For details of ROM types, see the Paged ROMs
chapter number 15.

&2B1 and &2B2 are the INKEY countdown timer. This is used to
time out an INKEY call.

&2B6-&2B9 are the low bytes of the most recent analogue
converter values. These are in the order channel 1, 2, 3 and 4.

&2BA-&2BD are the high bytes of the most recent analogue
converter values.

&2BE is the analogue system flag. This contains the number of
the last channel to finish conversion, or zero if no channels have
finished since this value was last read. This byte is read by
OSBYTE &80.

&2BF-&2C8 are the event enable flags. If zero, the event is
disabled, otherwise enabled. See the chapter on events, number
12.

&2C9 is the soft key expansion pointer. The next byte to be
expanded in a soft key is to be found at &B01+?&2C9

&2CA is the first auto repeat count. This is the next value to go
into the auto repeat counter at &E7. This location can be
considered a one byte queue for the counter.

&2CB-&2CD are used as workspace for two key rollover
processing.

&2CE is the sound semaphore. If it is zero it means that an

envelope interrupt is being processed, so another must be ignored.
If it is &FF it means that the envelope software is free.

190

&2CF-&2D7 are buffer busy flags. Bit 7 of these bytes is set if the
matching buffer is empty. For a list of buffer numbers see
OSBYTE &15 (21).

&2D8-&2E0 are the buffer start indices. They contain the offset of
the next byte to be removed from each buffer. The offsets are
adjusted so that the highest location in the buffer has the offset
&FF for all buffers irrespective of size.

&2E1-&2E9 are the buffer end indices. They contain the offset of
the last byte to be entered into each buffer. If this value is the
same as the start offset, the buffer is empty. If this value is less
than the start offset, it means the buffer has wrapped around to the
start.

&2EA and &2EB contain the block size of currently resident
block of the open cassette input file.

&2EC contains the block flag of the currently resident block of
the open cassette input file. (see section 16.10 for the cassette
format and details of the flag byte).

&2ED contains the last character in currently resident block of the
open cassette input file.

&2EE-&2FF are used as an area to build OSFILE control blocks
for *)LOAD and *SAVE

Page 3

Page three is used for the VDU workspace, the cassette system
workspace and the keyboard buffer.

Locations &300-&37F provide the VDU workspace. In examining
these locations, it should be noted that there are two forms of
graphic co-ordinate, internal and external. The external graphics
co-ordinate is exactly that used by the PLOT command in BASIC.
The internal graphics co-ordinate is derived from the external by
taking into account the graphics origin and scaling so that it is
measured in pixels horizontally and vertically. Graphics co-
ordinates are stored in four bytes, with the low byte of the X co-
ordinate first.

191

VDU workspace is laid out thus:

&300-&307 contain the current graphics window in internal co-
ordinates.

&300,1 Left hand column in pixels.
&302,3 Bottom row in pixels.
&304,5 Right hand column in pixels.
&306,7 Top row in pixels.

&308-&30B contain the current text window in absolute
characters offset from the top left of the screen.

&308 Left hand column.
&309 Bottom row.

&30A Right hand column.
&30B Top row.

&30C-&30F contain the current graphics origin in external co-
ordinates.

&310-&313 contain the current graphics cursor in external co-
ordinates. This is used for calculating relative PLOTs.

&314-&317 contain the old graphics cursor in internal co-
ordinates. This is used for the generation of triangles.

&318 contains the current text cursor X co-ordinate.
&319 contains the current text cursor Y co-ordinate.

&31A contains the line within current graphics character of the
current graphics point. Because the BBC microcomputer has a
non linear address space for the graphics screen, it is simpler to
calculate the address of the byte at the top of the character cell that
contains a point, and then calculate the row within the character.
Thus the location of the byte containing the current graphics point
is 7&D6 + 256*?&D7 + &3 1A.

&31B-&31E is used either as graphics workspace or as the first
part of the VDU queue.

192

&31F-&323 is the VDU queue. The queue is organised so that
whatever the number of characters queued, the last byte queued is
always at &323.

&324-&327 contain the current graphics cursor in internal co-
ordinates.

&328-&349 is used as general graphics co-ordinate workspace.
&34A and &34B contain the text cursor position as an address.

&34C and &34D contain the text window width in bytes, ie. the
number of characters wide*the number of horizontal bytes per
character*8 for graphics modes. This is used to control the
number of bytes which are soft scrolled for each line of scrolling.

&34E contains the high byte of the address of the bottom of
screen memory.

&34F contains the number of bytes of memory taken up by a
single character. This is 8 for 2 colour modes, 16 for 4 colour
modes, 32 for 16 colour modes.

&350 and &351 contain the address of the top left hand corner of
the displayed screen.

&352 and &353 contain the number of bytes taken per character
row of the screen. This is 320 for 8K and 10K modes and 640 for
16K and 20K modes.

&354 contains the high byte of the size of the screen memory in
bytes.

&355 contains the current screen mode.

&356 contains the memory map type. The contents indicate the
size of the screen memory. It has the value 0 for 20K modes, 1 for
the 16K mode, 2 for 10K modes, and 3 for the 8K mode.

&357-&35A contain the current colours. These are stored as the
value that would be stored in a byte in screen memory to

193

completely colour that byte to the colour required. The locations
are:

&357 Foreground text colour.
&358 Background text colour.
&359 Foreground graphics colour.
&35A Background graphics colour.

&35B and &35C contain the graphics plot mode for the
foreground and background plotting respectively. These are set by
the GCOL first parameter.

&35D and &35E are used as a general jump vector. The vector is
used for decoding VDU control codes and PLOT numbers.

&35F contains a record of the last setting of the cursor start
register.

&360 contains the number of logical colours in the current mode
minus one.

&361 contains the number of pixels per byte minus one for the
current mode, or zero if text only mode.

&362 and &363 contain the left and right colour masks,
respectively. These bytes contain a bit set in each bit position
corresponding to the leftmost or rightmost pixel. For example in a
two colour mode, these bytes would contain &80 and &01, and in
a sixteen colour mode &AA and &55.

&364 and &365 contain the X and Y co-ordinates of the text input
cursor. The input cursor is the position from which characters are
COPYed.

&366 not used on the Electron; normally set to 127.
&367 contains the font flag. This byte marks whether or not
a particular font zone is being taken from ROM or RAM. If
a bit is set it indicates that that zone is in RAM. See
OSBYTE &14 (20) for more information on fonts.

bit 7 characters 32-63 (&20-&3F)
194

bit 6 characters 64-95 (&40-&5F)
bit 5 characters 96-127 (&60-&7F)
bit 4 characters 128-159 (&80-&9F)
bit 3 characters 160-191 (&A0-&BF)
bit 2 characters 192-223 (&C0-&DF)
bit 1 characters 224-255 (&EO0-&FF)

&368-&36E are the font location bytes. These contain the upper
bytes of the addresses of the fonts for each of the 7 zones
mentioned above.

&36F-&37E form the colour palette. One byte is used for each
logical colour. That byte contains the physical colour
corresponding to the logical colour. The bytes are stored in
numerical order of logical colour.

The area of page three from &380 to &3DF is used by the cassette
filing system as working storage.

&380-&39C is used to store the header block for the BPUT file.
See the section on the cassette filing system, number 16.10 for
details of header block layout.

&39D contains the offset of the next byte to be output into the
BPUT buffer.

&39E contains the offset of the next byte to be read from the
BGET buffer.

&39F-&3 A6 are not used by the Electron OS.
&3A7-&3BI1 contain the filename of the file being BGETed.

&3B2-&3D0 contains the block header of the most recent block
read:
&3B2-&3BD Filename terminated by zero.
&3BE-&3C1 Load address of the file.
&3C2-&3C5 Execution address of the file.
&3C6-&3C7 Block number of the block.
&3C8-&3C9 Length of the block.
&3CA Block flag byte.
&3CB-&3CE Four spare bytes.

195

&3CF-&3D0 Checksum bytes.
&3D1 contains the sequential block gap as set by *OPT 3,n.

&3D2-&3DC contain the filename of the file being searched for.
Terminated by zero.

&3DD-&3DE contain the number of the next block expected for
BGET.

&3DF contains a copy of the block flags of the last block read.
This is used to control newlines whilst printing file information
during file searches.

&3E0-&3FF are used as the keyboard input buffer.

It should be noted that although OSBYTE &AO is officially for
reading VDU variables, it may be used to read any of the values in
page three.

Pages 4,5, 6 and 7

These four pages are allocated for the exclusive use of the
currently selected language. Should a user be executing code
independently of a language this memory may be used by that
code. The user’s code should not re-enter a language without
ensuring that the language has had an opportunity to reset its
workspace.

Page 8
This page is allocated for the sound system and for buffers:
&800 to &83F general sound workspace, used as follows:

&800-&2803 not used

&804-&807 sound queue occupancy flag
&808-&80B current amplitude

&80C-&80F number of amplitude phases processed
&810-&813 absolute pitch value

&814-&817 number of pitch phases processed
&818-&81B number of steps to process

196

&81C-&81F duration
&820-&823 interval multiplier
&824-&827 envelope number/auto repeat parameter
&828-&82B length of remaining note interval
&82C-&82F sync hold parameter
&830-&3833 current pitch setting
&834-&837 pitch deviation
&838 number of channels required for sync
&839 current amplitude step — not used on
Electron
&83A target amplitude — not used on Electron
&83B number of channels on hold for sync
&83C-&83F workspace
&83D-&83E frequency parameter as sent to sound
generator

&83F not used

&840 to &84F sound channel 0 buffer

&850 to &85F sound channel 1 buffer

&860 to &86F sound channel 2 buffer

&870 to &87F sound channel 3 buffer

&880 to &8BF printer buffer

&8C0 to &8FF envelope storage area (env. no’s 1-4)

On the Electron this area is available for the implementation of
external sound and the printer buffer area is used by the Plus 1

expansion software. Locations in this page should only be used by
system software performing the appropriate task e.g. user printer
routines, sound expansion routines.

Page 9

This page can be used in one of three basic ways:

a) As an extended envelope storage area:

&900-&9BF
&9CO0-&9FF

Envelope storage area, envelopes 5-16.
Speech buffer.

b) Asan RS423 output buffer:

&900-&9BF RS423 output buffer.

197

&9CO0-&9FF Speech buffer.
c) As acassette output buffer:
&900-&9FF Cassette output buffer.

Uses (b) and (c) are largely compatible apart from speech, as the
6850 can only be used by either the cassette or the RS423 system
at any one time, and the cassette system waits until the RS423
output has timed out before taking control of the 6850. At time
out, the RS423 output buffer is usually clear.

Page &A

This page is used for either the cassette input buffer, or for the
RS423 input buffer.

Page &B

This page is the soft key buffer. The first seventeen bytes define
the start and end locations of the sixteen soft keys. The rest of the
page is allocated to the keys themselves. The start offset of soft
key string n is held at location &B00-+n. The address of the first
character of the string is &B0I1+?(&B00+n). The address of the
last character of the string is &B00+?(&B01+n).

Page &C

This page contains the font for characters 224—255. Each
character requires eight sequential bytes. The first byte
corresponds to the top line of the character, the second for the line
below, etc.

Page &D

This page is allocated in the following way:
&DO00 to &D5SF NMI routine

&D60 to &DYE reserved

&DOIF to &DEF paged ROM extended vectors
&DFO0 to &DFF paged ROM workspace table

198

The NMI routine is the code which is executed when a non-
maskable interrupt is generated. This is entered at &D00 and
should service the interrupt.

The paged ROM extended vectors provide an entry into paged
ROM code regardless of which ROM is active as the call is made.
See section 10.3 for a description of extended vectors.

The paged ROM workspace table contains a single byte page
address indicating the start of each ROM’s private workspace (see
section 10.3 for further details).

WARNING

Many games programmers have used page &D. These games will
not work when a Plus 1 is fitted because it uses this space. DO
NOT continually disconnect and re-connect the Plus 1 because
this will damage both the Plus 1 and the Electron. Refer to section
15.7 for a method which will disable the Plus 1.

Page &E00 to the OSHWM

This memory is available for paged ROM workspace and for
character definitions as part of a user defined font.

Each ROM is interrogated during a reset to determine its
workspace requirements (see paged ROM service calls, section
10.1). This workspace extends from &E00 in page sized units
until all the paged ROMs have made their claims.

The Acorn BBC range of machines allow the user to define the
character patterns that are printed on the screen. The number of
user defined characters which may be used depends on the
explosion state of the font (see OSBYTE &14). On the Electron
and BBC microcomputer the memory required when exploding
the font is allocated above the paged ROM workspace.

The user (or language) memory starts from the top of this

workspace memory and the start address of this memory is called
the operating system high water mark (OSHWM).

199

OSHWM to HIMEM

This is where a user might expect his program to live.
Theoretically this memory has no fixed start address and no fixed
end address which taken to extremes means that it may
theoretically have no size. In practice, on the BBC microcomputer
and the Electron, the region from &2800 to &3000 can be
assumed to be within the OSHWM/HIMEM bounds. The
language environment may also place constraints on the amount
of RAM available for a user’s program and/or data.

No RAM should be accessed above HIMEM. This includes the
screen memory and, on a second processor, the memory in which
the language is stored.

Screen memory

This memory is not guaranteed to exist at any given place on
Acorn BBC range machines, For example when a Tube is active a
program may find itself on the second processor and thus any
attempts to access what was the screen memory will have no
effects on the screen image.

For more information about programming practices read chapter 1
on the Acorn design philosophy and programming rules.

Paged ROM memory: &8000 to &BFFF

This region in the memory map of non-Tube machines or I/O
processors contains the currently ‘paged’ paged ROM. When the
current filing system is in paged ROM and a filing system
function used then the appropriate paged ROM is selected.

Operating system ROM memory: &C000 to &FFFF
The contents of the OS ROM are undefined except for the OS call

entry points described in chapter 2 and the default vector table
described in section 6.11.

200

Memory mapped 1/0: &FC00 to &FEFF

Hardware devices are addressed via these memory locations. Once
again extreme care should be taken to address them in the correct
manner using OSBYTEs &92 to &97 for reading and writing
these addresses. See chapter 14 for more information about the
memory mapped I/O.

(The OS ROM contains a list of credits in this region made
inaccessible by the switch to memory mapped 1/0.)

The following list shows how Page &FC addresses are allocated
for external hardware devices.

&FC18 to &FCI1F Reserved for use by Acorn
&FC28 to &FC2F Reserved for Econet use
&FC30 to &FC3F Reserved for use by Acorn
&FC60 to &FC6F ACIA

&FC70 Analogue to digital converter

&FC71 Parallel printer port

&FC72 Status register

&FC73 ROM scrolling register

&FC78 to &FCTF Laser Disc

&FC80 to &FC8F Test Hardware

&FC90 to &FCOF Sound/Speech

&FCBO0 to &FCBF VIA

&FCCO to &FCCF Floppy Disc Controller
&FCEO to &FCEF Tube

&FCFF Paged RAM register

201

13 An Introduction to
Hardware

BASIC is a very useful programming tool. It allows users to take
advantage of the Electron’s facilities without bothering about the
details of how it is performed in hardware. Commands are
provided to deal with output to the screen, input from the
keyboard and cassette, plus all of the other hardware. The same
applies to machine code to a large extent through the use of
OSBYTES, OSWORDS and other operating system commands.
However, a much more detailed understanding of the hardware
and how it can be controlled from machine code programs is very
useful and allows certain features to be implemented which would
have been impossible in BASIC.

The hardware section of this book satisfies the requirements of
two types of people. Those who wish to use the hardware features
already present on the computer, and those who wish to add their
own hardware to the computer. All of the standard hardware
features available on the Electron are therefore outlined in detail
from a programmer’s point of view. Wherever possible, it is better
to use operating system routes for controlling the hardware. These
are very powerful and will be referred to whenever relevant. In
certain specialised cases, it is necessary to directly access
hardware, but even in such cases, OSBYTES &92-&97 should be
used. This will ensure that the software will still operate on
machines fitted with a Tube processor. For those who wish to add
their own hardware, full details on connecting circuits to the
Electron’s expansion port are provided.

The hardware on the Electron consists of a large quantity of
integrated circuits, resistors, capacitors, transistors and various
other electronic components. All of these are shown on the full
circuit diagram in Appendix F. In order to help those who are not
familiar with the general layout of a computer circuit and the
devices attached to it, the rest of this introduction is devoted to
analysing the hardware as a series of discrete blocks
interconnected by a series of system buses.

202

Refer to figure 13.1 whilst reading the following outline of the
hardware. There are two major blocks inside the Electron.

The first is the uncommitted logic array (usually referred to as the
ULA). This is a very large chip which does most of the boring
system tasks. It’s life is devoted to copying data from the video
memory to the video circuit, driving the cassette, producing
sounds, keeping an eye on the keyboard plus other minor tasks.

The other major component is the computing centre of the system,
called the 6502A central processing unit (CPU). This is the chip
which executes all of the programs including BASIC. It is
connected to the ULA, ROM and expansion bus. For clarity on the
diagram, the connecting buses are all compressed into one which
is represented by the double lines terminated with arrows at each
major block.

A bus is simply a number of electrical links connected in parallel
to several devices. Normally one of these devices is talking to
another device on the bus. The communication protocols which
enable this transfer of data to take place are set up by the control,
address and data buses. In the case of the address bus, there are 16
separate lines which allow 65536 (2'°) different combinations of
I’s and 0’s. The maximum amount of directly addressable memory
on a 6502 is therefore 65536 bytes. The data bus consists of 8
lines, one for each bit of a byte. Any number between 0 and &FF
(255) can be transferred across the data bus. Communication
between the ULA, peripherals on the expansion bus, memory and
the CPU occurs over the data bus. The CPU can either send out a
byte or receive a byte. The data bus is therefore called a
bidirectional bus because data flows in any one of two directions.
The 6502 address bus is unidirectional because addresses can be
provided but not received. The ULA sits back looking at the
addresses from the 6502.

In order to control the direction of data flow on the data bus, a
read or write signal is provided by the control bus. Hardware
connected to the system can thereby determine whether it is being
sent data or is meant to send data back to the CPU. The other
major control bus functions are those of providing a clock,
interrupts and resets. The clock signal keeps all of the chips

203

AlddNS
HIMOd

WwvH
SILAE NCE

T

vin

ndo
V2059

4

1

SNA NOISNVdX3

P N
————————3 0v4uaINI [NV] 311385V
311355V)
1INDHID
03aIA HOLINOW
HNO10D
SN
aydvogAI
03QIA
%201
ZHW 9L
HOLvINAOW
oY I 4HN
2ISvE
+
SO
HIHdWY
HINVIdS

204

Figure 13.1 - The system block diagram

205

running together at the same rate. The RESET line allows all
hardware to be initialised to some predefined state after a reset.
An interrupt is a signal sent from a peripheral to the 6502
requesting the 6502 to look at that peripheral. Two forms of
interrupt are provided. One of these is the interrupt request (IRQ)
which the 6502 can ignore under software control. The other in
the non-maskable interrupt (NMI) which can never be ignored.
Refer to chapter 7 on interrupts for more information.

When power is first applied to the system, a reset is generated by
the ULA to ensure that all devices start up in their reset states. The
6502 then starts to get instructions from the ROM. These
instructions tell the 6502 what it should do next. A variety of
different instructions exist on the 6502. The basic functions
available are reading or writing data to memory or an input!
output device and performing arithmetic and logical operations on
the data. Once the MOS (machine operating system) program is
entered, this piece of software gains full control of the system.

On an unexpanded Electron, the computer will continue
operating under the MOS until it is switched off. Programs are
entered into the memory from the keyboard or cassette port, then
run. There is some scope for clever programming techniques
using the standard hardware - they all involve some tampering
with the various registers in the ULA. However, a lot more
facilities can be provided by adding extra hardware onto the back
of the Electron.

Since the Electron is the little brother of the BBC Micro, two
forms of expansion are provided for. The first of these covers the
addition of hardware which is supplied as standard on a BBC
Micro. Within this category are included items like a printer port,
analogue to digital converter (for joysticks) and paged ROMs. The
second category includes items which would have to be added
onto a BBC Micro. Products like the second processors and units
which plug onto the One Megahertz Bus are in this category.

206

SHEILA and the ULA

On the BBC Micro, all of the resident hardware is mapped into
page &FE of memory. This page is called Sheila. The Electron
also has all of its internal hardware memory mapped into Sheila,
but with one major difference to the BBC Micro. All memory
mapped functions are contained within the ULA. These can be
summarised as:

SHEILA Address Description

&FEXO0 Interrupt status and control register

&FEX?2 Video display start address (low byte)

&FEX3 Video display start address (high byte)

&FEX4 Cassette data register

&FEXS Paged ROM control and interrupt control
&FEX6 Counter plus cassette control

&FEX7 Controls screen, sound, cassette and CAPS LED

&FEX8-XF Palette registers
Note that the ULA appears in every 16 byte block of page &FE.

Writing to &FEOQ2 is therefore exactly the same as writing to
&FEA?2 or &FE32 etc.

207

14 Inside the Electron

The only hardware inside the Electron which can be accessed
directly by the 6502 is the MOS ROM and the ULA, The RAM is
read via the ULA, and all internal control functions are performed
by the ULA.

As has already been mentioned in chapter 13, the ULA is
addressed in page &FE (called Sheila). The rest of this chapter
explains exactly what all of the registers within the ULA will do,
and how they can be of use. Note that there are two ways of
communicating with Sheila. OSBYTEs 150 and 151 will read and
write to Sheila respectively. Alternatively, the memory mapped
addresses can be POKEd directly from programs.

14.1 The ULA and its registers

SHEILA &FEQ0 - Interrupt status and control

ANEREAIRENERINIR

MASTER IRQ

POWER oN RESET

DISPLAY END INTERRUBT (AT BOTTOMOF
DISPLAYED SCREEN)

REALTIVE CLOCK S0kl

TRASHT OATAENPTY

RECENE DATAFULL

HeHTONE DETECT

Figure 14.1 — IRQ status and control register

This register is concerned with the interrupts on the Electron.
Interrupts are generated by pieces of hardware which require the
6502 to look at them urgently. A detailed discussion of interrupts
can be found in chapter 7.

208

By writing a ‘1’ into the corresponding bits of this register,
particular interrupts can be enabled. Writing ‘0’ into a particular
bit will disable the related interrupt. Enabled interrupts can get the
6502 to look at them if they generate a suitable signal. Disabled
devices will not be looked at even if they generate an interrupt.

Note that after an interrupt has occurred, it will be necessary to
clear the source of the interrupt, This can be done by writing to
address &FEOS.

SHEILA &FE02 and &FE03 - Screen start address control

s e s o e fo \7\\6\5\X\X\X\X\X

R b ad sl D el o]

Figure 14.2 — The screen start address registers

These two registers together form the screen start address. This is
the address in memory which will be mapped to the top left-hand
corner of the displayed screen. Whenever a line is to be scrolled
up or down, this register is incremented or decremented by the
number of bytes in a line. As well as allowing vertical scrolling, a
limited amount of horizontal scrolling is also possible. The start
address can be changed in increments of 64 bytes of memory. In
mode 0, 8 bytes are used per character. This means that a scroll in

the minimum increment will move the whole screen 8 characters
(64/8) left or right.

209

The following example demonstrates this feature. Once it has
been typed in, the cursor keys can be used to move a block of text
about over the mode 0 screen. Note that the actual screen start
address has to be shifted right by one bit before it is POKEd into
the ULA registers.

10 REM HARDWARE SCROLL EXAMPLE IN MODE O
20 MODE 0

30 OSBYTE=&FFF4

40 START=&3000

50 PRINT” THIS TEXT CAN SCROLL IN ANY DIRECTION USING CURSOR-KEYS”
60 REM SET KEYS AUTO REPEAT RATE

70 *FX12,3

80 REM SET CURSOR KEYS TO GIVE 136 etc

90 *FX4, 1

100 REPEAT

110 A=INKEY (0)

120 IF A=136 THEN PROCMOVE (64)

130 IF A=137 THEN PROCMOVE (-64)

140 IF A=138 THEN PROCMOVE (-640)

150 IF A=139 THEN PROCMOVE (640)

160 UNTIL FALSE

170 DEF PROCMOVE (offset)

180 START=START+offset

190 REM IF ABOVE SCREEN TOP, SUBTRAGT SCREEN LENGTH
200 IF START>=&8000 THEN START=START-&5000
210 REM IF BELOW SCREEN BASE, ADD SCREEN LENGTH
220 IF START<=&3000 THEN START=START+&5000
230 REM GALCULATE HIGH BYTE FOR ULA

240 REM SHIFTED RIGHT BY ONE BIT

250 H% = START DIV 512

260 REM LOW BYTE SHIFTED RIGHT BY ONE BIT
270 L% = (START MOD 512) DIV 2

280 REM NOW PUT INTO ULA REGISTERS

290 REM LOW BYTE TO &FE02

300 A%=151:X%=2:Y%=L%

310 CALL OSBYTE

320 REM HIGH BYTE TO &FEO03

330 A%=151:X%=3:Y%=H%

340 CALL OSBYTE

350 ENDPROC

210

SHEILA &FE04 - Cassette data shift register

READFROMCASSETTE

‘7 ‘5 H5 ‘4 ‘3 ‘2 ‘1 ‘0 }¢ SER ALY
YYVY YYVYYY

BYTE READ OUT IN PARALLEL

Figure 14.3a - Reading from the shift register

Data is input to the Electron from a cassette recorder, This data
shifts into bit 0 of the serial shift register, then into bit 1 and so on
until the whole 8 bits of a byte are in the ULA’s receive data
register. At this point, data can be read out and stored in memory
somewhere.

There are several points which are worth remembering when the
cassette is used. First of all, a high tone must have been recorded
on the tape before any data is read into the Electron. This allows
the circuitry to detect that data is about to be sent. The screen
mode should have been set to between 4 and 6. If it is not, bits are
sometimes lost because the 6502 cannot be interrupted whilst high
resolution graphics are being displayed. Finally, the receive data
full interrupt should be enabled. This will ensure that the 6502
knows when a byte can be read. If the byte is not read within
about 2ms, the data will be lost forever as bit 7 falls off the end of
the register when the next bit comes in!

WRTETOCASSETTE

BYTE WRITTEN IN PARALLEL

v
we < e [T s o [o]

Figure 14.3b - Writing to the shift register

211

Writing to this register causes data to be output to the cassette
(assuming that the cassette output mode has been set by writing to
&FEQ07). Bit 7 is written out first (so that it is the first in when the
tape is played back). When the last bit has been written out, a
transmit data empty interrupt is generated. This tells the 6502 that
it can put the next byte to be sent into the register.

SHEILA &FEOQS - Interrupt clear and paging register

‘N b ‘RTCM “ ®

i o
LT]

ROM PAGING BITS

ROMW PAGE ENABLE

CLEAR SCREEN INTERRUPT

ELEARRTCINTERRUPT

DLEARHIGH TONE NTERRUPT

Hinclesgt
GIEGIRORTY VR
ULA-FORDISCSETC.

Figure 14.4 - The clear interrupt and paging register This register
has two purposes, namely the clearing of interrupts and the
selection of paged ROMs.

Interrupt clearing

Putting a ‘1’ into any of the bits 4-7 will cause the associated
interrupt to be cleared. Interrupts should be cleared after they have
been serviced, but before returning from the interrupt service
routine.

Bits 4, 5 and 6 are associated with maskable interrupts. Bit 7 is
associated with the Non-maskable interrupt, This type of interrupt
is generated by very high priority devices like discs. An NMI
automatically gives the 6502 precedence over the ULA, even if it
is in the middle of displaying a screen. White snow may

212

therefore occur on the screen when discs are being accessed. Once
the 6502 has dealt with the source of interrupt, it should clear it by
writing a ‘1’ to bit 7. This gives the screen memory back to the
ULA.

Paging ROMs

The detailed mechanisms for decoding paged ROMs are covered
in the next chapter, however, a simple summary is in order here.

There is the potential within the operating system to directly
address up to 16 paged ROMs of 16K bytes each. However, four
of the slots are effectively occupied by the keyboard and the
BASIC ROM. The keyboard occupies positions 8 and 9 (both are
equivalent). To read from the keyboard, the 14 address lines AO
-A13 are used. Each of these is connected to one of the columns
of the keyboard. If a particular address line is low, that line of the
keyboard is selected on a read. The row data from the keyboard is
then returned in the lower 4 bits read from the data bus. The
BASIC ROM is selected by paging ROM number 10 or 11.

In order to select any of the other ROMs, a particular sequence
must be followed, First of all, the ULA must be told that BASIC
should be dc-selected. This is done with the page enable bit. One
of the ROMs 12-15 will be selected in this way. Now that BASIC
has gone, it is (if so desired) possible to page in one of the ROMs
0 to 7. This is simply performed by setting the page enable bit to 0
and selecting the required ROM with bits 0 to 2. You should refer
to section 15.4 for a more detailed discussion.

SHEILA &FE06 - The counter

This write only register has several different functions, depending
upon the particular mode of operation.

213

Reading from cassettes

[(X]oJoJofo[0]O[O]

Figure 14.5a - Cassette receive mode

When data is being read from a cassette, this timer is used to
count from zero crossings. It therefore effectively determines the
cassette baud rate. All bits should be set to 0 (except for bit 7
which doesn’t matter). Cassette receive mode is set by bits 1 and 2
in &FE07.

Making sounds

[S71S6]S5[S4[S3[S2[S1][S0]

Figure 14.5b - Sound generation mode

Sound can only be generated when the cassette is not being used.
The 8 bit integer written into this register determines the
frequency of all generated sounds. If the value is ‘S’ where ‘S’ is
between 0 and 255 in value, the generated sound frequency is
given as:

Sound frequency = 1 MHz / [16 * (S + 1)]
To select sound mode, bits 1 and 2 of &FEQ7 are used.

Frequencies from 244Hz up to 62.5kHz can be generated, but you
won’t be able to hear the really high frequencies!

214

Writing to cassettes

[(XIX[X[X[X[X[X][X]

Figure 14.5¢ - Writing to cassette

The states of the bits written to this register are ignored in this
mode. The counter is used to control the received data baud rate,
but cannot be changed. Bits 1 and 2 of &FEO07 should be used to
select the cassette output mode.

SHEILA &FEQ7 - Miscellaneous control

e s e ds fa i fn
[]

i3
DICASSETTE NPUT
s

GENERATION
SETTE ouTeuT

11CASSETTE
1NOT USED
ROWPAGE ENABLE

CLEAR SCREENINTERRUPT

CLEARRTCINTERRUPT

DLEAR HGH TONE NTERRUPT

HCLEAR
GNVE 6502 PRIORY OVER
ULA-FORDISCSETC.

Figure 14.6 - control register

This general purpose control register provides a selection of
different functions.

215

Communications mode, bit 1 and 2

Bits 1 and 2 control whether data is being written to a cassette
recorder, read from a cassette recorder, or generating sounds.
These three functions are mutually exclusive, so it is not possible
to play cheery tunes whilst waiting for a long program to load.

Display mode selection, bits 3,4 and S

There are seven display modes available on the Electron. These
can be selected by writing a number between 0 and 6 into bits 5,
4, 3. Note that the other possible mode (7) is only available on the
BBC Micro.

Cassette motor control, bit 6

Setting this bit to ‘1’ will turn the cassette motor on. Setting it to
‘0’ will turn the motor off. Motor control is effected by a small
relay contact inside the Electron. It is possible to use this to switch
small battery operated equipment on and off (for example a
transistor radio).

CAPS LOCK LED control, bit 7

Setting this bit to a ‘1’ turns on the CAPS LOCK LED on the side
of the keyboard. A ‘0’ turns it off again.

SHEILA &FE08 to &FEOF - the colour palette

These addresses in the ULA define the mapping between the
logical colours which are provided by programs and the physical
colours which are displayed on the screen.

For example, in the two colour mode, /ogical colour 1 will
actually produce a colour defined by &FEO08 bit 6 (blue), &FE08
bit 2 (green) and &FE09 bit 2 (red). The bits are negative logic,
which means that a ‘1’ in bit 6 of &FE08 will ensure that blue is
turned off for colour 1.

The cursor and flashing colours are entirely generated in software:
This means that all of the logical to physical colour map must be
changed to cause colours to flash.

216

D7 D6 D5 D4 D3 D2 D1 DO
&E | X | Bl X [BO[x [a6]| x| x|
&FE09 | X | X | x [Go | X | R1 | X | RO |
Figure 14.7a — 2 colour mode palette
D7 D6 D5 D4 D3 D2 D1 DO
&FE08 | B3 [B2 | Bl [Bo [G3 | G2 | X | X |
&FE09 | X | X [G1 | Go | R3 | R2 | Rl [RO |
Figure 14.7b - 4 colour mode palette
D7 D6 D5 D4 D3 D2 DI DO
&FE08 |B10|BS|82|BO|G10|G8|X|X|
Colours 0,2,8,10
&FE09 |X|X|GZ|GO|R10|R8|R2|R0|
D7 D6 D5 D4 D3 D2 DI DO
&FE08 |B14|B12|B6|B4|G14|G12|XIXI}
Colours 4,6,12,14
&FE09 [X [X [G [Gi [RI4[RIZ| R6 | R |
D7 D6 D5 D4 D3 D2 D1 DO
&FE08 |B15|B13|B7|85|G15|G13|XlXl}
Colours 5,7,13,15
&FE09 IXIX|G7|G5|R15|R13|R7|R5|
D7 D6 D5 D4 D3 D2 DI DO
&FE08 |B11|B9|B3|B1|G11|G9|X|X|}
Colours 1,3,9,11
&FE09 |X|X|G3|G1|R11|R9|R3|R1|

Figure 14.7¢ - 16 colour mode palette

217

14.2 The keyboard

The keyboard is mapped to ROM numbers 8 or 9, and may be
read directly by accessing memory locations within either ROM
corresponding to particular keys. This is useful as a technique for
speeding up the machine, as it allows normal keyboard scanning
by the OS to be disabled using OSBYTE &B2 (178).

See section 15.4 on how to select paged ROMs.

The following table lists the relevant memory locations and the
bits within each location which represent the keys.

Column | Address Bit 0 Bit 1 Bit 2 Bit 3
0 &BFFE Right Copy NC Space
1 &BFFD Left Down Return | Delete
2 &BFFB - Up : NC
3 &BFF7 0 P ; /

4 &BFEF 9 O L

5 &BFDF 8 I K ,

6 &BFBF 7 U J M
7 &BF7F 6 Y H N
8 &BEFF 5 T G B
9 &BDFF 4 R F \Y
A &BBFF 3 E D C
B &B7FF 2 Y S X
C &AFFF 1 Q A Z
D &9FFF Escape | Caps Lk Ctrl Shift

NC=No Connection

218

15 Outside the Electron

15.1 Introduction to expanding the Electron

This chapter is intended for those who want to add their own bits
of hardware onto the Electron. There are several reasons for doing
this. The most common one is to allow the Electron to access
facilities provided for the BBC Micro. All of the common
interfaces such as discs, printer port, analogue to digital converter,
speech chip, paged ROMs etc. can easily be added onto the
Electron. If care is taken with the design, these products will
operate in an almost identical manner to those on the BBC Micro.
Several interface add-ons can already be purchased from Acorn.

If the only point in adding hardware onto the Electron were to
make it totally BBC Micro compatible, there would have been
little point in buying the Electron in the first place. In fact, the
Electron has more potential for expansion than a BBC Micro.
Why? Because all necessary system buses come out on the
expansion connector. This ability to access all of the buses means
that the devices which can be added onto the Electron are limited
only by the imagination (and maximum allowable loading of the
buses).

Appendix G provides a summary of the expansion devices
available for the Electron, grouped by generic type.

15.2 The Expansion Connector

All required signals from the Electron are present on this
connector. In order to make use of them, a basic knowledge of
interfacing to the 6502 will be required. Such a knowledge can be
acquired by reading some of the popular electronics magazines
and specialised books on interfacing. The aim in this book is to
explain all of the details to those who have already read enough
about microcomputer hardware in general, and now want to know
about the Electron in particular.

219

Bottom Top
18VAC 2 1 18V AC
ACRETURN 4 3 ACRETURN
5V 6 5 5V
ov 8 70V
+5V 10 9 45V

16MHz 12 11 SOUND O/P
PHIOUT 14 13 +131IN
NMI ~— 16 15 ~ RST
R/W ~— 18 17 = IRQ
D6 20 19 D7
D4 22 21 D5
D2 24 23 D3
DO 26 25 D1
NC 28 27 RDY
SLOT 30 29 SLOT
Al4 32 31 Al5
Al2 34 33 Al13
A10 36 35 All
A0 38 37 A9
A2 40 39 Al
A4 42 41 A3
A6 44 43 A5
A8 46 45 A7
0V 48 47 OV
+5V 50 49 45V

Figure 15.1 - Expansion connector layout
18V AC (pins 1,2)

These lines are connected directly to the output
from the Electron mains power adaptor.

AC return (pins 3.4)

Up to 6 watts of power may be drawn from this
source (provided that none is drawn from the +5V
line). Bear in mind that the AC will have to be
rectified and smoothed before it can be used to
drive any computer chips.

220

-5V pins (5,6)

This is a -5 volt supply from the Electron, from
which a maximum of 20mA can be drawn. It would
often be used to power RS423 expansions.

0V (pins 7, 8, 47, 48)

This is the signal and power ground on the
Electron. All external circuits must have their 0 volt
lines connected to this point.

+5V (pins 9,10,49,50)

This is a +5 volt power supply from the Electron. A
maximum of 500mA can be drawn from it, but note
that no power can be taken from the 18V AC line if
this is done.

Sound o/p (pin 11)

Sound output from the Electron ULA. This signal is
3 volts peak to peak fed via a 1K series resistor.

16MHz (pin 12)

This is the master 16MHz clock from the Electron
main oscillator. It can be used for clock generation
on expansion modules, but see section 15.3.3 for a
description of clock synchronisation.

16/13 MHz (pin 13)

This is 16MHz divided by 13. It is normally used
for baud rate generation, and will give
approximately 1200Hz if divided by 1024.

221

PHI out (pin 14)

RST (pin 15)

NMI (pin 16)

IRQ (pin 17)

This is a nominally 2 MHz clock as connected to
the 6502A. The low time is some 250ns. The high
time varies depending upon the operation being
performed. It is 250ns when reading ROMs, 750ns
or 1250ns when accessing the 1MHz bus
(depending upon the relative phase of the 2MHz
clock) and can be up to 40us due to screen access
in modes 0 to 3. The clock timing is covered in
greater depth in section 15.3. Note that the NMI
must be synchronised with PHI out. This is because
the NMIs give the 6502 precedence over the ULA
for the RAM. Incorrect data may be read from the
RAM if the NMI is not latched on a negative going
edge of PHI out.

Active low reset signal. This is an OUTPUT ONLY
for resetting expansion modules on power up, or
when the BREAK key is pressed.

Non-maskable Interrupt (negative edge triggered).
This open collector (wire-OR) line is the system
NMI and can be asserted by an expansion module
pulling it low. There is a 3K3 pull-up resistor
inside the ULA. You must be very careful to avoid
holding this line low after the interrupt has been
serviced, because it will mask other interrupts
whilst asserted. For more details about NMls, you
should refer to chapter 7.

This is the active-low IRQ (interrupt request). It is
an open collector (wire-OR) line, so it can be
asserted by any expansion module pulling it low.
There is a 3K3 pull-up resistor within the ULA.
Note that interrupts MUST NOT occur until the

222

software in the machine has initialised to a state at
which it can deal with them. Power up and reset
conditions should therefore disable all IRQs, It is
important to ensure that not too much of the
interrupt service time is used up, otherwise some
operations like the system clock may cease to
function correctly.

R/W (pin 18)

This is the system read/write line from the 6502. It
tells peripheral devices whether the 6502 is sending
data to them, or is expecting data from them.

D0-D7 (pins 19 to 26)

This is the 8 bit wide bi-directional data bus. All
data is transferred over this bus, the direction of
data transfer being determined by the state of the
read/write line.

RDY (pin 27)

This is the active low ready line from the 6502. It
can be asserted by an expansion to slow down the
processor when it is reading slow memory. This
line is only operational on reads.

(pin 28)
No connection.
(pins 29,30)

Polarising key connector to ensure that boards
cannot be plugged in the wrong way round.

A0-A15 (pins 31 to 46)

This is the system address bus. There are 16 lines
in this bus which allow 2'¢ (65536) different
locations to be addressed.

223

15.3 Designing Circuits

It might at first appear to be very easy to add anything onto the
Electron Expansion Bus. There is however one fairly major
problem. The 6502A often changes speed to cope with the
accessing of different devices. These fall into two main categories.

15.3.1 Accessing the ROM

When the ROM is being accessed, the 6502 runs at the maximum
possible speed of 2MHz; PHI OUT is low for 250ns and then high
for 250ns.

15.3.2 Accessing the RAM and peripherals

When RAM or peripheral devices are accessed, the timing will be
highly dependent on the display mode. This is because twice as
much data has to be removed from the RAM to produce the
display in modes 0-3 as in modes 4-6.

Modes 4-6

The processor will normally be running at 2MHz when it first
needs to access RAM or peripherals like the 6522. It has to slow
down to IMHz first. This slow down either consists of a PHI OUT
low time of 250ns followed by a high time of 750ns, or a low of
250ns followed by a high of 1250ns. The particular type of
transition which occurs will depend upon the relative phases of
the 2MHz and 1MHz clocks, This is illustrated in figure 15.1.
Both the IMHz and 2MHz clocks are internal to the ULA, and are
not available outside. They must be generated separately (see later
in this section).

Modes 0-3

In these modes, the ULA must have access to the RAM for all the
displayed part of a line (40us out of 64us in 256 lines out of 312).
This doesn’t matter provided that the CPU only wants to access
peripherals and the ROM, which it is free to do in the normal way.
However, if it tries to access RAM the ULA will hold it’s clock
high for up to 40us. The overall effect is that the

224

processor can be effectively disabled for up to 40us. The only way
for the processor to obtain priority over the ULA is by an NMI
being generated. This will automatically cause the ULA to release
the 6502 (and the RAM), but inevitably creates snow on the
screen.

15.3.3 Generating the 1MHz clock

Since the 1IMHz and 2MHz signals only exist inside the ULA, it is
necessary to regenerate them outside. Two clocks are provided on
the expansion connector. A 16MHz one and a 16/13MHz one for
baud rate generation. The former of these can be used to generate
a 1MHz clock, This has to be synchronised to the processor clock
if it is to be used with peripherals like the 6522 VIA. A simple
division by 16 will not produce a suitable clock signal. The circuit
in figure 15.2a will produce a suitable in phase signal. The timing
for this is shown in figure 15.2b.

15.3.4 Long delays for interrupts

It is important to bear in mind how long the delays might be
before a particular requested interrupt is serviced, This is
determined by the longest period for which interrupts can be
disabled.

In modes 0-3, this delay can be up to 100ns in the very worst case.
Such a long delay can cause problems with unbuffered circuits
like the cassette serialiser/deserialiser. The only solution is to
ensure that such devices are only used from modes 4-6 (even if it
means forcing a particular mode before executing a routine).

The interrupt delay is only 4ms at worst in modes 4-6, so most
actions which require a fast response can be executed in one of
these modes. Note that NMIs can always be used as a last resort
where necessary, but are normally reserved for disc and Econet
accesses.

225

+5V 4
Al5 10 4
PR PR
J— 9 2 5
RST Q D Q
LS74 3 LS74
—b
CLR CLR
?13 ?'1
& b9 -9- +5V
LD
Lon 2 4y B
+5V
t 4B cla
3] A P
Ho el e
9 1MHz
L8163
AV =t

Figure 15.2a - A 16MHz to 1MHz synchronisation circuit

RESET

A N 2 VY A W

@
we LU LN \
A8 ANV v

Figure 15.2b - the timing applied to figure 15.2a

226

15.4 Sideways ROMs

Sideways ROMs can be selected in place of BASIC. Languages
like LISP, disc filing systems, utilities etc can all be plugged in.
These sideways ROMs are covered from a software point of view
in chapters 8 to 11.

From a hardware point of view, up to 16 sideways ROMs are
allowed. However, four of these are already allocated on the
standard Electron. BASIC occupies two slots (ROMs 10 and 11 it
appears the same in each). The keyboard occupies slots 8 and

9. The remaining 12 ROM slots are all available for expansion.

The ROM paging register is located in the ULA, and can be
accessed by writing to location &FEOQS5 (see section 14).

There are two distinct ways of accessing ROMs via this register.

The first method accesses ROMs 12 to 15. This operation is very
simply performed by writing the required ROM number into the

low nibble of &FE05. Hence:

D7 D6 D5D4 D3 D2 DI DO
Writeat &KFEOS0 0 0 0 1 1 RI1 RO

where R1 and RO control which ROM is selected.

Suitable hardware must be included in the expansion unit to cope
with this method of selecting ROMs. Selection of one of the
ROMs 12 to 15 can be carried out by the following code. Be
careful to ensure that the write to &F4 always occurs before the
write to &FEOQS5, just in case an interrupt occurs in between.

LDA #ROMnumber
STA &F4
STA &FE05

The second method for accessing ROMs will allow those
numbered 0 to 7 to be selected. It is not possible to select these
ROMs directly, because BASIC will still be paged in. The only
way of paging BASIC and the keyboard out is to select one of the
ROMs 12 to 15 first. This access causes the internal ROMs to
page out. The correct ROM selection code can then be sent to the
lower three bits of &FEO0S.

227

D7 D6 D5D4 D3 D2 DI DO
Writeat &KFEOS50 0 0 0 0 R2 R1 RO

where R2, R1 and RO select the required ROM.

As with the other ROM slots, new hardware must be provided at
address &FEOQS5 to select the relevant ROMs.

Code to select a ROM numbered 0 to 7 could be:

LDA #8&0C ¥to deselect BASIC
STA &F4 ¥one of ROM 12 to 15
STA &FE05 ¥must be selected
LDA #ROMnumbeNow select desired

STA &F4 ¥Low order ROM

STA &FE05

It is essential that the A register is stored to &F4 before &FEOS5 in
case an interrupt occurs in between.

When the machine is powered up, the sideways ROMs are polled
in order from 15 down too. The first one which is found to be a
language ROM (see the Paged ROM firmware section for
specification) will start executing. Since BASIC is in slot 10/11, a
ROM which is required to power-up before BASIC must be in one
of the sockets 12 to 15.

The ROMs 12 to 15 are allocated to high priority NMI devices or
languages which are expected to power up before BASIC. The
reason for putting high priority NMI servicing ROMs in these
sockets is that a smaller delay is required to page them in than for
ROMs 0 to 7.

The lower priority ROMs are all selected by performing two
writes to the paging register. The first is to deselect BASIC, the
second is to select the required ROM.

228

The Acorn Plus 1 expansion unit forces the priority of ROMs to
be (from highest down):

ROMs 15t0 12
ROMs 7to 0
BASIC

This implies that any language which is fitted to the Plus 1 will
automatically power up ahead of BASIC. ROM allocation has
been defined by Acorn as follows:

ROM USE

0,1 Second external socket on expansion module (SK2)
2,3 First external socket on the expansion module (SK1)
4 Disc

5,6 USER applications

7 Modem interface ROM

8,9 Keyboard

10,11 BASIC

12 Expansion module operating system

13 High priority slot in expansion module

14 ECONET

15 Reserved
15.5 The One Megahertz Bus

Most 6502 compatible peripherals will generally be connected
onto the IMHz regenerated bus. This allows relatively slow
devices to be accessed. On the BBC Micro, page &FC has been
allocated especially for IMHz devices, This page is called FRED.
Generally, devices resident within FRED have relatively small
memory requirements (mainly control and data registers).

Since Electron expansion should be compatible with BBC Micro
expansion (so they can use the same expansion peripherals), the
allocation of devices in FRED has been very well defined. The
following list includes items which would normally be resident in
Sheila on the BBC Micro, but which have to go on the 1MHz bus
on an Electron.

229

&FC00 to &FCOF Test hardware

&FC10to &FC13 TELETEXT

&FCl14 to &FCIF PRESTEL

&FC20 to &FC27 IEEE 488 interface

&FC28 to &FC2F ECONET

&FC30 to &FC3F CAMBRIDGE RING interface
&FC40 to &FC47 WINCHESTER DISC interface
&FC48 to &FCS5F Reserved for Acorn expansions
&FC60 to &FCO6F 6850 ACIA

&FC70 A to D converter

&FC71 CENTRONICS parallel interface
&FC72 Status register

&FC73 to &FCTF
&FC80 to &FCS8F
&FC90 to &FCOF
&FCAO to &FCAF
&FCBO to &FCBF
&FCCO to &FCCF
&FCDO to &FCDF
&FCEQ to &FCEF
&FCFO to &FCFE
&FCFF

BSYADC FB2 FB1 X X X X
Where BSY = printer busy
ADC = A to D conversion end
FB1 = Fire button 1
FB2 = Fire button 2
X= undefined

Reserved for Acorn expansions
Test hardware

Sound and speech

Reserved for Acorn expansions
6522 VIA/Real time clock
Floppy disc controller

USER applications

The TUBE

USER applications

Paging register for JIM

Note that page &FD in the Electron address space is used in

conjunction with the paging register in FRED to provide an extra
64K of memory. This memory is accessed one page at a time. The
particular page being accessed is selected by the value in FRED’s
paging register, and is referred to as the extended page number.
Accessing memory via the IMHz bus in this way will generally be
about 20 times slower than accessing memory directly.

230

15.6 The Analogue to Digital converter

The A to D converter is present at location &FC70 with some
status bits in &FC72.

To obtain a value from the converter, it is first necessary to poke a
number representing a channel number into &FC70, according to
the following table:

Channel Value
1 4
2 5
3 6
4 7

The result will then appear in &FC70 when bit 6 of &FC72 goes
low.

&FC72 also contains the status of the two fire buttons in bits 4
and 5.

15.7 Disabling the Plus 1
To completely disable the Plus 1, the following calls are required:

*FX163, 128, 1
78&212=8&D6
78213=&F1
782AC=0

The first call disables ADC conversion. The second and third calls
redirect FILEV to its default location and the fourth call disables
the Expansion ROM by clearing the associated byte in the ROM
table.

231

Appendix A - VDU Code Summary

This Appendix describes the functions performed by the whole of
the character set when printed using VDU or PRINT CHRS. Note
that several ones are labelled expansion. This means that they will
only be effective if the associated expansion modules are

connected.

Dec hex CTRL + bytes function

OO0 INNI= W —O

0 @
1 A
2 B
3 C
4 D
5 E
6 F
7 G
8 H
9 1
A J
B K
C L
D M
E N
F O
10 P
11 Q
12 R
13 S
14 T
15 U
16 V
17 W
18 X
19 Y
1A Z
IB |
1C \

PO OUNAOO—ROONINDNRPODODODODODODOODDDODOODOoDOooo0o0O0o—~—O

Does nothing

Send character to printer (expansion)
Enable printer (expansion)

Disable printer (expansion)

Write text at text cursor

Write text at graphics cursor
Enable VDU drivers

Make a short bleep (BEL)

Move cursor back one character
Move cursor forward one character
Move cursor down one line

Move cursor up one line

Clear text area

Carriage return

Paged mode on

Paged mode off

Clear graphics area

Define text colour

Define graphics colour

Define logical colour

Restore default logical colours
Disable VDU drivers/delete current line
Select screen MODE

Re-program display character
Define graphics window

PLOT K.X,Y

Restore default windows

Reserved

Define text window

232

29 1D]
30 1E A
31 IF
32-126

127 7F DEL
128-223
224-255

N O B

Define graphics origin

Home text cursor to top left of window
Move text cursor to X, Y

Complete set of ASCII characters
Backspace and delete

Normally undefined (define using *FX20)
User defined characters

233

Appendix B PLOT numbers

N O DNk WN—~O

Move relative to last point

Draw relative to last point in current foreground colour
Draw relative to last point in logical inverse colour
Draw relative to last point in current background colour
Move absolute

Draw absolute in current foreground colour

Draw absolute in logical inverse colour

Draw absolute in current background colour

Higher PLOT numbers have other effects which are related to the
effects given by the values above.

8-15

16-23
24-31
32-63
64-71
72-79
80-87
88-95

Last point in line omitted when ‘inverted’ plotting used
Using a dotted line

Dotted line, omitting last point

Reserved for Graphics Extension ROM

Single point plotting

Horizontal line filling

Plot and fill triangle

Horizontal line blanking (right only)

96-255 Reserved for future expansions

234

Horizontal line filling

These PLOT numbers start from the specified X,Y co-ordinates.
The graphics cursor is then moved left until the first non-
background pixel is encountered. The graphics cursor is then
moved right until the first non-background coloured pixel is
encountered on the right hand side. If the PLOT number is 73 or
77 then a line will be drawn between these two points in the
current foreground colour. If the PLOT number is 72 or 76 then no
line is drawn but the cursor movements are made (these may be
read using OSWORD call with A=&D/13, see chapter 4).

Horizontal line blanking right

These PLOT numbers can be used to undraw an object on the
screen. They have an the opposite effect to those of the horizontal
line filling functions except that the graphics cursor is moved right
only. PLOT numbers 91 and 95 will cause a line to be drawn from
the specified co-ordinates to the nearest background coloured
pixel to the right in the background colour. PLOT numbers 89 and
93 move the graphics cursor but do not cause the line to be
blanked.

235

Appendix C — Screen mode layouts
MODE 0 Screen layout

Graphics 640x256

Colours 2
Text 80x32
&3000 | &3008 | &3278
&3001 &3009 | &3279
&3002 | &300A | &327A
&003 &300OB | &327B
&3004 &300C | &327C
&3005 | &300D | &327D
&3006 | &30CE | &327E
&3007 | &30OF | &327F
&3280 | |
&3281 | |
| |
&7B06 : :
&mor | 4
&’pDg8o | &7D88 | &7FF8
&’pg1|&wm89 | &7FF9
&’pg2 | &mMHOBA | &7FFA
&npg3|&me8B | &7FFB
&’pg4 | &m8C | &7FFC
&’pg5 &GO | &7FFD
&’pg6 | &/DGE | &7FFE
&7D87 | &7D8F &7FFF
(7]6[5[4]3[2[1]0] pas

1BIT/PIXEL

Note that the screen layout is only as shown after a CLS and will
change as the screen is scrolled.

236

MODE 1 Screen layout
Graphics 320x256

Colours 4
Text 40x32
&3000 [&3008 | 83278
83001 [&3009 | T T T T~ 83279
83002 | &300A | T T T &327A
83003 [&300B | T T T~ 83278
83004 | &300C | T T T~ &327C
83005 |&300D | T T T~ &327D
83006 | &300E | T T T~ &327E
83007 | &300F | T T T T~ &327F
&3280 | |
&3281 | |
| |
&7B06 I I	
&mgorz	4
&7pgo &0	&7FF8
&rog1,&m8	&7FF9
&7og82	/ &mMHOSGA
&npg3	&meg
&7oe4 (&08C	&7FFC
&g &80	&7FFD
&g (&DGE	&7FFE
&7D87	&7D8F &7FFF
7]6]5]4]3[2[1]0] pAftet	

L

A

2BITS/PIXEL

Note that the screen layout is only as shown after a CLS and will
change as the screen is scrolled.

237

MODE 2 Screen layout

Graphics 160x256

Colours 16
Text 20x32
&3000 {&3008 | &3278
&3001&3009 | &3279
&3002 | &300A | &327A
&003 j&300B | &327B
&3004 j&300C | &327C
&3005 &300D | &327D
&3006 | &300E | &327E
&3007 | &300F | &327F
&3280 | |
&3281 | |
| |
&7B06 I I	
&mgorz,	4,
&7pgo &rp88	&7FF8
&rmogt1,&m89	&7FF9
&7pog82	&mMHOSGA
&mng3	&mpég
&roe4 (&08C	&7FFC
&g &80	&7FFD
&g (&DGE	&7FFE
&7D87	&7D8F &7FFF
7‘	‘6

Note that the screen layout is only as shown after a CLS and will
change as the screen is scrolled.

238

MODE 3 Screen layout

Graphics Not available

Colours 2
Text 80x25
&4000 |&4008 [&4278
&4001 |&4009 (&4279
&4002 | &400A [&427A
&4003 |&400B [&427B
&4004 |&400C [&427C
&4005 |&400D [&427D
&4006 | &400E [&427E
&4007 | &400F [&427F
BLANK |[BLANK | BLANK
BLANK |[BLANK | BLANK
&4280 | |
&4281 | |
I I
I I I
I I I
| I I
I I I
&7980 I I
BLANK | |
BLANK |
&rcoo | &7cog8 [&7E38
&r7co1 | &7co9 (&7E39
&r7co2 | &7COA | &7E3A
&rcos3 |&7co ([&7E3B
&r7co4 |&7coc [&7E3C
&rcos |&7coo [&7E3D
&7co6 | &7COE [&7E3E
&r7co7 | &7COF [&7E3F
BLANK |[BLANK [BLANK
BLANK | BLANK BLANK
(7]6[5]4[3[2[1][0] e

1BIT/PIXEL

Note that the screen layout is only as shown after a CLS and will
change as the screen is scrolled.

239

MODE 4 Screen layout

Graphics 320x256

Colours 2
Text 40x32
85800 [&5808 | 85938
85801 |&6809 | T T T 85939
85802 | &680A | T T T T 8593A
85803 |&s80B | T 8593B
85804 | &s80C | T T T 8593C
85805 | &680D | T T 8593D
85806 | &680E | T 8593E
85807 | &680OF | T T T 8593F
&5940 | |
&5941 | |
I I
I I I
I | |
I I I
I I I
&7D86 I I
&mo87 | 4
&7’ECO | &7EC8 | &7FF8
&’EC1|&7ECO | &7FF9
&7EC2 | &7ECA | &7FFA
&’EC3 | &7ECB | &7FFB
&7EC4 | &7ECC| &7FFC
&7EC5|&7ECD | &7FFD
&7EC6 | &7ECE | &7FFE
&7EC7 | &7ECF &7FFF
(7]6]5[4[3[2[1]0] ST

2BITS/PIXEL

Note that the screen layout is only as shown after a CLS and will
change as the screen is scrolled.

240

MODE 5 Screen layout

Graphics 160x256

Colours 4
Text 20x32

85800 | &5808 | 85938
85801 |&b6809 | T T T 85939
85802 | 8680A | T T T 8593A
85803 | &s80B | T T 8593B
85804 | &s80C | T T T 8593C
85805 | &s80D | T T 8593D
85806 | &680E | T T &593E
85807 | &680F | T T T 8593F
&5940 | |
&5941 | |

I I

I I

I I

I I

I I
&7D86 I I
&mo8g7 | 4
&’ECO | &7EC8 | &7FF8
&7eCc1|&wEC9 | &7FF9
&7ec2 | &7ecCA |, &7FFA
&’EC3 |&7ECB | &7FFB
&7eC4 | &7ECC | &7FFC
&7EC5|8&7ECD | &7FFD
&7EC6 |&7ECE | &7FFE
&7EC7 | &7ECF &7FFF

[716]5[4[3[2[1][0]

L

A

4 PIXELS
2BITS/PIXEL

Note that the screen layout is only a s shown after a CLS and will
change as the screen is scrolled.

241

MODE 6 Screen layout

Graphics Not available

Colours 2
Text 40x25
&6000 |&0O8 | &6138
&6001 | &00O9 [&6139
&6002 | &60OA | &613A
&6003 | &0OB | &613B
&6004 |&G0OC | &613C
&6005 |&0OD | &613D
&6006 | &GOOE | &613E
&6007 | &GOOF | &613F
BLANK |BLANK | BLANK
BLANK | BLANK BLANK
&6140 | |
I I
| I I
I I I
I I I
| I I
|| |
BLANK | |
BLANK |
&7FOO | &7FO8 | &7F38
&7FO1 | &7FOQ | &7F39
&7F02 | &7FOA | &7F3A
&7FO3 |&7FOB | &7F3B
&7F0O4 | &7FOC | &7F3C
&7F05 |&7FOD | &7F3D
&7F06 | &7FOE | &7F3E
&7FO7 | &7FOF | &7F3F
BLANK |BLANK | BLANK
BLANK | BLANK BLANK
[7]6[5]4[3[2[1][0] o

1BIT/PIXEL

Note that the screen layout is only as shown after a CLS and will
change as the screen is scrolled.

242

Appendix D - Operating System Calls

and Vectors

Routine

Addr

OSCLI FFF7
OSBYTE FFF4
OSWORD FFF1
OSWRCH FFEE
OSNEWL FFE7
OSASCI FFE3
OSRDCH FFEO
OSFILE FFDD
OSARGS FFDA
OSBGET FFD7
OSBPUT FFD4
OSGBPB FFDI1
OSFIND FFCE

Vector
Name
USERV
BRKYV
IRO1V

IRQ2V
CLIV
BYTEV

Function

Addr
200
202
204
206
208

20A

WORDYV 20C
WRCHV 20E

RDCHV
FILEV

ARGSV
BGETV
BPUTV
GBPBV

EVNTV
UPTV
NETV
VDUV

KEYV
INSV

REMV
CNPV

210
212
214
216
218
21A

220
222
224
226

228
22A

22C
22E

243

Name

The user vector
The BRK vector
Primary interrupt
vector
Unrecognised IRQ
vector

Command line
interpreter
*FX/OSBYTE call
OSWORD call
Write character
Write LF, CR to
screen

Write character,
&0D=LF, CR
Read character
Load/save file
Load/save file data
Get byte from file
Put byte in file
Multiple
BPUT/BGET
Event vector

User print routine
Econet vector
Unrecognised VDU
commands
Keyboard vector
Insert into buffer
vector

Remove from buffer
vector
Count/purge buffer
vector

NVRDCH
NVWRCH
GSREAD
GSINIT

OSEVEN
OSRDRM

FFCB
FFC8
FFC5
FFC2

FFBF
FFB9

INDIV 230
IND2V 232
IND3V 234

244

Spare vector

Non-vectored read
char.

Non-vectored write
char.

Read char. from
string

String input initialize
Generate an event
Read byte in paged
ROM

Appendix E - Plus 1 ROM slot

3
- 3
EE NS x £ 3
o> T 2 > O ~ *
Z zZz0|2 s 22|90 = 0 2 — g'—§>
25080 23EERE 2353228k F3
A
5 O T I 0 S Y IR N S
EEEEEEEEEEEEEEEEEEEEE
22 2120 19 18 17 16 15 14 13 12 1110 9 8 7 6 5 4 3 2 1
Q2000 P00Q 000000000000 00)
g T T rrrrTrrr T T T TT T
368822222522'2@58852289%
[e) < +

Figure E.1 - The Plus 1 ROM slot connector

The cartridge interface is an earlier and simpler version of that
later used on the BBC Master. Signals which differ between the
two machines are shown with an asterisk in the diagram. The
description below explains the function of all the signals and the
differences between machines.

Note that most of the standard BBC Micro IMHz bus signals are
available from this slot. However, some of the uses are marginally
different to the BBC 1MHz bus. A full specification for producing
suitable add-ons is available from Acorn Computers Limited.

SIDE 'A’

1 +5V - Power supply

This is the system logic supply rail. No more than 150mA should
be drawn by a cartridge in a fully configured Master 128
computer, ie with internal co-processor fitted. No more than
50mA should be drawn by a cartridge fitted to the Electron.

2 nOE - Output Enable : Input with CMOS levels

This is an active low signal during the PH12 period of the system
clock. It is intended to switch on the output buffers of memory
devices in cartridges. It is not guaranteed to be high at other times.

245

3 nRST - System Reset : Input with CMOS levels
This signal is active low during system reset. It is not
synchronised to any internal clock.

4 CSRW - Chip Select / Read/Write : Input with CMOS levels

On the Electron:
This pin is the CPU read/write line.

On the Master 128:

This pin changes function according to the memory region that the
CPU is addressing. During accesses to devices in the region
&FCO00 to &FEFF it is equivalent to the CPU read/write line
during nPH12. For all other accesses it is an active high chip
select for memory devices. It is not guaranteed to be low at other
times. This approach is necessary for compatibility with the
Electron.

5 A8 - Address line 8 : Input with TTL levels
6 A13 - Address line 13 : Input with TTL levels
7 A12 - Address line 12 : Input with TTL levels

8 PH12 - CPU clock : Input with CMOS levels
This input is the host computer PH12out.

9 -5V - The negative supply voltage
No more than 20mA per cartridge should be drawn from this

supply.
10 CSYNC/MADET

On the Electron:
This is a "no connect” on the Electron.

On the Master 128:

This pin has two functions dependant on the position of a link in
the host computer:

E/nB: this is the default function. It allows hardware in cartridges
to "know" which into which type of computer it is plugged. It is a

246

direct connection to +0V in the Master 128 and a floating node in
the Electron.

CSYNC - Composite Synchronisation: Input with TTL levels
The system composite vertical and horizontal synchronisation is
made available. It is intended to be used in genlock applications.
11 RNW/READY

This has different functions on the Electron and the Master 128.

On the Electron:

READY - CPU wait state control : Open collector output

When driven low, this line will cause the CPU to extend its cycle
until READY is released. This will only work on Electrons with
CMOS CPUs. With NMOS CPUs it will only work on read
cycles.

On the Master 128:
R/W - Data Direction Control : Input with TTL levels
This is the system data buffer direction control. If low, cartridges

are being written to; if high and selected they may drive the bus
during PH12.

12 nNMI - Non maskable interrupt : Open collector output
This signal is connected to the system NMI line. It is active low.

13 nIRQ - Interrupt request : Open collector output
This signal is connected to the system IRQ line. It is active low.

14 nINFC - Internal Page &FC : Memory active decode
input : TTL active low

When bit IFJ is set in the Master 128 ACCCON register, all
accesses to the address range &FCO00 to &FCFF will cause this
select to become active. The ACCCON access is not applicable to
the Electron.

15 nINFD - Internal page &FD : Memory active decode
input : TTL active low

When bit IFJ is set in the Master 128 ACCCON register, all
accesses to the address range &FDO00 to &FDFF will cause this
select to become active. The ACCCON access is not applicable to
the Electron.

16 ROMQA - Memory paging select : Input with TTL levels
247

This is the least significant bit of the ROM select latch located at
&FE30 in the Master 128 and at &FEO5 in the Electron.

17 Clock
This connection has different uses in the Electron and Master 128:

In the Electron:
Clock is a 16MHz input with TTL levels.

In the Master 128:

Clock is a strap selectable function:

a) 16MHz input with TTL levels.

b) 8 MHz input with TTL levels.

The functions are selected by links on the host computer. The user
should ensure that the links are correct for a given application and
that proper termination is provided.

18 nROMSTB/nCRTCRST
This has different functions on the Electron and Master 128:

On the Electron:

nROMSTB is an active low input using TTL levels which selects
the location &FC73. This is intended to be used as a paging
register.

On the Master 128:

nCRTCRST is an active low output signal meeting TTL levels of
the system CRTC reset input. It is provided for use in genlock
applications.

19 ADOUT - System audio output
This is the filtered output of the sum of all audio inputs to the host
computer. No significant load should be taken from this node.

20 AGND - Audio Ground
This is the zero volt return for ADOUT. It should be used instead
of the system zero volt connection to reduce audio noise.

21 ADIN - Cartridge audio output

In the Electron:
This is merely a connection from one cartridge to the other.

248

In the Master 128:

This is an output to the host computer audio circuitry. It 'sees' an
impedance of at least 1.0kOhms. Two

cartridges with audio output should not be inserted into the host
computer at the same time.

22 0V - Zero volts
This is the system earth return for digital signals.

249

SIDE 'B'

1 +5V - Power supply

This is the system logic supply rail. No more than 150mA should
be drawn by a cartridge in a fully configured Master 128
computer, ie with internal Second Processor fitted. No more than
10mA should be drawn by a cartridge fitted to the Electron.

2 A10 - Address line 10 : Input with TTL levels

3 D3 - Data bus line 3 : Input/Output with TTL levels
4 A11 - Address line 11 : Input with TTL levels

5 A9 - Address line 9 : Input with TTL levels

6 D7 - Most significant data bus line : Input/Output with TTL
levels

7 D6 - Data bus line 6 : Input/Output with TTL levels
8 D5 - Data bus line 5 : Input/Output with TTL levels
9 D4 - Data bus line 4 : Input/Output with TTL levels

10 nOE2 - Output Enable : Input with TTL levels

This line provides an additional active low output enable for
ROMs in the Electron. This corresponds to ROM position 13 and
consequently responds quickly to service calls. it is low during the
active low portion of PH12. It is not guaranteed to be high at other
times.

LPSTB - Light pen strobe

A connection with a pull up to +5V is provided to the CRTC light
pen strobe and system interrupt structure. When an on-board link
is removed, this connection is merely a link from one cartridge to
the other.

11 BA7 - Buffered address line 7 : Input with TTL levels
The buffered address lines hold addresses valid for 125ns after
PH12 goes low. They are not buffered or held valid for an
extended period in the Electron.

250

12 BAG - Buffered address line 6 : Input with TTL levels
13 BAS - Buffered address line 5 : Input with TTL levels
14 BA4 - Buffered address line 4 : Input with TTL levels
15 BA3 - Buffered address line 3 : Input with TTL levels
16 BA2 - Buffered address line 2 : Input with TTL levels
17 BA1 - Buffered address line 1 : Input with TTL levels
18 BAO - Buffered address line 0 : Input with TTL levels
19 DO - Data bus line 0 : Input/Output with TTL levels
20 D2 - Data bus line 2 : Input/Output with TTL levels
21 D1 - Data bus line 1 : Input/Output with TTL levels
22 0V - Zero volts

This is the earth return for digital signals.

Where two or more cartridges are fitted, any host computer links
affect ALL cartridges.

251

Appendix F — Complete circuit diagram

sv B

res ["nor FiTTED
K7

By

Rre7 [Nt FITTED
X7

-5
B

Res| Rr70 [|Nor FiTTED
4K7

NOT FITTED

a7
8 fap ¢
2 0L
3 0L 3
= 0
caps toce OF APS LOCK
VOt [-
£ ovoleon | 12452
o 2Ly
H | p—2a
z |
e | b—1d
° i1 e
H .5 Llae
2 e B 26119
o A0 O | 254410
= A1 O 3 a1
= a2 TA Nk,
s A3 .
A O H ov I —
as O & | s
as O e PO
a Ol <
A O o —
A9 Ol 8 t 03
a0 o I 39]°%%
an O |]
a2 I ¢
A O S
3
(5 N
< [Sous
iRC
s s o] elow 1c1
ncen
PL3 HITACHI | TosHiBA
FEa —o-° cLoc
+sv OVt LKINF ne i oo i
hee 2
(-} Axig A
- P 5[)
[Tev X 5V L
ov 0 16MHZ
I —_— R71
! & Ax 0 !
| Oiour = e R__30R R2 _30R| c 3k3
| T T P s R
-sv | &
b e €3 (a0l a8
+5v ov (s 100pF 1Cg ics +5v OV -sv
RETURN @—— ————————
] 4 mso US04 WS04 4
i ilnﬁ ‘i
anz
5%
sio
Sel
5
2
Sv]ICha ov [-SVTvPE PL1 EXPANSION CONNECTOR
v A2 14 [7eL586 TES -
7 it @ racses | "0
o T4 [74500 | ! CAPACITORS €1,C2,C7.C11 &.C25 -5y
£, Ve [7is00] ELECTROLYTICS CAN BE INTERCHANGED b
AT i Jrucsos | FOR TANTS (SEE PiL)) 3 e wop, ice a
61 1508 | 2 CAPACITORS C20 & CZ2 HAVE DUAL LEAD S W04 TS
e REA PITCHES (SEE PIL) o
S0 3 ALL DIODES ARE ING148
2 SPARE
7415163 T 4 FIT 1C4,5.6 £7 OR IC20(0PTION)
741500 I
757
S
TM32¢_ 71 i

252

ic13

veer veez veez D R73
CAS ouT o0 J
R6 0s.
6K CASSETTE

CONNECTOR

SOUND

POR
pEy
a8 e 35
I 1c1s
Sy & 1
s | [
8ul _DL 741508 Sk
12
BLUE VIDEO OUT
A \ .
2 It~ GREEN
3 & i
B 13 + BED +5v
<! IR14 ‘WI R R
neen 4 18 O] =
i "
cLock GE LD o 0]
1 3KITIKO T 1KS - C22
R26 R4l TANT
4% 67 NF TaruF |
I K2 I
ov vee SK4
UHE our
|cn Joweeduuizas-e3s PaL
il ICIBNF °2 = [SELECT |UM622 LAZ/INTST
> s B
1en i T
7LS08 "o HSTh _ "
8 C% fe)
Q u 100nF LKS
330K T Q !
13 1oV
BLUE 7 R38 410 5o som
icrs NTSC ONLY
wsss | 0 > 1 _
0 o[oo
. | Hls00 |
741586 ' a RS2 5

1016
c1s 1
74586 IF} W mm 0

>3 i 1C1€ 1
15 1
ey %LT
RSS
6 33
L 1CT6 !
1500 i
= s X _eson
: icie
i LSOO Rs7 |
:Li L
i

NOT FITTED
WSO on wrsC

Main PCB Circuit Diagram

253

Appendix G — Hardware expansions

It is beyond the scope of this manual to provide technical details
on all of the available add-on hardware for the Electron, except
for certain aspects of the official Plus 1 and Plus 3 units. To obtain
this information, reference must be made to the relevant manuals
supplied with the hardware.

The following tables provide a summary of the main hardware
expansions available for the Electron.

General interface units

Manufacturer | Name Facilities Type
Acorn Plus 1 2x cartridge | Module
slots
Printer port
Joystick port
Andyk RS423 RS423 Cartridge
Bud Commander 3 | Joystick port | Module
First Byte Printer Printer port Module
interface
First Byte Joystick Joystick port | Module
Interface
Jafa RS423 RS423 Cartridge
Lindy Expansion unit | 2x cartridge | Module
slots
Printer port
Mushroom Printer User port Module
interface and Printer port
user port
Pace Comms unit RS423 Cartridge
Serial printer
port
Power Joystick Joystick port | Module
interface

254

Manufacturer | Name Facilities Type
PRES APl 2x cartridge | Module
slots
Printer port
Joystick port
PRES 1Mhz bus 1Mhz bus Cartridge
PRES AP5 Tube, IMhz | Cartridge
bus, User
Port
PRES AP6 6x ROM Internal
slots upgrade to
Plus 1/AP1
PRES User Port User port Cartridge
Project User Port User port Cartridge
Expansions
Ram Joystick Joystick port | Module
electronics interface
Slogger Plus 2 3x ROM Module
sockets and
2x cartridge
slots
Slogger Rombox 8x ROM Module
sockets
Slogger Rombox+ 4x ROM Module
sockets, 2x
cartridge
slots
Slogger Joystick Joystick port | Cartridge

interface

Disc interfaces

Manufacturer | Name Facilities Type
Acorn Plus 3 ADFS 1D00 | Module
Cumana Disc interface | CDFS E00 Cartridge
John Kortink GOMMC MMC Module
interface
PRES AP3 ADFS 1D00 | Cartridge
PRES AP4 DFS E00 Cartridge
Slogger Pegasus 400 DFS E00 Cartridge
Solidisk Disc Interface | DFS E00 Cartridge
ADFS 1D00
RAM expansion units / Second Processors
Manufacturer | Name Facilities Type
Jafa Shadow RAM | 32k shadow | Internal
board RAM/
Turbo mode
PMS E2P 6502 second | Cartridge
processor inc
64k RAM
PRES Advanced 32k Cartridge
Battery
Backed RAM
PRES Advanced s/w | 16k SWR Cartridge
RAM
PRES Advanced 256k Cartridge
Quarter Meg
RAM
PRES AP7 32k Cartridge
Slogger 32k s’w RAM | 32k SWR Cartridge
Slogger Master RAM 32k shadow | Internal
board RAM / Turbo
mode

256

Sound expansions

Manufacturer | Name Facilities Type

Complex Sound 4 channel Cartridge

sound systems | expansion sounds

Project Sound 4 channel Cartridge

expansions expansion sounds

Database Sound Master | Volume Connects

electronics control internally

Millsgrade Voxbox Speech unit | Module

Display/Other

Manufacturer | Name Facilities Type

Jafa Mode 7 Provides Module
adaptor Mode 7

Nidd Valley Slomo Slows down | Module

machine

257

Bibliography

Acorn User Magazine, published monthly, Addison Wesley

6502 Assembly Language Programming, L.A. Leventhal,
OSBORNE/Mc Graw Hill, Berkeley, California

Acorn Electron Expansion Application Note, Acorn Computers
Limited, 1984

Acorn Electron User Guide, Acorn Computers Limited,
Cambridge, 1983

Beebug Magazine, published every five weeks, BEEBUG, PO Box
109, High Wycombe, Bucks.

Programming the 6502, Rodnay Zaks, Sybex, 1980

R6522 Versatile Interface Adapter Data Sheet, Rockwell
International, 1981

TTL Data Book, Texas Instruments Inc., 1980

The BASIC ROM User Guide for the BBC Micro and Acorn
Electron, Mark Plumbley, Adder Publishing/Acornsoft Limited,
Cambridge, 1984

The Advanced User Guide for the BBC Microcomputer, Bray,
Dickens and Holmes, Cambridge Micro Centre, 1983

Electron User, Database Publications

Acorn Electron World, Dave Edwards, (Website)

258

Glossary

Address Bus — a set of 16 connections, each one of which can be
set to logic 0 or logic 1. This allows the CPU to address &FFFF
(65536) different memory locations.

Active low — signals which are active low are said to be valid
when they are at logic level 0.

Analogue to digital converter (ADC) — this is a chip which can
accept an analogue voltage at one of its inputs and provide a
digital output of that voltage.

Asynchronous — two devices which are operating independently
of one another are said to be operating asynchronously.

Baud Rate — used to define the speed at which a serial data link
transfers data. One baud is equal to 1 bit of data transferred per
second. The standard cassette baud rate of 1200 baud is therefore
equal to 1200 bits per second.

Bidirectional — a communication line is bidirectional if data can
be sent and received over it. The data bus lines are bidirectional.

Bit of memory — this is the fundamental unit of a computer’s
memory. [t may only be in one of two possible states, usually
represented by a 0 or 1.

Buffer — a software buffer is an area of memory set aside for
data in the process of being transferred from one device or piece
of software to another.

Byte of memory — 8 bits of memory. Data is normally
transferred between devices one byte at a time over the data bus.

Chip — derived from the small piece of silicon wafer or chip
which has all of the computer logic circuits etched into it. A chip
is normally packaged in a black plastic case with small metal
leads to connect it to the outside world.

259

Clock — it is necessary to provide some master timing reference
to which all data transfers are tied. The clock provides this
synchronisation. A 16MHz clock is applied to the ULA. From this,
the clock timing for the 6502 CPU is derived. See chapter 15 for a
discussion of the clock timing requirements.

CPU (Central processing unit) — the 6502A in the Electron, It
is this chip which does all of the computing work associated with
running programs.

Cycle — this is usually applied to the 6502 clock. A complete
clock cycle is the period between a clock going high, low, then
high again. See clock.

Data bus — a set of eight connections over which all data
transactions between devices in the BBC microcomputer take
place.

Field — a space allocated for some data in a register, or in a
program listing, For example, in an Assembly language program,
the first few spaces are allocated to the line number field, the next
few spaces are allocated to the label field, and so on.

Handshaking — this type of communications protocol is used
when data is being transferred between two asynchronous devices.
Two handshaking lines are normally required. One of these is a
data ready signal from the originating device to the receiving
device, When the receiving device has accepted the data, it sends
a data taken signal back to the originating device, which then
knows that it can send the second lot of data and so on. This type
of handshaking is used with the RS423 serial interface option.

High — sometimes used to designate logic ‘1’
Interrupt — this signal is produced by peripheral devices and is
always directed to the 6502A CPU. Upon receiving an interrupt,

the 6502 will normally run a special interrupt routine program
before continuing with the task in hand before it was interrupted.

260

Latch — a latch is used to retain information applied to it after
the data has been removed, It is rather like a memory location
except that the outputs from the bits within the latch are connected
to some hardware.

LED (Light emitting diode) — acts like a diode by only allowing
current to pass in one direction. Light is emitted whilst current is
passed.

Low — sometimes used to designate logic ‘0’.

Machine code — the programs produced by the 6502 BASIC
Assembler are machine code. A machine code program consists of
a series of bytes in memory which the 6502 can execute directly.

Mnemonic — the name given to the text string which defines a
particular 6502 operation in the BASIC assembler. LDA is a
mnemonic which means load accumulator.

Opcode — the name given to the binary code of a 6502
instrucction, For example, &AD is the opcode which means load
accumulator.

Open Collector — this is a characteristic of a transistor output
line, It simply means that the collector pin of the transistor is not
driving a resistor load, ie it is open.

Operand — a piece of data on which some operation is
performed. Usually the operand will be a byte in the accumulator
of the 6502, or a byte in some memory location.

Page — a page of memory in the 6502 memory map is & 100
(256) bytes long. There are therefore 256 pages in the entire
address space. 256 pages of 256 bytes each account for the 65536
bytes of addressable memory.

Parallel — parallel data transfers occur when data is sent along

two or more lines at once. The system data bus for example has
eight lines operating in parallel.

261

Peripheral — any device connected to the 6502 central processor
unit, such as the Plus 1, Plus 3 interface etc., but not including the
memory.

Poll — most of the hardware devices on the Electron expansion
modules will generate interrupts to the 6502 CPU. If interrupts
have been enabled, the CPU has to find out which device
generated the interrupt. It does this by successively reading status
bytes from each of the hardware devices which could have caused
an interrupt. This successive reading of devices is called polling.

RAM (Random Access Memory) — the main memory in the
Electron is RAM because it can be both written to and read from.

Refresh — all of the RAM in the Electron is dynamic memory.
This means that it has to be refreshed every few milliseconds so
that data is not lost. The refreshing function is performed by the
ULA as it accesses memory regularly for video output.

Register — the 6502 and the Electron ULA contain registers.
These are effectively one byte memory locations which do not
necessarily reside in the main memory map. All software on the
6502 makes extensive use of the internal registers for
programming. The bits in most peripheral registers define the
operation of a particular piece of hardware, or tell the processor
something about that peripheral’s state.

Rollover — this is a function provided on the keyboard to cope
with fast typists. Two keys can be pressed at once. The previous
key with a finger being removed, and the next key with the finger
hitting the key. The software in the operating system ensures that
rollover normally operates correctly.

ROM (Read Only Memory) — as the name implies, ROM can
only be read from and cannot be modified by being written to. The
MOS and BASIC are contained in one large 32K byte ROM chip.

Serial — data transmitted along only one line is transmitted
serially. Serial data transmission is normally slower than parallel
data transmission, because only one bit instead of several bits are
transferred at a time. Communication with the cassette interface is
carried out serially.

262

Stack — a page of memory in the 6502 used for temporary
storage of data. Data is pushed onto a stack in sequence, then
removed by pulling the data off the stack. The last byte to be
pushed is the first byte to be pulled off again. The stack is used to
store return addresses from subroutines, Page &01 is used for the
stack in the Electron.

ULA (Uncommitted Logic Array) — this large chip is
responsible for most of the system control on the Electron. It
contains a large number of logic gates. The connection between
the gates is defined when the chip is manufactured.

263

Index

264

IBOOT status
k
%/
filing system call
*BASIC
*CAT
filing system call
*CODE
*EXEC
close files
file handle
*FX
*HELP
*KEY
*LINE
*LOAD
*MOTOR
*OPT
filing system call
*ROM
data format
example ROM
get byte call
initialise ROM call
*ROM filing system
*RUN
filing system call
*SAVE
*SPOOL
close files
file handle
*TAPE
*TV
1MHz bus
1MHz clock generation
6502
stack area
6502 clock speed

106

108
14,49,113

15,113

15,50
15,50
106
15,51
176
178
175
158,174
172

108

15,51

15,52
227
223

188
222

265

A

ADC

channel read

conversion complete event
conversion type

current channel

maximum channel number
Arguments (files)
Auto-boot

ROM call

Auto-repeat

delay

period

B

BASIC
paged ROM socket
BEL
channel
duration
frequency
SOUND information
Blank/restore palette
BPUT
fast tube
BREAK
effect
interception
last type
Break-points
BRK
paged ROM active
Service ROM call
vector
BRKV
Buffers
character entry event

120

154

28,66
29,66

117

155
116
116

120

count/purge

examine status

flushing

get character

Input full

input interpretation

insert character

insert value

maintenance vectors
output empty event

printer character ROM call
remove value

RS423 character ROM call
sound purged

status

C

Cassette

filing system select

reading register

switch relay

timeout counter

ULA shift register

writing register
Cassette/ROM flag
Character

read definition
Character entering buffer event
Character interpretation
Circuit diagram
Clock

1MHz generation

read

write
Close SPOOL/EXEC files
CNPV
Command line interpreter
Connectors

expansion

Plus 1 ROM
Count/purge buffer
Counter

CFS timeout

flash

ULA register
Country code
Cursor

editing status

enable/disable editing

128

30,34

120

50,127

126
120
160
127
160
161

212

209
213

120

250

223

128

217
243
128

211

266

graphics position
position
read character

D

Default vector table
Delays to interrupts
Deselect filing system

E

Econet

error event

keyboard disable

OS call interception

read character interception
vector

write character interception

zero page workspace
Editing using cursor
End-of-file check
ENVELOPE

OSWORD command
Error handling
ESCAPE

character

effect

event

key status

terminating input
Escape character
ESCAPE condition

clear

set
Event

vector
Events

disabling

enabling

generation using OSEVEN
EVNTV
Examine buffer status
Expansion connector
Explode soft character RAM
Extended vectors
External clock generation
External hardware

134
223
108

121

123
184

25,81
44,106

116

68,79

121

42,43

119

119
217
171,189

223
217

F

Fast tube BPUT
File options select
Files
attributes
close SPOOL/EXEC
EOF check
EXEC handle
open/close
read byte
read/write
read/write group of bytes
SPOOL handle
system calls
write byte
Filing system
deselect
handle range
initialise
*ROM
workspace claim
zero page workspace
Filing system calls
Firm keys
language call
pointer
status
string
Flag
*ROM/*TAPE
printer destination
RS423 control
RS423 use
Tube presence
user
Flashing colours
counter
mark duration
reset cycle
space duration
Flushing buffers
FRED

G

Get byte (OSBGET)
Get character

at cursor

from buffer

96,98
106

105
100

102

101
108
108
160
172

153
185

149

23,82
27,66
28,65

30,34
53,227

100

267

from input stream
GSINIT
GSREAD

H

Handle

filing system
Hardware

external

internal

introduction
Hardware scroll example
High-order address
HIMEM

read

I

/O read/write
/O processor
read memory
write memory
INKEY
Input buffer full event

Input character interpretation

Input line
Input source flags
Input stream
selection
Insert value into buffer
INSV
Internal hardware
Interrupts
delays
example
interception
ROM call if unknown
ULA mask
vectors
Interval timer
Interval timer event
IRQ
input pin
ULA register
IRQ1V
IRQ2V

108

216
206
201
208

199

120

127
127
206
135
222
141
139
155

119
121
220
206

119,139
119.139

J

JIM

K

Key number table

Keyboard

auto-repeat delay
auto-repeat period
disable

reading direct from ROM

scan
soft key status
status byte
status LEDs
translation table address
vector
Keys pressed information
KEYV

L

Language
exclusive workspace
zero page workspace
Language entry
Language ROMs
Line filling
Line input OS WORD

M

Memory clear on BREAK
Memory usage
MODE

read

N

NETV
NMI

28,66
29,66

216

40,46

125

125

188
195

148
232

183

123
136

268

blank/restore palette

claim service ROM call 158
input pin 220
release service ROM call 158
routine area 197
zero page workspace 184

O

One megahertz bus 227
One megahertz clock generation 223
Operating system
calls
commands
high water mark (OSHWM)
variables
vectors 110
workspace 81,85
zero page workspace 186
Operating system call summary 241
OS commands
OS version 22,46
OSARGS
OSASCI
OSBGET 100
OSBPUT 101
OSBYTE
summary
OSCLI
OSEVEN
OSFILE
OSFIND 105
OSFSC 106
OSGBPB 102
OSHWM 190
primary
read 47,60
soft character explosion
OSNEWL
OSRDCH
OSRDRM
OSWORD
summary
OSWRCH
Output buffer empty event 120
Output stream
read/write
selection

P

PAGE

Paged mode lines

Paged ROMs
active at BRK
allocation
BASIC socket
copyright string
current language number
enter language
extended vectors
firm keys
header format
info table address
issue service call
language entry
language ROMs
OS commands
paging register
pointer table address
polling semaphore
priority (Plus 1)
read byte from
selection
selection register
service entry
service ROMs
title string
Tube relocation address
type byte
version number
version string
workspace table

143
227

147

171,197
149
144

144
148

225

35,62
226

225
211
145
152
146
147
145
146
147
189

Paged ROMs connector (Plus 1) 243

Palette
blank/restore
read
ULA register
write

Pixel value

PLOT numbers

Plus 1
disabling
page &D usage
printer buffer example
ROM connector
ROM priority

Polling
semaphore

54,214

232

229
199
162
243
227

35,62

269

service ROM call
POS
Printer

buffer example

character in buffer ROM call

destination flag

driver going dormant
ignore character

output destination selection
user vector

R

Read byte from ROM
Read character (OSRDCH)
Read character definition
Read input line
Remove value from buffer
REMV
Reset output pin
ROM accessing
ROM connector (Plus 1)
ROM filing system

select
ROM/Cassette flag
RS423

baud rate

control flag

error event

mode

use flag

workspace

S

Screen memory
Screen
blank/restore palette
pixel value
Screen mode dependent clock
Screen mode layouts
Select input stream
Select output stream
Serial ROMs
Service call semaphore
Service ROM call
Service ROM calls
*HELP

160

130
160

26,84

121

127
127
220
222
243

121

188

191

222
234

172
35,62

156

*ROM get byte

*ROM initialise

absolute workspace claim
auto-boot

BEL request

BRK executed

character in printer buffer
character in RS423 buffer
font expl./impl. warning
initialise filing system
NMI claim

NMI released

no operation

poll (100Hz)

relative space claim
SOUND buffer purged

SPOOL/EXEC closure warning

Tube main initialisation
Tube post-initialisation
unknown interrupt
unrecognised *command
unrecognised OSBYTE
unrecognised OS WORD
vectors claimed
Service ROM example
Service ROMs
SHEILA
addresses
Soft characters
explode RAM
explosion state
Soft keys
*KEY
consistency
cursor keys
length
pointer
reset
status
Sound
BEL
OSWORD command
output pin
semaphore
suppression
Sound system
external BEL request
external buffer purge
external flag
reset internal
select external

159,175
158,174
153,157
154
161
155
160
160
159
160
158
158
153
160
153
161
159
161
161
155
154
156
156
159
162
152

205

219

161
161

270

using ULA register

workspace
Speech

processor presence

suppression
Speech processor
Stack

memory usage
Start up options
String input

T

Timer
interval event

Timer switch state

Tube
fast BPUT
main initialisation call
post-initialisation call
presence flag
read I/O processor memory

write I/O processor memory

U

ULA
addresses
interrupt mask
RAM copy
ULA registers
cassette shift register
counter
interrupt clear and paging
IRQ status/control
misc. control
palette
screen start address
Unrecognised * command
Unused vectors
UPTV
User
event
flag
vector
User print vector

213
195

188

121

161
161

205

209
211
210
206
213
214
207
106
134
121

121
23,82

113

121

USERV
execute code
Utility zero page workspace

\%

VDU
abandon queue
extension vector
paged mode lines
queue items
read graphics cursor positions
read palette
read status
read variable
variables origin
write palette
VDU code summary
VDUV
Vectors
BRK
buffer maintenance
default table
Econet
event
extended

113

184

124

230
124
110
116
126
134
121
119
171

271

interrupt
interrupt
keyboard
summary
unused
user
user print
VDU extension
Version
operating system
operating system
Vertical sync
event
wait
VPOS

W

Wait for vertical sync

Write a new line (OSNEWL)
Write character (OSASCI)
Write character (OSWRCH)

Z

Zero page usage

119
139
125
241
134
113
121
124

120

184

Acorn Electron
Advanced User Guide

About this book

This guide describes the facilities of the Acorn Electron in the detail
required by the serious programmer, and acts as a supplement to the
‘Acorn Electron User Guide'.

Both the software and the hardware aspects of the Acorn Electron
system are covered, and extensive indexing and cross-referencing
make the information readily accessible.

Among the many topics covered are:
*FX/OSBYTE calls
paged ROM software
the use of events and interrupts
programming the ULA
interfacing to the expansion bus
a complete memory map :
a full circuit diagram.

Acornsoft Limited, Betjeman House, 104 HiHs.Road,
Cambridge CB2 1LQ, England. Telephone (0223) 316039

ISBN 0907876 17 X

lectron Advanced User Guide - Changes

Second edition Draft 1 May 2008

Chapter | Changes Source
3 Added detail for *FX16 and *FX17 | Plus 1 manual
when Plus 1 fitted
Added *FX163.
Changed definition of *FX225,226
and 227.
Updated definition of *FX128
3 Added *FX178 Michael Jakobsen,
Electron User
August 1986
14 New section 14.2 on keyboard Michael Jakobsen,
mapping to ROM Electron User
August 1986
15 New section 15.6 on use of Ato D | Michael Jakobsen,
converter. Electron User
August 1986
15 New section 15.7 on disabling the | Electron User
Plus 1 October 1984

Second edition (final) June 2008

Chapter | Changes Source

12 Corrected references to “Chapter NA
X”

12 Reference added to section 15.7 for | NA
switching off Plus 1

12 Memory map diagram improved NA

12 Memory usage explained in more BBC micro AUG
detail pages 2-&D

All Formatting improved to match NA
original
App F | Circuit diagram changed to match | Electron AUG
original book
Osbyte | Added Plus 3 status bit information. | Acorn Plus 3 guide
&FF
App G | New appendix of expansion units Acorn Electron
World
Misc Format improved and many typos NA
fixed
- Covers included NA
- Contents page expanded to show NA
section numbers and titles
App E | New diagram and details added of | Acorn App Note 14

pins.

(1992)

	Introduction
	Operating system routines and vectors
	Paged ROM firmware
	Memory usage
	Appendices

	Enable/disable cursor editing
	Select printer destination
	Set character ignored by printer
	Set RS423 baud rate for receiving data
	Set RS423 baud rate for data transmission
	Set duration of the mark state of flashing colours
	Set duration of the space state of flashing colours
	Set keyboard auto-repeat delay
	Set keyboard auto-repeat period
	Enable events
	Flush selected buffer class
	Select ADC channels which are to be sampled
	Force an ADC conversion
	Reset soft keys
	Wait for vertical sync
	Explode soft character RAM allocation
	Flush specific buffer

	Increment paged ROM polling semaphore
	Decrement paged ROM polling semaphore
	Select external sound system
	Blank/restore palette
	Reset internal sound system
	Read VDU status
	Reflect keyboard status in keyboard LEDs

	Close any SPOOL or EXEC files
	Write current keys pressed information
	Keyboard scan
	Keyboard scan from 16 decimal

	Inform operating system of printer driver going dormant
	Clear ESCAPE condition
	Clear ESCAPE condition with side effects

	Check for end-of-file on an opened file
	Read ADC channel (ADVAL) or get buffer status

	Read machine high order address
	Return current OSHWM
	Return HIMEM
	Read character at text cursor position and screen MODE
	Insert value into buffer
	Enter language ROM
	Issue paged ROM service call
	Get character from buffer
	Read or Write to mapped I/O
	Examine Buffer status
	Insert character into input buffer, checking for ESCAPE
	Reset flash cycle
	Fast Tube BPUT
	Read from speech processor
	Write to speech processor
	Read VDU variable value
	Disable/Enable printer and ADC
	Read start address of OS variables
	Read address of ROM pointer table
	Read address of ROM information table
	Read address of keyboard translation table
	Read VDU variables origin
	Read/write CFS timeout counter
	Read input source flags
	Read/write RS423 mode
	Read character definition explosion state
	Read cassette/ROM filing system flag
	Read/write timer paged ROM service call semaphore
	Read number of ROM socket containing BASIC
	OSWORD call with A=&0 Read line from input
	OSWORD call with A=&5 Read I/O processor memory
	OSWORD call with A=&6 Write I/O processor memory
	OSWORD call with A=&7 SOUND command
	OSWORD call with A=&8 Define an ENVELOPE
	OSWORD call with A=&A Read character definition
	OSWORD call with A=&C Write palette
	X+Y contain the address of a parameter block

	Bit Meaning if set
	Reason code &05: Unknown interrupt
	Reason code &0D: ROM filing system initialise
	Reason code &15: 100 Hz poll

	SHEILA &FE04 - Cassette data shift register
	SHEILA &FE05 - Interrupt clear and paging register
	Interrupt clearing
	Paging ROMs
	Cassette motor control, bit 6
	CAPS LOCK LED control, bit 7

