


The
Advanced

User
Guide

for the Acorn Electron

Adrian C. Dickens BA,
Churchill College,
Cambridge University

Mark A. Holmes BA,
Fitzwilliam College,
Cambridge University

Published by Adder Publishing, Cambridge



The “Acorn Electron Advanced User Guide” is published by Adder Publishing for 
Acornsoft Limited.

Acornsoft Limited, Betjeman House, 104 Hills Road, Cambridge, CR2 1LQ,
England. Telephone (0223) 316039
ISBN 0907876 17 X

Copyright © 1984 Adder Publishing

Adder Publishing, PO Box 148, Cambridge, CB1 2EQ
ISBN 0 947929 03 7

First published September 1984
Second edition June 2008

The Authors would like to thank Nigel Dickens, Tim Dobson, Steve Furber, Tim
Gleeson, David Johnson-Davies, Dr John Horton, Zahid Najam, Mark 
Plumbley, John Thackeray, Ken Vail, Geoff Vincent, Adrian Warner, Leycester 
Whewell, Albert Williams and everyone else who helped in the production of 
this book.

All rights reserved. This book is copyright. No part of this book may be copied 
or stored by any means whatsoever whether mechanical, photographic or 
electronic, except for private or study use as defined in the Copyright Act. All 
enquiries should be addressed to the publishers. While every precaution has 
been taken in the preparation of this book, the publisher assumes no 
responsibility for errors or omissions. Neither is any liability assumed for 
damages resulting from the use of information contained herein.

The Authors gratefully acknowledge Acorn Computers Limited for their kind 
permission to reproduce the complete Electron circuit diagram. The Authors 
would like to point out that Acorn Computers reserve the right to make 
improvements in the specification of its products. Therefore the circuit diagram
and other contents of this book may not be in complete agreement with the 
product supplied.

Please note that within this text the terms Tube, Econet and Electron are 
registered tradenames of Acorn Computers Limited. All references in this book 
to the BBC Microcomputer refer to the computer produced for the British 
Broadcasting Corporation by Acorn Computers Limited.

This book was prepared using the Acornsoft VIEW wordprocessor on the BBC
Microcomputer and then computer typeset by Parker Typesetting Service,
Leicester.
Printed in Great Britain by The Burlington Press Ltd. Foxton, Cambridge.
Book production by Adder Publishing.

2



Contents

Introduction

1 The Acorn design philosophy 7

Operating system routines and vectors

2 Operating system calls 9
2.1 OSWRCH Write character routine 10
2.2 Non-vectored OSWRCH 10
2.3 OSRDCH Read character routine 11
2.4 Non-vectored OSRDCH 11
2.5 OSNEWL Write a newline routine 12
2.6 OSASCI Write character routine 12
2.7 GSINIT General string input initialize 13
2.8 GSREAD Read character from string 13
2.9 OSRDRM Read byte from paged ROM 14
2.10 OSEVEN Generate an event 15
2.11 OSCLI Pass string to the CLI 15

3 OSBYTE calls 16

4 OSWORD calls 87

5 Filing system calls 94
5.1 OSFILE Read/write entire file 95
5.2 OSARGS Read/write file attributes 98
5.3 OSBGET Get a single byte 100
5.4 OSBPUT Write a single byte 101
5.5 OSGBPB Read/write a group of bytes 102
5.6 OSFIND Open or close file 105
5.7 OSFSC Misc filing system control 106

6 Operating system vectors 110
6.1 The User vector 113
6.2 The BRK vector 116
6.3 Interrupt vectors, IRQ1V & IRQ2V 119

3



6.4 The event vector, EVNTV 119
6.5 User print vector, UPTV 121
6.6 Econet vector, NETV 123
6.7 VDU extension vector, VDUV 124
6.8 Keyboard vector, KEYV 125
6.9 Buffer maintenance vectors 126
6.10 Unused vectors 134
6.11 The default vector table 134

7 Interrupts 135
7.1 Introduction 135
7.2 Interrupts on the Electron 138
7.3 Using NMIs 138
7.4 Using IRQs 138
7.5 Intercepting interrupts 139

Paged ROM firmware

8 Paged ROM formats 143
8.1 Paged ROM header format 144
8.2 Language entry 144
8.3 Service entry 145
8.4 ROM type byte 145
8.5 Copyright offset pointer 146
8.6 Binary version number 146
8.7 Title string 146
8.8 Version string 147
8.9 Copyright string 147
8.10 Tube relocation address 148

9 Language ROMs 148
9.1 Language initialization 148
9.2 Firm keys 149
9.3 Language ROM compatibility 150

10 Service ROMs 152
10.1 Paged ROM service calls 152
10.2 Service ROM example 162
10.3 Extended vectors 171

11 *ROM filing system ROMs 172
11.1 Converting files to *ROM format 173
11.2 The header code 173
11.3 Service call &D 174

4



11.4 Service call &E 175
11.5 *ROM data format 176
11.6 Example 178

Memory usage

12 Memory allocation and usage 183

Hardware

13 An introduction to hardware 201

14 Inside the Electron 204
14.1 The ULA and its registers 204
14.2 The keyboard 216

15 Outside the Electron 217
15.1 Introduction 217
15.2 The expansion connector 217
15.3 Designing circuits 222
15.4 Sideways ROMs 225
15.5 The 1MHz bus 227
15.6 The A to D converter 229
15.7 Disabling the Plus 1 229

Appendices

A VDU code summary 230
B PLOT routine functions 232
C Screen MODE layouts 234
D OS calls and vectors 241
E Plus 1 ROM connector 243
F Complete circuit diagram 250
G Hardware expansions 252

Bibliography 256

Glossary 257

Index 262

5



Introduction
The Advanced User Guide for the Electron has been designed to 
be an invaluable reference guide for users of the Electron 
computer. The original Electron User Guide provides a 
description of BASIC on the Electron and reaches the point at 
which programming in Assembly Language is introduced, along 
with a very brief introduction to the available system calls. The 
Advanced User Guide takes over at this point by providing a 
thorough, well indexed and cross referenced description of all the 
available facilities and how to use them. This will allow the 
serious programmer to make the most of his/her machine, whilst 
keeping within the Acorn Guidelines to ensure compatibility with 
other machines in the Acorn BBC Micro series.

It is inevitable that a machine like the Electron should be partially 
overpowered by its big brother the BBC Micro. However, many 
of the facilities which are provided on the larger machine can also 
be added on to an Electron. A whole new series of operating 
system calls have been provided to take account of this, and are 
described within these pages.

What may not at first sight be so apparent is that in many ways the
Electron has more expansion potential than a BBC Micro! This is 
because all of the 6502 bus lines are available to expansion 
modules via the expansion connector. A full description of this 
connector, including interfacing details for paged ROMs and other
devices have therefore been included.

The authors have tried to provide a book which will be found by 
the side of all enthusiastic Electron programmers. All material is 
in an easily accessible referenced format. Where appropriate, 
examples are presented and discussed. In particular, there is a 
large section concerned with the use of paged ROMs. It is 
intended that this will help programmers to build up the necessary 
skills for producing their own exciting software in ROMs.

All of the information contained in this book has been checked on 
an Electron fitted with Electron OS 1.00 and BASIC 2. Where 
appropriate, an Electron Plus 1 expansion module was also used.

6



1 The Acorn Design 
Philosophy
A glance through the back pages of any microcomputer magazine 
will reveal a large number of machines ‘For Sale’. This is a 
reflection of the speed at which the industry moves; the all-new 
whizz-bang machine can become yesterday’s micro in as little as a
year. The manufacturer has to tread a careful path; on the one 
hand he is committed to improving his products, but on the other 
he must not render his existing range obsolete.

The Acorn design philosophy has been to produce a system right 
from the start which would allow for growth in both the software 
and hardware. All users should be aware of this if they wish their 
own software and hardware to be compatible with the complete 
range of available systems, from a humble Electron right up to a 
machine with Econet, second processor, hard disks etc. Ensuring 
compatibility is not hard, it simply requires a little self-discipline 
in your approach.

The rules as such are simple. If your software needs to access 
anything outside its own domain (that is the memory and other 
resources it has been provided with) then use the officially 
supported operating system routines. The second is to make no 
assumptions about the environment your program will run under. 
This includes the amount of memory available, the processor and 
any other software / hardware components which might be there. 
Run-time enquiries have been built into the system to allow you to
discover these facilities.

Programs which run in RAM, say a simple Basic program, may 
discover that there is not enough memory available for them. A 
test for this should be made at the start of the program, since they 
should not be allowed to crash and should never use any memory 
outside their allocation. Programs placed in ROM should not 
make assumptions about their eventual run-time environment 
either. They may find themselves copied over the Tube and 

7



running in RAM on another processor!

One of the most common situations on the BBC microcomputer 
where incompatibility arises, is where software is designed for use
on non-Econet machines and then used on such machines. This 
ultimately denies the software producer a sale and denies the 
Econet machine owner use of a particular program. This is a 
situation which can be avoided by intelligent software design and 
reasonable product testing. The Electron contains fewer pitfalls in 
this respect, but where software is destined for a wider 
distribution, the programmer should think about different machine
configurations and potential problems.

8



2 Operating System 
Calls
The list below contains all the Acorn supported operating system 
routines and their vectors which exist in the Electron OS 1.00. See
the User Guide for a general description of these calls.

2.1 OSWRCH Write character routine

Call address &FFEE Indirected through &20E

This routine outputs the character in the accumulator to the 
currently selected output stream(s).

On exit:
A, X and Y are preserved.
C, N, V and Z are undefined.

The interrupt status is preserved (though interrupts may be 
enabled during a call).

2.2 Non-vectored OSWRCH

Call address &FFCB

This call is normally made by OSWRCH. This call has no vector 
and so cannot be intercepted. Its use is not recommended for this 
reason.

9



2.3 OSRDCH Read character routine

Call address &FFE0 Indirected through &210

This routine reads a character from the currently selected input 
stream and returns it in the accumulator.

On exit:
C=0 indicates that a valid character has been read. C= 1 indicates 
that a character has not been read due to an error.

If an error should occur acknowledgement of the error condition 
should be made using OSBYTE &7E.

X and Y are preserved.
N, V and Z are undefined.

The interrupt status is preserved (though interrupts may be 
enabled during a call).

2.4 Non-vectored OSRDCH

Call address &FFC8

This call is normally made by OSRDCH, it is not available for 
interception and its use is not recommended by Acorn.

10



2.5 OSNEWL Write a newline routine

Call address &FFE7 Not indirected

This routine writes a line feed (&A/10) and a carriage return 
(&D/13) to the current output stream(s) using OSWRCH.

On exit:
A=&0D (13)
X and Y are preserved.
C, N, V and Z are undefined.

Interrupt status is preserved (though it may be enabled during a 
call).

2.6 OSASCI Write character routine,
OSNEWL called if A=&0D (13).

Call address &FFE3 Not indirected

This is a write character routine performing the same action as 
OSWRCH but which outputs a line feed and a carriage return in 
response to a carriage return character.

On exit:
A, X and Y are preserved.
C, N, V and Z are undefined.

Interrupt status is preserved (though interrupts may be enabled 
during a call).

11



2.7 GSINIT General string input 
initialise routine.

Call address &FFC2

The original intention was that this routine together with 
GSREAD would provide a standard string input facility for the 
use of filing system paged ROMs. It is now felt that this routine is 
unsuitable for that purpose and accordingly its use is not 
recommended.

This routine initialises a string for input prior to reading using
GSREAD.

Entry parameters:
String address stored in &F2 and &F3 plus offset in Y
C=0, if first space, CR or second ” terminates input
C=1, if first space does not terminate input

On exit:
Y contains the offset of the first non-blank character from 
the address contained in &F2 and &F3.
A contains the first non-blank character of string
Z flag is set if the string is a null string

2.8 GSREAD Read character from
string input routine.

Call address &FFC5

This routine is used to read characters from an input string after a 
GSINIT call. Control codes and non-ASCII values may be 
introduced into the input string by using an escape character, ‘|‘. 
The escape character followed by a letter gives a character value 
equal to the ASCII value minus 64 (&40). The escape character 
followed by a ‘1’ character gives a value of 128 plus the value of 
the next character in the string. An escape character followed by 
itself gives the escape character.

12



Entry parameters:
&F2, &F3 and Y set by GSINIT

C=0 String terminated by first space, carriage return or 
second quotation mark.
C=1 String terminated by carriage return or second 
quotation mark.

On exit:
A contains the character read from the string.
Y contains the index for the next character to be read.
C=1 if the end of string is reached.
X is preserved.

2.9 OSRDRM Read byte from paged 
ROM routine.

Call address &FFB9

This call returns a byte read from a paged ROM.

Entry parameters:
ROM number stored in Y.
Address stored in &F6 and &F7.

On exit:
A contains the value of the byte read.

This routine was included for the implementation of ROM filing 
system software in paged ROM and is not recommended for 
general use.

13



2.10 OSEVEN Generate an event routine.

Call address &FFBF

The user event may be generated using this routine. Software 
replacing OS routines should generate the appropriate events by 
making this call.

Entry parameter:
The event number should be placed in Y.

On exit:
C=0 if and only if the event was enabled.

2.11 OSCLI Pass string to the CLI.

Call address &FFF7 Indirected through &208

This routine is implemented on the BBC micro, the Electron and 
the Tube operating system.

This call provides the machine code user with a convenient 
method of performing any of the * commands that the system 
provides from Basic. The command required is placed in a string 
as normal text and this call is made.

If the string passed to the CLI is not terminated by a carriage 
return within 255 bytes this routine has undefined effects.

The following commands are recognised:

* String escape character rest of command ignored
*. treated as a *CAT command
*/ treated as a *RUN command
*BASIC select BASIC as current language
*CAT issue catalogue request to filing system
*CODE passed to user vector (see chapter 6)
*EXEC select text file as input stream

14



*FX issue OSBYTE call (no registers returned)
*HELP issue paged ROM service call 9, see chapter 10
*KEY take rest of line as text for soft key
*LINE passed to user vector (see chapter 6)
*LOAD issue load request to filing system
*MOTOR open/close cassette motor relay
*OPT issue option request to filing system
*ROM select *ROM filing system
*RUN issue load and execute request to filing system
*SAVE issue save request to filing system
*SPOOL include text file in output stream
*TAPE select tape filing system
*TV ignored by the Electron

These commands may be abbreviated by taking the first few 
letters and terminating with a ‘.’ character. Parameters may be 
passed in the text following the command.

Other unrecognised commands are first offered to paged ROMs 
(see section 10.1) and are then offered to the currently selected 
filing system via the filing system control vector (see chapter 5).

Entry parameters:
X and Y contain the address of a line of text (X=low-byte, 
Y=high-byte) terminated by a CR character.

On exit:
A, X, Y, C, N, V and Z are undefined. Interrupt status is preserved 
but interrupts may be enabled during a call.

15



3 OSBYTE calls
OSBYTE calls are a powerful and flexible way of invoking many 
of the available operating system facilities.

OSBYTE calls are specified by the contents of the accumulator (A
register) in the 6502. This means that up to 256 different calls can 
be made.

The command line interpreter (see section 2.11) performs 
OSBYTE calls in response to *FX commands. This enables the 
user to make OSBYTE calls from the keyboard or within BASIC 
programs. It should be noted however that no results are returned 
by a *FX call and so it is inappropriate to use certain OSBYTEs in
this way.

OSBYTE Miscellaneous OS functions specified by the 
contents of the accumulator.

Call address &FFF4 Indirected through &20A

On entry:
A selects an OSBYTE routine.
X contains an OSBYTE parameter.
Y contains an OSBYTE parameter.

All calls are made to the OSBYTE subroutine at address &FFF4. 
This is then indirected through the vector at &20A (which means 
that user programs can intercept the OSBYTE calls before they 
get to the operating system if so desired). The selected function is 
determined by the accumulator contents. Two parameters can be 
passed to and from OSBYTE routines by putting the values to be 
passed in the X and Y registers respectively.

16



Example

Using OSBYTE 4 to disable cursor editing.

From BASIC this would be typed as:

*FX 4,1

From assembly language it could be performed as:

LDA #4 \Load accumulator with 4
LDX #1 \Select cursor disabled option
JSR &FFF4 \Make OSBYTE call

If an OSBYTE is not recognised by the Electron, it will be offered
to any fitted paged ROMs (see chapters 8 to 11). The OSBYTE 
will then usually be claimed by the relevant expansion module’s 
ROM. When OSBYTE is called directly, if none of the paged 
ROMs claim it then the call returns with the overflow flag set. If 
the OSBYTE itself was initiated by a *FX command then the *FX
handler will generate the ‘Bad command’ error.

When OSBYTE calls are used in a second processor only a 
limited amount of information is returned. For low numbered 
OSBYTE calls (0 to 127) only the X register is returned and for 
high numbered OSBYTE calls only the X and Y registers, and the 
carry flag are returned.

All the OSBYTE calls recognised by the operating system are 
described on the following pages. The description for each call 
includes details of the entry parameters required and the state of 
the registers on exit. All OSBYTE calls may be made using the
*FX command, but it is not always appropriate to do so (i.e. those 
calls returning values in the X and Y registers). Where it is 
appropriate to use a *FX command this has been indicated. 
Preceding the full OSBYTE descriptions is a complete summary 
of the OSBYTE calls in a list.

17



OSBYTE/*FX Call 
Summary
dec. hex. function

0 0 Print operating system version.
1 1 Set the User flag.
2 2 Select input stream.
3 3 Select output stream.
4 4 Enable/disable cursor editing.
5 5 Select printer destination.
6 6 Set character ignored by printer.
7 7 Set RS423 baud rate for receiving data.
8 8 Set RS423 baud rate for data transmission.
9 9 Set flashing colour mark state duration.
10 A Set flashing colour space state duration.
11 B Set keyboard auto-repeat delay interval.
12 C Set keyboard auto-repeat rate.
13 D Disable events.
14 E Enable events.
15 F Flush selected buffer class.
16 10 Select ADC channels to be sampled.
17 11 Force an ADC conversion.
18 12 Reset soft keys.
19 13 Wait for vertical sync.
20 14 Explode soft character RAM allocation.
21 15 Flush specific buffer.
22 16 Increment paged ROM polling semaphore
23 17 Decrement paged ROM polling semaphore
24 18 Change sound system.

OSBYTE/*FX calls 25 (&19) to 114 (&72) are not used by OS
1.00.

115 73 Blank/restore palette.
116 74 Reset internal sound system.
117 75 Read VDU status.
118 76 Read keyboard status.
119 77 Close any SPOOL or EXEC files.

18



120 78 Write to two-key-roll-over locations.

19



121 79 Perform keyboard scan.
122 7A Perform keyboard scan from 16 (&10).
123 7B Inform OS, printer driver going dormant.
124 7C Clear ESCAPE condition.
125 7D Set ESCAPE condition.
126 7E Acknowledge detection of ESCAPE condition.
127 7F Check for EOF on an open file.
128 80 Read ADC channel or get buffer status.
129 81 Read key with time limit or key depression.
130 82 Read machine high order address.
131 83 Read top of OS RAM address (OSHWM).
132 84 Read bottom of display RAM address (HIMEM).
133 85 Read bottom of display address for a given MODE.
134 86 Read text cursor position (POS and VPOS).
135 87 Read character at cursor position.
136 88 Perform *CODE.
137 89 Perform *MOTOR.
138 8A Insert value into buffer.
139 8B Perform *OPT.
140 8C Perform *TAPE.
141 8D Perform *ROM.
142 8E Enter language ROM.
143 8F Issue paged ROM service request.
144 90 Perform *TV (not implemented).
145 91 Get character from buffer.
146 92 Read from FRED, 1 MHz bus.
147 93 Write to FRED, 1 MHz bus.
148 94 Read from JIM, 1 MHz bus.
149 95 Write to JIM, 1 MHz bus.
150 96 Read from SHEILA, 1 MHz bus.
151 97 Write to SHEILA, 1 MHz bus.
152 98 Examine buffer status.
153 99 Insert character into input buffer.
154 9A Reset video flash cycle.
155 9B Reserved.
156 9C Read/write 6850 control register and copy.
157 9D ‘Fast Tube BPUT’
158 9E Read from speech processor.
159 9F Write to speech processor.
160 A0 Read VDU variable value.

20



OSBYTE/*FX calls 161 (&A1) to 165 (&A5) are not used by OS 
1.00 and are reserved for future expansion.

166 A6 Read start address of OS variables (low byte).
167 A7 Read start address of OS variables (high byte).
168 A8 Read address of ROM pointer table (low byte).
169 A9 Read address of ROM pointer table (high byte).
170 AA Read address of ROM information table (low byte).
171 AB Read address of ROM information table (high byte).
172 AC Read address of key translation table (low byte).
173 AD Read address of key translation table (high byte).
174 AE Read start address of OS VDU variables (low byte).
175 AF Read start address of OS VDU variables (high byte).
176 B0 Read/write filing system timeout counter.
177 B1 Read/write input source.
178 B2 Enable/disable keyboard scanning
179 B3 Read/write primary OSHWM.
180 B4 Read/write current OSHWM.
181 B5 Read/write RS423 mode.
182 B6 Read character definition explosion state.
183 B7 Read/write cassette/ROM filing system switch.
184 B8 Undefined.
185 B9 Read/write timer paged ROM service call

semaphore.
186 BA Read/write ROM number active at last BRK (error).
187 BB Read/write number of ROM socket containing

BASIC.
188 BC Read current ADC channel.
189 BD Read/write maximum ADC channel number.
190 BE Read ADC conversion type.
191 BF Read/write RS423 use flag.
192 C0 Read RS423 control flag.
193 C1 Read/write flash counter.
194 C2 Read/write space period count.
195 C3 Read/write mark period count.
196 C4 Read/write keyboard auto-repeat delay.
197 C5 Read/write keyboard auto-repeat period.
198 C6 Read/write *EXEC file handle.
199 C7 Read/write *SPOOL file handle.
200 C8 Read/write ESCAPE, BREAK effect.
201 C9 Read/write Econet keyboard disable.
202 CA Read/write keyboard status byte.

21



203 CB Read/write the ULA interrupt mask.
204 CC Read/write Firm key pointer.
205 CD Read/write length of current firm key string.
206 CE Read/write Econet OS call interception status.
207 CF Read/write Econet OSRDCH interception status.
208 D0 Read/write Econet OSWRCH interception status.
209 D1 Read/write speech suppression status.
210 D2 Read/write sound suppression status.
211 D3 Read/write BELL channel.
212 D4 Read/write BELL (CTRL G) sound information.
213 D5 Read/write BELL frequency.
214 D6 Read/write BELL duration.
215 D7 Read/write startup message and !BOOT options.
216 D8 Read/write length of soft key string.
217 D9 Read/write number of lines printed since last page.
218 DA Read/write number of items in VDU queue.
219 DB Read/write External sound flag.
220 DC Read/write ESCAPE character value.
221 DD Read/write i/p buffer code interpretation status.
222 DE Read/write i/p buffer code interpretation status.
223 DF Read/write i/p buffer code interpretation status.
224 E0 Read/write i/p buffer code interpretation status.
225 E1 Read/write function key status.
226 E2 Read/write firm key status.
227 E3 Read/write firm key status.
228 E4 Read/write CTRL+SHIFT+function key status.
229 E5 Read/write ESCAPE key status.
230 E6 Read/write flags determining ESCAPE effects.
231 E7 Reserved.
232 E8 Sound semaphore.
233 E9 Soft key pointer.
234 EA Read flag indicating Tube presence.
235 EB Read flag indicating speech processor presence.
236 EC Read/write write character destination status.
237 ED Read/write cursor editing status.
238 EE Read/write OS workspace bytes.
239 EF Read/write OS workspace bytes.
240 F0 Read country code.
241 F1 Read/write user flag location.
242 F2 Read RAM copy of &FE07.
243 F3 Read timer switch state.
244 F4 Read/write soft key consistency flag.

22



245 F5 Read/write printer destination flag.
246 F6 Read/write character ignored by printer.
247 F7 Read/write first byte of BREAK intercept code.
248 F8 Read/write second byte of BREAK intercept code.
249 F9 Read/write third byte of BREAK intercept code.
250 FA Read/write OS workspace locations.
251 FB Read/write OS workspace locations.
252 FC Read/write current language ROM number.
253 FD Read/write last BREAK type.
254 FE Read/write available RAM.
255 FF Read/write start up options.

OSBYTE &00 (0)

Identify OS version

See OSBYTE &81 for more information regarding OS 
identification.

Entry parameters:
X=0 Execute BRK with a message giving the OS version
X<>0RTS with OS version returned in X

On exit:
X=0, OS 1.00 or Electron OS 1.00
X=1, OS 1.20 or American OS
A and Y are preserved
C is undefined

23



OSBYTE &01 (1)

Set the user flag

Entry parameters:
The user flag is replaced by X

On exit:
X=old value

This call uses OSBYTE with A=&F1 (241). This OSBYTE call is 
left free for user applications and is not used by the operating 
system. The user flag has a default value is 0.

OSBYTE &02 (2)

Select input stream

In the Electron any call with X<>0 will result in an unknown 
OSBYTE service call being made to the paged ROMs unless a 
previous such call was recognised and thus changed the input 
source.

Entry parameters:
X determines input device(s)

*FX 2,0 X=0 keyboard selected, RS423 disabled
*FX 2,1 X=1 RS423 selected and enabled
*FX 2,2 X=2 keyboard selected, RS423 enabled

Default: *FX 2,0

On exit:
X=0 if previous input was from the keyboard 
X= 1 if previous input was from RS423

A is preserved
Y and C are undefined

24



OSBYTE &03 (3)

Select output stream

If RS423 output is selected in the Electron, paged ROM service 
calls are issued. In the absence of a suitable response this output is
sunk (thrown away). The same applies to printer output if 
selected.

Bit 3 should not be used to enable the printer as this may conflict 
with the Econet protocol of claiming the printer.

Entry parameters:
X determines output device(s)

Bit o/p selected if bit is set

0 Enables RS423 driver
1 Disables VDU driver
2 Disables printer driver
3 Enables printer, independent of CTRL B or C
4 Disables spooled output
5 Not used
6 Disables printer driver unless the character is preceded

by a VDU 1 (or equivalent)
7 Not used

*FX 3,0 selects the default output options which are :
RS423 disabled
VDU enabled
Printer enabled (if selected by VDU 2)
Spooled output enabled (if selected by *SPOOL)

On exit:
A is preserved
X contains the old output stream status
Y and C are undefined

25



OSBYTE &04 (4)

Enable/disable cursor editing

Entry parameters:
X determines the status of the editing keys

*FX 4,0 X=0 Enable cursor editing (default setting)
*FX 4,1 X=1 Disable cursor editing and make them return

normal ASCII values like the other keys.

The cursor control keys will return the
following codes:

COPY &87 (135)
LEFT &88 (136)
RIGHT &89 (137)
DOWN &8A (138)
UP &8B (139)

*FX 4,2 X=2 Disable cursor editing and make the keys act
as soft keys with the following soft key
associations :

COPY 11
LEFT 12
RIGHT 13
DOWN 14
UP 15

On exit:
A is preserved
X contains the previous status of the editing keys
Y and C are undefined

26



OSBYTE &05 (5)

Select printer destination

Entry parameters:
X determines print destination

*FX 5,0 X=0 Printer sink (printer output ignored)
*FX 5,1 X=1 Parallel output
*FX 5,2 X=2 RS423 output (sink if RS423 enabled)
*FX 5,3 X=3 User printer routine (see section 6.5)
*FX 5,4 X=4 Net printer (see section 6.5)
*FX 5,5 to *FX5,255 User printer routine (see section 6.5)

Default setting: *FX 5,0

On Exit:
A is preserved
X contains the previous *FX 5 setting
Y and C are undefined
Interrupts are enabled by this call
This call is not reset to default by a soft break

OSBYTE &06 (6)

Set character ignored by printer

Entry parameters:
X contains the character value to be ignored

*FX 6,10 X=10 This prevents LINE FEED characters being 
sent to the printer, unless preceded by VDU 1
(this is the default setting)

On exit:
A is preserved
X contains the previous *FX 6 setting
Y and C are undefined

This is not reset by soft BREAK.

27



OSBYTE &07 (7)

Set RS423 baud rate for receiving data

This routine is not implemented on the unexpanded Electron. If 
this OSBYTE is used on the electron an unknown OSBYTE 
service call is made to the paged ROMs.

This call is reserved for future expansion.

OSBYTE &08 (8)

Set RS423 baud rate for data transmission

This routine is not implemented on the unexpanded Electron. If 
this OSBYTE is used on the Electron an unknown OSBYTE 
service call is made to the paged ROMs.

This call is reserved for future expansion.

OSBYTE &09 (9)

Set duration of the mark state of flashing colours

(Duration of first named colour)

Entry parameters:
X determines duration

*FX 9,0 X=0 Sets mark duration to infinity
Forces mark state if space is set to 0

*FX 9,n X=n Sets mark duration to n VSYNC periods
(n=25 is the default setting)

On exit:
A is preserved
X contains the old mark duration
Y and C are undefined

28



OSBYTE &0A (10)

Set duration of the space state of flashing colours

(Duration of second named colour)

Entry parameters:
X determines duration

*FX 10,0 X=0 Sets space duration to infinity. Forces space 
state if mark is set to 0

*FX 10,n X=n Sets space duration to n VSYNC periods 
(n=25 is the default setting)

On exit:
A is preserved
X contains the old space duration
Y and C are undefined

OSBYTE &0B (11)

Set keyboard auto-repeat delay

Entry parameters:
X determines delay before repeating starts

*FX 11,0 X=0 Disables auto-repeat facility
*FX 11,n X=n Sets delay ton centiseconds (n=50 is the 

default setting)

After call,
A is preserved
X contains the old delay setting
Y and C are undefined

29



OSBYTE &0C (12)

Set keyboard auto-repeat period

Entry parameters:
X determines auto-repeat periodic interval

*FX 12,0 X=0 Resets delay and repeat to default values
*FX 12,n X=n Sets repeat interval to n centiseconds (n=8 is 

the default value)

On exit:
A is preserved
X contains the old *FX 12 setting
Y and C are undefined

OSBYTE &0D (13)

Disable events

Entry parameters : X contains the event code, Y=0

*FX 13,0 X=0 Disable output buffer empty event
*FX 13,1 X=1 Disable input buffer full event
*FX 13,2 X=2 Disable character entering buffer event
*FX 13,3 X=3 Disable ADC conversion complete event
*FX 13,4 X=4 Disable start of vertical sync event
*FX 13,5 X=5 Disable interval timer crossing 0 event
*FX 13,6 X=6 Disable ESCAPE pressed event
*FX 13,7 X=7 Disable RS423 RX error event
*FX 13,8 X=8 Disable network error event
*FX 13,9 X=9 Disable user event

See section 6.4 for information on event handling.

On exit:
A is preserved
X contains the old enable state (0=disabled)
Y and C are undefined

30



OSBYTE &0E (14)

Enable events

Entry parameters: X contains the event code, Y=0

*FX 14,0 X=0 Enable output buffer empty event
*FX 14,1 X=1 Enable input buffer full event
*FX 14,2 X=2 Enable character entering buffer event
*FX 14,3 X=3 Enable ADC conversion complete event
*FX 14,4 X=4 Enable start of vertical sync event
*FX 14,5 X=S Enable interval timer crossing 0 event
*FX 14,6 X=6 Enable ESCAPE pressed event
*FX 14,7 X=7 Enable RS423 RX error event
*FX 14,8 X=8 Enable network error event
*FX 14,9 X=9 Enable user event

After call,
A is preserved
X contains the old enable state (>0= enabled)
C is undefined

See section 6.4 for information on event handling.

OSBYTE &0F (15)
Flush selected buffer class

Entry parameters:
X value selects class of buffer

X=0 All buffers flushed
X=1 Input buffer flushed only

See OSBYTE call &16/*FX 21

On exit,
Buffer contents are discarded
A is preserved
X, Y and C are undefined

31



OSBYTE &10 (16)

Select ADC channels which are to be sampled

This routine is not implemented on the unexpanded Electron but is
passed on to paged ROMs as an unknown OSBYTE paged ROM 
service call.

On an Electron fitted with the Plus 1 expansion, this call selects
the number of analogue to digital conversion channels, where X is
a number in the range 0 (no channels) to 4 (all four channels).

OSBYTE &11 (17)

Force an ADC conversion

This routine is not implemented on the unexpanded Electron but is
passed on to paged ROMs as an unknown OSBYTE paged ROM 
service call.

On an Electron fitted with the Plus 1 expansion, this call forces 
analogue to digital conversion to restart for channels 1 to X.

OSBYTE &12 (18)

Reset soft keys

This call clears the soft key buffer so the character strings are no 
longer available.

No parameters

On exit:
A and Y are preserved
X and C are undefined

32



OSBYTE &13 (19)

Wait for vertical sync

No parameters

This call forces the machine to wait until the start of the next 
frame of the display. This occurs 50 times per second on the UK 
Electron. Its main use is to help produce flicker free animation on 
the screen. The flickering effect is often due to changes being 
made on the screen halfway through a screen refresh. Using this 
OSBYTE call graphics manipulation can be made to coincide with
the flyback between screen refreshes.

N.B. User trapping of IRQ1 may stop this call from working.

On exit:
A is preserved
X, Y and C are undefined

OSBYTE &14 (20)

Explode soft character RAM allocation

Entry parameters: X value explodes/implodes memory allocation

In the default state 32 characters may be user defined using the 
VDU 23 statement from BASIC (or the OSWRCH call in machine
code). These characters use memory from &C00 to &CFF. 
Printing ASCII codes in the range 128 (&80) to 159 (&9F) will 
cause these user defined characters to be printed up (these 
characters will also be printed out for characters in the range 
&A0-&BF, &C0-&DF, &E0-&FF), In this state the character 
definitions are said to be imploded.

If the character definitions are exploded then ASCII characters 
128 (&80) to 159 (&9F) can be defined as before using VDU 23 
and memory at &C00. Exploding the character set definitions 
enables the user to uniquely define characters 32 (&20) to 255

33



(&FF) in steps of 32 extra characters at a time. The operating 
system must allocate memory for this which it does using memory
starting at the ‘operating system high-water mark’ (OSHWM). 
This is the value to which the BASIC variable PAGE is usually set
and so if a totally exploded character set is to be used in BASIC 
then PAGE must be reset to OSHWM+&600 (i.e. PAGE = PAGE 
+ &600).

ASCII characters 32 (&20) to 128 (&7F) are defined by memory 
within the operating system ROM when the character definitions 
are imploded.

See OSBYTE &83 (131) for details about reading OSHWM from 
machine code.

The memory allocation for ASCII codes in the expanded state is 
as follows:

ASCII code Memory allocation
*FX 20,0 X=0 &80-&8F &C00 to &CFF (imploded)
*FX 20,1 X=1 &A0-&BF OSHWM to OSHWM+&FF

(+above)
*FX 20,2 X=2 &C0-&DF OSHWM+&100 to

OSHWM+&1FF (+above)
*FX 20,3 X=3 &E0-&FF OSHWM+&200 to

OSHWM+&2FF (+above)
*FX 20,4 X=4 &20-&3F OSHWM+&300 to

OSHWM+&3FF (+above)
*FX 20,5 X=5 &40-&5F OSHWM+&400 to

OSHWM+&4FF (+above)
*FX 20,6 X=6 &60-&7F OSHWM+&500 to

OSHWM+&5FF (+above)

The explosion state can be determined using OSBYTE &B6.

Before the OSHWM is changed during a font explosion a service 
call is made to the paged ROMs warning them of the impending 
change.

34



On exit:
A is preserved
X contains the new OSHWM (high byte)
Y and C are undefined

OSBYTE &15 (21)

Flush specific buffer

While the unexpanded Electron only has a single sound channel 
the operating system has been designed to enable the 
implementation of an external sound system. Each time any of the
sound buffers are flushed a paged ROM service call is issued with 
A=&17. In the unexpanded Electron there is a single effective 
buffer which may be addressed as any of the four channels. Thus 
flushing any of the four buffers will extinguish any sound being 
produced at that time.

See section 10.1 for more information regarding the Electron 
sound paged ROM service calls.

Entry parameters:
X determines the buffer to be cleared

*FX 21,0 X=0 Keyboard buffer emptied
*FX 21,1 X=1 RS423 input buffer emptied
*FX 21,2 X=2 RS423 output buffer emptied
*FX 21,3 X=3 Printer buffer emptied
*FX 21,4 X=4 Sound channel 0 buffer emptied
*FX 21,5 X=5 Sound channel 1 buffer emptied
*FX 21,6 X=6 Sound channel 2 buffer emptied
*FX 21,7 X=7 Sound channel 3 buffer emptied
*FX 21,8 X=8 Speech buffer emptied

See also OSBYTEs &0F (*FX15) and &80 (128).

On exit:
A and X are preserved
Y and C are undefined

35



OSBYTE &16 (22)

Increment paged ROM polling semaphore

This call increments the semaphore which when non-zero makes 
the operating system issue a paged ROM service call with A=&15
at centi-second intervals.

See paged ROM service call &15, chapter 10.

Entry parameters:
None

On exit:
A and X are preserved
Y and C are undefined

Semaphore is incremented once per call.

OSBYTE &17 (23)

Decrement paged ROM polling semaphore

This call decrements the semaphore which when non-zero makes 
the operating system issue a paged ROM service call with A=&15
at centi-second intervals.

See paged ROM service call &15, chapter 10.

Entry parameters:

None

On exit:
A and X are preserved
Y and C are undefined

Semaphore is decremented once per call.

36



OSBYTE &18 (24)

Select external sound system

This call is used to select a sound system which is implemented 
by an external hardware/software sound system.

Entry parameters:
X contains an undefined parameter

On exit:
A is preserved
All other registers are undefined

OSBYTE &73 (115)

Blank/restore palette

This call is used to temporarily turn all colours in the palette 
black. It should be useful for NMI users who want to generate 
NMIs with a high resolution screen display. This will ensure that 
there is no snow seen on the screen.

Entry parameters:
X=0 Restores the palette
X<>0 Set palette to all black if in high res. mode

On exit:
All registers undefined

OSBYTE &74 (116)

Reset internal sound system

This call can be used to reset the internal sound system.

Entry parameters:
X contains an undefined parameter

On exit:
All registers are undefined

37



OSBYTE &75 (117)

Read VDU status

No entry parameters

On exit the X register contains the VDU status. Information is 
conveyed in the following bits :

Bit 0 Printer output enabled by a VDU 2
Bit 1 Scrolling disabled e.g. during cursor editing
Bit 2 Paged scrolling selected
Bit 3 Software scrolling selected i.e. text window
Bit 4 reserved
Bit 5 Printing at graphics cursor enabled by VDU 5
Bit 6 Set when input and output cursors are separated (i.e. 

cursor editing mode).
Bit 7 Set if VDU is disabled by a VDU 21

On exit:
A and Y are preserved
C is undefined

OSBYTE &76 (118)

Reflect keyboard status in keyboard LEDs

This routine is hardware dependent and is implemented differently
on the BBC microcomputer and the Electron. This call should not 
be used on either machine.

38



OSBYTE &77 (119)

Close any SPOOL or EXEC files

This call closes any open files being used as *SPOOLed output or 
*EXECed input to be closed. This call is first offered to paged 
ROMs via a service call with A=&10. If the call is claimed then 
the operating system takes no further action. If the call is not 
claimed by a paged ROM the operating system closes any EXEC 
or SPOOL files itself. This call should be made by filing systems 
if they are deselected.

On exit:
A is preserved
X, Y and C are undefined

OSBYTE &78 (120)

Write current keys pressed information

This call should only be made by filing systems which have 
recognised a key pressed with BREAK and are initialising 
accordingly (see paged ROM service call with A=&03, section 
10.1). This call should be used to write the old key pressed value 
to prevent its entry into the keyboard buffer.

The operating system operates a two key roll-over for keyboard 
input (recognising a second key press even when the first key is 
still pressed). There are two zero page locations which contain the 
values of the two key-presses which may be recognised at any one
time. If no keys are pressed, location &EC contains 0 and location
&ED contains 0. If one key is pressed, location &EC contains the 
internal key number+128 (see table below for internal key 
numbers) and location &ED contains 0. If a second key is pressed 
while the original key is held down, location &EC contains the 
internal key number+128 of the most recent key pressed and 
location &ED contains the internal key number+128 of the first 
key pressed.

39



Internal Key Numbers

hex. dec. key hex. dec. key
&00 0 SHIFT &40 64 CAPS LOCK
&01 1 CTRL &41 65 A
&02 2 bit0 &42 66 X
&03 3 bit1 &43 67 F
&04 4 bit2 &44 68 Y
&05 5 bit3 &45 69 J
&06 6 bit4 &46 70 K
&07 7 bit5 &47 71 @
&08 8 bit6 &48 72 :
&09 9 bit7 &49 73 RETURN
&10 16 Q &50 80 SHIFT LOCK
&11 17 3 &51 81 S
&12 18 4 &52 82 C
&13 19 5 &53 83 G
&14 20 f4 &54 84 H
&15 21 8 &55 85 N
&16 22 f7 &56 86 L
&17 23 - &57 87 ;
&18 24 ^ &58 88 ]
&19 25 left cursor &59 89 DELETE
&20 32 f0 &60 96 TAB
&21 33 W &61 97 Z
&22 34 E &62 98 SPACE
&23 35 T &63 99 V
&24 36 7 &64 100 B
&25 37 I &65 101 M
&26 38 9 &66 102 ,
&27 39 0 &67 103 .
&28 40 _ &68 104 /
&29 41 down cursor &69 105 COPY
&30 48 1 &70 112 ESCAPE
&31 49 2 &71 113 f1
&32 50 D &72 114 f2
&33 51 R &73 115 f3
&34 52 6 &74 116 f5
&35 53 U &75 117 f6
&36 54 O &76 118 f8
&37 55 P &77 119 f9
&38 56 [ &78 120 \
&39 57 up cursor &79 121 right cursor

40



Bits 0 to 7 refer to the start up option byte. See OSBYTE &FF for 
further information about this byte.

To convert these internal key numbers to the INKEY numbers 
they should be EOR (Exclusive ORed) with &FF (255).

Entry parameters :
X and Y contain values to be written

Value in X is stored as the old key information.

Value in Y is stored in the new key information.

See also OSBYTE calls with A=&AC and A=&AD.

On exit:
A, X and Y are preserved
C is undefined

OSBYTE &79 (121)

Keyboard scan

The keyboard is scanned in ascending numerical order. This call 
returns information about the first pressed key encountered during
the scan. Other keys may also be pressed and a further call or calls
will be needed to complete the entire keyboard scan.

Entry parameters:
X determines the key to be detected and also determines the
range of keys to be scanned.

Key numbers refer to internal key numbers in the table above (see 
OSBYTE &78).

41



To scan a particular key:
X=key number EOR &80
on exit X<0 if the key is pressed

To scan the matrix starting from a particular key number:
X=key number

On exit X=key number of any key pressed or &FF if no key 
pressed

On exit:
A is preserved
X contains key value (see above)
Y and C are undefined

OSBYTE &7A (122)

Keyboard scan from 16 decimal

No entry parameters

Internal key number (see table above) of the key pressed is 
returned in X.

This call is directly equivalent to an OSBYTE call with A=&79 
and X=16.

On exit:
A is preserved
X contains key number or zero if none pressed
Y and C are undefined

42



OSBYTE &7B (123)

Inform operating system of printer driver going dormant

Entry parameters:
X should contain the value 3 (printer buffer id)

This OSBYTE call should be made by user printer drivers when 
they go dormant. The operating system will need to wake up the 
printer driver if more characters are placed in the printer buffer 
(see section 6.5).

On exit:
A and X are preserved
Y is preserved
C is undefined

OSBYTE &7C (124)

Clear ESCAPE condition

No entry parameters

This call clears any ESCAPE condition without any further action.

See OSBYTE &7E also.

On exit:
A, X and Y are preserved
C is undefined

43



OSBYTE &7D (125)

Set Escape condition

No entry parameters

This call partially simulates the ESCAPE key being pressed. The 
Tube is informed (if active). An ESCAPE event is not generated.

On exit:
A, X and Y are preserved
C is undefined

OSBYTE &7E (126)

Clear ESCAPE condition with side effects

No entry parameters

This call attempts to clear the ESCAPE condition. All active 
buffers will be flushed, any open EXEC files closed, the VDU 
paging counter will be reset and the VDU queue will be reset.

See OSBYTE &E6 (230) also.

On exit:
X=&FF if the ESCAPE condition cleared
X=0 if no ESCAPE condition found

A is preserved
Y and C are undefined

44



OSBYTE &7F (127)

Check for end-of-file on an opened file

Entry parameters:

X contains file handle

On exit:
X<>0 If end-of-file has been reached
X=0 If end-of-file has not been reached

A and Y are preserved (Y not passed across Tube)
C is undefined

OSBYTE &80 (128)

Read ADC channel (ADVAL) or get buffer status

On the unexpanded Electron this call will generate an unknown 
OSBYTE paged ROM service call when passed a positive value in 
the X register. If this service call is not claimed then the values in 
page 2 of memory allocated to storing ADC information are 
returned. On an Electron fitted with a Plus 1 this call is 
implemented identically to on the BBC microcomputer.

For positive values of X, the call operates the same as on a BBC 
microcomputer but information about buffers not present on an 
unexpanded Electron will be meaningless.

Entry parameters:
X determines action and buffer or channel number

If X=0 on entry:

Y returns channel number (range 1 to 4) showing which channel
was last used for ADC conversion, Note that OSBYTE calls with
A=&10 (16) and A=&11 (17) set this value to 0. A value of 0
indicates that no conversion has been completed. Bits 0 and 1 of
X indicate the status of the two ‘fire buttons’.

45



If X=1 to 4 on entry:

X and Y contain the 16 bit value (X-low, Y-high) read from 
channel specified by X. This call may only be used from machine 
code (not from a *FX call).

If X<0 and Y=&FF on entry:

If X contains a negative value (in 2’s complement notation) then 
this call will return information about various buffers.

X=255 (&FF) keyboard buffer
X=254 (&FE) RS423 input buffer
X=253 (&FD) RS423 output buffer
X=252 (&FC) printer buffer
X=251 (&FB) sound channel 0
X=250 (&FA) sound channel 1
X=249 (&F9) sound channel 2
X=248 (&F8) sound channel 3
X=249 (&F7) speech buffer

For input buffers X contains the number of characters in the buffer
and for output buffers the number of spaces remaining.

On exit:
A is preserved
C is undefined

OSBYTE &81 (129)

Read key with time limit (INKEY)

This call is functionally equivalent to the BASIC statement 
INKEY, It can be used to get a character from the keyboard within
a time limit, scan the keyboard for a particular key press or return 
information about the OS type.

46



(a) Read key with time limit

Entry parameters:
X and Y specify time limit in centiseconds

If a time limit of n centiseconds is required,

X=n AND &FF (LSB)
Y=n DIV &100 (MSB)

Maximum time limit is &7FFF centiseconds (5.5 minutes approx.)

On exit:
If key press detected, X=ASCII key value, Y=0 & C=0
If key press not detected by timeout then Y=&FF & C= 1
If Escape is pressed then Y=&1B (27) and C= 1

(b) Scan keyboard for key press

Entry parameters:
X=negative INKEY value for key to be scanned
Y=&FF

On exit:
X = Y = &FF, C= 1 if the key being scanned is pressed. 
X = Y = 0, C=0 if key is not pressed.

(c) Return information about OS type

Entry parameters:
X=0
Y=&FF

On exit:
X=0 BBC OS 0.1
X=1 Electron OS 1.00
X=&FF BBC OS 1.00 or OS 1.20
X=&FE US BBC OS 1.20

47



OSBYTE &82 (130)

Read machine high order address

No entry parameters

This call yields the high order address required for the most 
significant 16 bits of the 32 bit addresses used for filing systems. 
The high order address is different in a second processor to that in 
an i/o processor. The Tube operating system intercepts this call to 
return the second processor high order address.

On exit:
X and Y contain the address (X-high, Y-low)

A is preserved
C is undefined

OSBYTE &83 (131)

Return current OSHWM

The OSHWM (operating system high water mark) represents the 
top of memory used by the operating system. This value is set 
after the paged ROMs have claimed workspace and any font 
explosion carried out. On a second processor this value represents 
the OSHWM on the i/o processor.

The OSHWM indicates the start of user memory and so this call is
made by BASIC to initialise the value of PAGE.

No entry parameters

On exit:
X and Y contain the OSHWM address (X= low-byte , Y = 
high-byte)

A is preserved
C is undefined

48



OSBYTE &84 (132)

Return HIMEM

HIMEM is an address indicating the top of the available user 
RAM. This is usually the bottom of screen memory address. On a 
second processor this will be the bottom address of any code 
copied across from the I/O processor and executed.

No entry parameters

On exit:
X and Y contain the HIMEM address (X-low, Y-high)

A is preserved
C is undefined

OSBYTE &85 (133)

Read bottom of display RAM address for a specified mode

This call may be used to investigate the consequences of an 
intended MODE change. This enables languages to determine 
whether the selection of a new MODE should be allowed.

Entry parameters:
X determines mode number

On exit:
X and Y contain the address (X-low byte, Y-high byte)

A is preserved
C is undefined

49



OSBYTE &86 (134)

Read text cursor position (POS and VPOS)

When in cursor editing mode this call returns the position of the 
input cursor not the output cursor.

No entry parameters

On exit:
X contains horizontal position of the cursor (POS)
Y contains vertical position of the cursor (VPOS)

A is preserved
C is undefined

OSBYTE &87 (135)

Read character at text cursor position and screen MODE

No entry parameters

On exit:
X contains character value (0 if character not recognised)
Y contains graphics MODE number

A is preserved
C is undefined

OSBYTE &88 (136)

Execute code indirected via USERV (*CODE equivalent)

This call JSRs to the address contained in the user vector (USERV
&200). The X and Y registers are passed on to the user routine.

See *CODE, section 6.1.

50



OSBYTE &89 (137)

Switch cassette relay (*MOTOR equivalent)

Entry parameters:
X=0 relay off
X=1 relay on

The cassette filing system calls this routine with Y=0 for write 
operations and Y= 1 for read operations. This enables the 
implementation of a dual cassette system with additional hardware
and software

On exit:
A is preserved
X, Y and C are undefined

OSBYTE &8A (138)

Insert value into buffer

Entry parameters:
X identifies the buffer (See OSBYTE &15)
Y contains the to be value inserted into buffer

On exit:
C=0 if value successfully inserted
C=1 if value not inserted e.g. if buffer full
A is preserved

OSBYTE &8B (139)

Select file options (*OPT equivalent)

Entry parameters:
X contains file option number Y contains the option value 
required

On exit:
A is preserved
C is undefined

51



OSBYTE &8C (140)

Select tape filing system (*TAPE equivalent)

No entry parameters

On exit:
A is preserved
C is undefined

OSBYTE &8D (141)

Select ROM filing system (*ROM equivalent)

No entry parameters

On exit:
A is preserved
X, Y and C are undefined

OSBYTE &8E (142)

Enter language ROM

Entry parameters:
X determines which paged ROM is entered

The language ROM is entered via its entry point with A=1. 
Locations &FD and &FE in zero page are set to point to the 
copyright message in the ROM.

There is no exit from this call.

52



OSBYTE &8F (143)

Issue paged ROM service call

See Service ROMs section 10.1.

Entry parameters:
X=reason code
Y=parameter passed with service call

On exit:
Y may contain return argument (if appropriate) X=0 if a 
paged ROM claimed the service call

A is preserved
C is undefined

OSBYTE &90 (144)

Alter display parameters (*TV equivalent)

On the Electron this call is not implemented and returns with
registers preserved.

OSBYTE &91 (145)

Get character from buffer

Entry parameters:

X contains buffer number (see OSBYTE &15)

On exit:
Y contains the extracted character.
If the buffer was empty then C= 1 otherwise C=0.

A is preserved

53



OSBYTEs &92 to &97 (146 to 151)

Read or Write to mapped I/O

Entry parameters:
X contains offset within page
Y contains byte to be written (for write calls)

OSBYTE call Memory addressed Name
read write
&92 (146) &93 (147) &FC00 to &FCFF FRED
&94 (148) &95 (149) &FD00 to &FDFF JIM
&96 (150) &97 (151) &FE00 to &FEFF SHEILA

Refer to the hardware section for details about these 1 MHz buses.

On exit:
Read operations return with the value read in 
the Y register

A is preserved
C is undefined

OSBYTE &98 (152)

Examine Buffer status

Entry parameters: X contains buffer number

On exit:
Y=character value read from buffer if buffer not empty
Y is preserved if buffer empty
C=1 if buffer empty otherwise C=0

A and X are preserved

54



OSBYTE &99 (153)

Insert character into input buffer, checking for ESCAPE

Entry parameters:
X contains buffer number (0 or 1 only) Y contains the 
character value

X=0 keyboard buffer
X=1 RS423 input

If the character is an ESCAPE character and ESCAPEs are not 
protected (using OSBYTE &C8/*FX 200 or OSBYTE 
&E5/*FX229) then an ESCAPE event is generated instead of the 
keyboard event.

On exit:
A is preserved
X, Y and C are undefined

OSBYTE &9A (154)

Reset flash cycle

This call resets the flash cycle to the beginning of the mark state
(i.e. to the first named colour of the pair) by manipulating the
ULA registers.

There are no entry parameters.

On exit:
All registers are undefined

OSBYTE &9B (155)

Write to video ULA palette register and OS copy (BBC micro)

On the Electron this call is ignored by immediately executing an 
RTS instruction.

55



OSBYTE &9C (156)

Read/update 6850 control register and OS copy (BBC micro)

On the Electron this call causes the operating system to issue an 
unknown OSBYTE paged ROM service call but makes no further 
actions.

OSBYTE &9D (157)

Fast Tube BPUT

The byte to be output is channeled through the standard BPUT 
routine.

Entry parameters:
X = byte to be output
Y = file handle

On exit:
A is preserved
X, Y and C are undefined

OSBYTE &9E (158)

Read from speech processor

On the Electron this call causes the operating system to issue an 
unknown OSBYTE paged ROM service call but makes no further 
actions.

OSBYTE &9F (159)

Write to speech processor

On the Electron this call causes the operating system to issue an 
unknown OSBYTE paged ROM service call but makes no further 
actions.

56



OSBYTE &A0 (160)

Read VDU variable value

This call is implemented on the Electron but is officially 
undefined and may change in future issues of the OS.

Entry parameters:
X contains the number of the variable to be read

On exit:
X=low byte of variable A is preserved
Y=high byte of variable C is undefined

OSBYTE &A3 (163)

Disable/Enable printer and ADC

This call is not implemented on the unexpanded Electron. On an 
Electron fitted with a Plus 1 interface, the call enables or disables 
input/output through the Plus 1:

*FX163,128,0 - enables printer and ADCs
*FX163,128,1 - disables printer and ADCs

OSBYTEs &A6 (166) and &A7 (167)

Read start address of OS variables

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This call returns the start address of the memory used by the 
operating system to store its internal variables.

On exit:
X=low byte A is preserved
Y=high byte C is undefined

57



OSBYTEs &A8 (168) and &A9 (169)

Read address of ROM pointer table

This call is implemented on the BBC microcomputer and the 
Electron. When used across the Tube the address returned refers to
the I/O processor’s memory.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This table of extended vectors consists of 3 byte vectors in the 
form Location (2 bytes), ROM no. (1 byte). See Paged ROM 
section 10.3 for a complete description of extended vectors.

On exit:
X=low byte
Y=high byte
A is preserved
C is undefined

OSBYTEs &AA (170) and &AB (171)

Read address of ROM information table

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This call returns the origin of a 16 byte table, containing one byte 
per paged ROM. This byte contains the ROM type byte contained 
in location &8006 of the ROM or contains 0 if a valid ROM is not
present.

On exit:
X=low byte A is preserved
Y=high byte C is undefined

58



OSBYTEs &AC (172) and &AD (173)

Read address of keyboard translation table

This call is implemented on the BBC microcomputer and the 
Electron. However it should be noted that this call is hardware 
specific due to the different keyboard matrix layout on different 
machines. When used across the Tube the address returned refers 
to the I/O processor’s memory.

Use of this call is not recommended.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

On exit:
X=low byte
Y=high byte

OSBYTEs &AE (174) and &AF (175)

Read VDU variables origin

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This call returns with the address of the table of internal VDU 
variables.

On exit:
X=low byte
Y=high byte

59



OSBYTE &B0 (176)

Read/write CFS timeout counter

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This counter is decremented once every vertical sync pulse (50 
times per second) which is also used for OSBYTE &13/*FX 19. 
The timeout counter is used to time interblock gaps and leader 
tones.

OSBYTE &B1 (177)

Read input source flags

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location should contain 0 for keyboard input and 1 for RS423
input (i.e. contains buffer no.) and is used for OSBYTE &2. 
OSBYTE &2 should be used to change the input source as writing
the flag with this call does not enable the relevant interrupts.

OSBYTE &B2 (178)

Enable/disable keyboard interrupt

*FX178,0,0 Turns off keyboard interrupt

*FX178,255,0 Turns on keyboard interrupt

With keyboard interrupts disabled, the machine runs significantly 
faster, however the keyboard will no longer be scanned by the OS.
To detect keypresses it is necessary to read the hardware directly 
(see Chapter 14).

60



OSBYTE &B3 (179)

Read/write primary OSHWM (for imploded font)

This call should not be used as it has been re-allocated on other 
products in the Acorn-BBC range.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location contains the OSHWM page value for an imploded 
font (even when character definition RAM explosion has been 
selected) but after paged ROM workspace allocation has been 
made.

See OSBYTE &B4 and OSBYTE &14.

OSBYTE &B4 (180)

Read OSHWM (similar to OSBYTE &83)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

This call returns the page number of OSHWM in X.

This location is updated by any character definition RAM 
explosion which may have been selected and returns with the high
byte of the OSHWM address (the low byte always being 0).

See OSBYTE &14.

61



OSBYTE &B5 (181)

Read/write RS423 mode

On the unexpanded Electron this call will have no effect unless a 
suitable hardware and software expansion has been performed to 
implement R5423.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

Flag=0 ESCAPEs are recognised soft keys are expanded
character entering input buffer event generated cursor
editing performed

Flag= 1 All characters enter input buffer
(default) character entering buffer event not generated

OSBYTE &B6 (182)

Read character definition explosion state

Use of this call is not recommended as this OSBYTE has been 
reallocated on other products in the Acorn BBC range.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location contains the state of font explosion as set by 
OSBYTE call with A=&14/*FX 20.

62



OSBYTE &B7 (183)

Read cassette/ROM filing system flag

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location contains 0 for *TAPE selection and 2 for *ROM 
selection. Other values are meaningless, and should not be used.

OSBYTE &B8 (184)

This call is undefined on the Electron.

OSBYTE &B9 (185)

Read/write timer paged ROM service call semaphore

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location contains a semaphore. If the contents of this location
are non-zero the operating system will generate a paged ROM 
service call with a reason code of &15. This semaphore should 
only be read using this call. See OSBYTEs &16 and &17 for 
information about setting semaphore and service ROMs chapter 
10 for information about the paged ROM service call.

63



OSBYTE &BA (186)
Read ROM number active at last BRK (error)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location contains the ROM number of the paged ROM that 
was in use at the last BRK.

OSBYTE &BB (187)
Read number of ROM socket containing BASIC

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

BASIC is recognised by the fact that it is a language ROM which 
does not possess a service entry. This ROM is then selected by the
*BASIC command. If no BASIC ROM is present then this 
location contains &FF.

OSBYTE &BC (188)
Read current ADC channel

This call is not implemented in the unexpanded Electron.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location contains the number of the ADC channel currently 
being converted. This call should not be used to force ADC 
conversions, use OSBYTE &11/*FX 17.

64



OSBYTE &BD (189)
Read maximum ADC channel number.

This call is not implemented in the unexpanded Electron.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

The maximum channel number to be used for ADC conversions in
the range 0 to 4. Set by OSBYTE &16/*FX 10.

OSBYTE &BE (190)

Read ADC conversion type, 12 or 8 bits.

This call is not implemented in the unexpanded Electron.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

Set to &00, default (12 bit)
Set to &08, 8 bit conversion
Set to &0C,12 bit conversion

OSBYTE &BF (191)
Read/write RS423 use flag.

This location is reserved for expansion software on the Electron.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

65



OSBYTE &C0 (192)

Read RS423 control flag

This location is reserved for expansion software on the Electron.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

OSBYTE &C1 (193)

Read/write flash counter.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location contains the number of 1/50th sec. units until the 
next change of colour for flashing colours.

OSBYTE &C2 (194)

Read/write space period count.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

Similar to OSBYTE &0A.

66



OSBYTE &C3 (195)

Read/write mark period count.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

Similar to OSBYTE &09.

OSBYTE &C4 (196)

Read/write keyboard auto-repeat delay.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This call is used by OSBYTE &0B.

OSBYTE &C5 (197)

Read/write keyboard auto-repeat period (rate).

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This call is used by OSBYTE &0C.

67



OSBYTE &C6 (198)

Read *EXEC file handle.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This call should be used only to read this location as writing to it 
may have undefined effects. This location contains zero if no file 
handle has been allocated by the operating system.

OSBYTE &C7 (199)

Read *SPOOL file handle.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This call should be used to read this location only. This location 
contains the file handle of the current SPOOL file or zero if not 
currently spooling.

68



OSBYTE &C8 (200)

Read/write ESCAPE, BREAK effect

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

bit 0 = 0 Normal ESCAPE action
bit 0 = 1 ESCAPE disabled unless caused by OSBYTE

&7D/125
bits l to 7 = 0 Normal BREAK action
bits l to 7 = 1 Memory cleared on BREAK

e.g. A value 000000lx (binary) will cause memory to be cleared on
BREAK.

OSBYTE &C9 (201)

Read/write keyboard disable.

This call should only be made by the Econet filing system.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

If this location contains 0 then the keyboard is scanned normally 
otherwise lock keyboard (all keys ignored except BREAK).

This call is used by the *REMOTE Econet facility.

69



OSBYTE &CA (202)

Read/write keyboard status byte.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

bit 4=0 if CAPS LOCK active
bit 5=1 if Fn active
bit 6=1 if SHIFT active
bit 7=1 if CTRL active

All bits except the CAPS LOCK bit will only change transiently 
and are subsequently unlikely to be of use.

See also OSBYTE with A=&76 (118).

OSBYTE &CB (203)

Read/write the ULA Interrupt Mask

See chapter 7 for a description of the interrupt handling routine.

OSBYTE &CC (204)

Read/write Firm Key Pointer

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

The value contained in this location is a pointer into the currently 
expanding firm key. For more information about the firm keys see
language ROMs section 9.2.

70



OSBYTE &CD (205)

Read/write Length of current Firm key string.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location contains the length of the string currently being 
expanded from a Firm key. For more information about Firm keys
see language ROMs section 9.2.

OSBYTE &CE (206)

Read/write Econet OS call interception status.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

If bit 7 of this location is set then all OSBYTE and OS WORD 
calls (except those sent to paged ROMs) are indirected through 
the Econet vector (&224) to the Econet. Bits 0 to 6 are ignored.

OSBYTE &CF (207)

Read/write Econet read character interception status.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

If bit 7 of this location is set then input is pulled from the Econet 
vector.

71



OSBYTE &D0 (208)

Read/write Econet write character interception status.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

If bit 7 of this location is set then output is directed to the Econet. 
Output may go through the normal write character on return from 
the Econet code.

OSBYTE &D1 (209)

Read/write speech suppression status.

This location is not used in the unexpanded Electron and is 
reserved for future expansion.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

OSBYTE &D2 (210)

Read/write sound suppression status.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

Setting X to zero allows sound to be generated. Setting X nonzero 
will prevent any further sound being produced.

The old value is returned in X. The contents of the next location 
are returned in Y.

72



OSBYTE &D3 (211)

Read/write BELL (CTRL G) channel.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location contains the channel number to be used for the 
BELL sound. Default value is 3.

OSBYTE &D4 (212)

Read/write BELL (CTRL G) SOUND information.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location contains a byte which determines either the 
amplitude or the ENVELOPE number to be used by the BELL 
sound. If an ENVELOPE is specified then the value should be set 
to (ENVELOPE no.-1)*8. Similarly an amplitude in the range 15 
to 0 must be translated by subtracting 1 and multiplying by 8.

The least significant three bits of this location contain the H and 5 
parameters of the SOUND command (see User Guide).

Note that the internal sound system on the Electron will not allow 
the amplitude of the sound to be varied.

Default value 144 (&90) on the Electron.

73



OSBYTE &D5 (213)

Read/write bell (CTRL G) frequency.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This value contains the pitch parameter (as used by SOUND 
command third parameter) used for the BELL sound.

Default value 101 (&65) on the Electron.

OSBYTE &D6 (214)

Read/write bell (CTRL G) duration.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This value contains the duration parameter (as for SOUND 
command) used for the BELL sound.

Default value 6 on the Electron.

OSBYTE &D7 (215)

Read/write start up message suppression and !BOOT option 
status.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

74



bit 0 If clear then ignore OS startup message. If set then print up 
OS startup message as normal.

bit 7 If set then if an error occurs in a !BOOT file in *ROM, 
carry on but if an error is encountered from a disc !BOOT 
file because no language has been initialised the machine 
locks up.
If clear then the opposite will occur, i.e. locks up if there is 
an error in *ROM.

This can only be over-ridden by a paged ROM on initialisation or 
by intercepting BREAK, see OSBYTE calls &F7 to &F9.

OSBYTE &D8 (216)
Read/write length of soft key string.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location contains the number of characters yet to be read 
from the soft key buffer of the current soft key. To clear input 
buffer use *FX 15/OSBYTE &0F.

OSBYTE &D9 (217)
Read/write number of lines since last halt in page mode.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location contains the number of lines printed since the last 
page halt. This value is used by the operating system to decide 
whether to halt scrolling when paged mode has been selected. 
This location is set to zero during OSWORD call &00 to prevent a
scrolling halt occurring during input.

75



OSBYTE &DA (218)

Read/write number of items in the VDU queue.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This contains the 2’s complement negative number of bytes still 
required for the execution of a VDU command.

Writing 0 to this location can be a useful way of abandoning a 
VDU queue, otherwise writing to this location is not 
recommended.

OSBYTE &DB (219)

Read/write External sound flag

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location contains a flag indicating that an external sound 
system has been selected using OSBYTE &18.

76



OSBYTE &DC (220)

Read/write Escape character.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location contains the ASCII character (and key) which will 
generate an ESCAPE condition or event.

e.g. *FX 220,32 will make the SPACE bar the ESCAPE key. 
Default value &1B (27).

OSBYTEs &DD (221) to &E0 (224)
Read/write I/P buffer code interpretation status.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

These locations determine the effect of the character values &C0 
(192) to &FF (255) when placed in the input buffer. See 
OSBYTEs &E1 (225) to &E4 (228) for details about the different 
effects which may be selected. Note that these values cannot be 
inserted into the input buffer from the keyboard. RS423 input or a 
user keyboard handling routine may place these values into the 
input buffer.

OSBYTE &DD affects interpretation of values &C0 to &BF
OSBYTE &DE affects interpretation of values &D0 to &CF
OSBYTE &DF affects interpretation of values &E0 to &EF
OSBYTE &E0 affects interpretation of values &F0 to &FF

Default values &01, &D0, &E0 and &F0 (respectively)

77



OSBYTE &E1 (225)
Read/write function key status (soft keys/codes/null).

Changes the effect of typing the user-defined function keys as 
follows:

*FX225,0 - ignores the function keys
*FX225,1 - the function keys will generate the character 

string defined by the user using *KEY
*FX225,2-255 - the function keys will generate an ASCII code 

based on the second parameter: f1 generates a 
code one more than the second parameter, f2 a 
code two more, etc

OSBYTE &E2 (226)

Read/write firm key status (soft key or code).

Changes the effect of typing function keys in the range A to P 
(input buffer characters &90 to &9F), as follows:

*FX226,0 - ignores function keys in this range
*FX226,1 - function keys in this range will generate the 

BASIC keywords marked on their keycaps
*FX226,2-255- function keys in this range will generate an 

ASCII code based on the second parameter 
FUNC A produces a code the same as the second
parameter, FUNC B a code one higher, etc.

OSBYTE &E3 (227)
Read/write firm key status (soft key or code).

Changes the effect of typing the remaining function keys (Q to Z 
plus : ; , - . /) (Input buffer characters &A0 to &AF), according to 
the same logic as OSBYTE &E2.

78



OSBYTE &E4 (228)

Read/write CTRL+SHIFT+F key Status (soft key or code).

Input buffer characters &B0 to &BF.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y. These locations determine the action taken by 
the OS when a function key is pressed.

value 0 totally ignore key.
value 1 expand as normal soft key.
value 2 to &FF add n (base) to soft key number to provide 

ASCII code.
The default settings are:
fn keys alone &01 expand using soft key strings
fn keys+ SHIFT &01 expand using firm key strings
fn keys+CTRL &01 expand using firm key strings
fn keys+SHIFT+CTRL &00 key has no effect

When the BREAK key is pressed a character of value &CA is 
entered into the input buffer. The effect of this character may be 
set independently of the other soft keys using OSBYTE &DD 
(221). One of the other effects of pressing the BREAK key is to 
reset this call, so the usefulness of this facility is limited.

OSBYTE &E5 (229)

Read/write status of ESCAPE key (escape action or ASCII 
code).

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

If this location contains 0 then the ESCAPE key has its normal 
action. Otherwise treat currently selected ESCAPE key as an 
ASCII code.

79



OSBYTE &E6 (230)

Read/write flags determining ESCAPE effects.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

If this location contains 0 then when an ESCAPE is
acknowledged (using OSBYTE &7E/*FX 126) then :

EXEC file is closed (if open)
Purge all buffers (including input buffer)
Reset paging counter (lines since last halt)
Reset VDU queue
Any current soft key expansion is cleared

If this location contains any value other than 0 then ESCAPE
causes none of these.

OSBYTE &E7 (231)

Read/write IRQ bit mask for the user 6522 (BBC micro)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y.

This location is reserved for future Acorn expansion on the
Electron.

OSBYTE &E8 (232)

Read/write sound semaphore

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

This location contains the sound semaphore.

80



OSBYTE &E9 (233)

Read/write soft key pointer

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

This location contains the soft key pointer.

OSBYTE &EA (234)

Read flag indicating Tube presence.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location contains 0 if a Tube system is not present and &FF if
Tube chips and software are installed.

No other values are meaningful or valid.

OSBYTE &EB (235)

Read flag indicating speech processor presence.

This location is used differently on the BBC micro and the 
Electron.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location is reserved for future Acorn expansion on the 
Electron.

81



OSBYTE &EC (236)

Read/write write character destination status.

<NEW VALUE>=(<OLD VALUE> AND Y) BOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This call is used by OSBYTE &3/*FX 3.

OSBYTE &ED (237)

Read/write cursor editing status.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This call is used by OSBYTE &4/*FX 4.

OSBYTEs &EE (238) and &EF (239)

Read/write OS workspace bytes.

These locations are reserved for future Acorn expansion on the 
Electron.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

82



OSBYTE &F0 (240)

Read country code

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location contains a value indicating the country for which 
this version of the operating system has been written.

country code country
0 United Kingdom
1 United States

OSBYTE &F1 (241)

Read/write User flag location.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This call is not used by the operating system and is unlikely to be 
used by later issues either. This location is reserved as a user flag 
for use with *FX 1.

Default value 0.

OSBYTE &F2 (242)

Read RAM copy of location &FE07

<NEW VALUE>=(<OLD VALUE> AND Y) BOR X

This location contains a RAM copy of the last value written to the 
ULA at address &FE07.

The old value is returned in X. The contents of the next location 
are returned in Y.

83



OSBYTE &F3 (243)

Read timer switch state.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

The OS maintains two internal clocks which are updated 
alternately, As the OS alternates between the two clocks it toggles 
this location between values of 5 and 10. These values represent 
offsets within the OS workspace where the clock values are 
stored. This OS workspace location should not be interfered with.

OSBYTE &F4 (244)

Read/write soft key consistency flag.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

If this location contains 0 then the soft key buffer is in a consistent
state. A value other than 0 indicates that the soft key buffer is in an
inconsistent state (the operating system does this during soft key 
string entries and deletions). If the soft keys are in an inconsistent 
state during a soft break then the soft key buffer is cleared 
(otherwise it is preserved).

OSBYTE &F5 (245)
Read/write printer destination flag.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y. This call is used by OSBYTE &5/*FX 5. Using 
this call does not check for the printer previously selected being 
inactive or inform the user printer routine. See section 6.1.

84



OSBYTE &F6 (246)
Read/write character ignored by printer.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y. This call is used by OSBYTE &6/*FX 6.

OSBYTEs &F7 (247), &F8 (248) and 
&F9 (249)

Read/write BREAK intercept code.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

The contents of these locations must be a JMP instruction for 
BREAKs to be intercepted (the OS identifies the presence of an 
intercept by testing the first location contents equal to &4C - 
JMP). This code is entered twice during each break. On the first 
occasion C=0 and is performed before the reset message is printed
or the Tube initialised. The second call is made with C=1 after the 
reset message has been printed and the Tube initialised.

OSBYTEs &FA (250) and &FB (251)
Read/write OS workspace locations.

These locations are reserved for future Acorn expansions on the 
Electron.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

85



OSBYTE &FC (252)
Read/write current language ROM number.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location is set after use of OSBYTE &8E/*FX 126. This 
ROM is entered following a soft BREAK or a BRK (error).

OSBYTE &FD (253)
Read hard/soft BREAK.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location
are returned in Y

This location contains a value indicating the type of the last
BREAK performed.

value 0 - soft BREAK
value 1 - power up reset
value 2 - hard BREAK

OSBYTE &FE (254)

Read/write available RAM (BBC micro)

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

This location is reserved for future Acorn expansion. Default 
value 0 in the unexpanded Electron.

86



OSBYTE &FF (255)

Read/write start up options.

<NEW VALUE>=(<OLD VALUE> AND Y) EOR X

The old value is returned in X. The contents of the next location 
are returned in Y.

On the Electron the default value of this location is &FF (255) and
this OSBYTE is the only way of resetting the start up options.

bits 0 to 2 screen MODE selected following reset. (MODE 
number = 3 bit value)

bit 3 Auto-boot. If this bit is 1, pressing SHIFT BREAK
will cause the filing system (eg the ADFS) to auto-
boot (do something with the file '!BOOT') and
pressing BREAK alone will not cause an auto-boot. If
the bit is zero, the action is reversed and pressing just
BREAK will cause the auto-boot action. The default
is SHIFT BREAK to cause an auto-boot.

bits 4-5 These select the speed at which the read/write head of
the disc steps between tracks. The possible values are:

Bit 5 Bit 4 Speed (mS)
1 1 6
1 0 12
0 1 20
0 0 30

The default is 6mS, suitable for the built-in drive in
the Plus 3 unit (if fitted).

bit 6 This selects whether write pre-compensation is
required when writing data to the disc. A value of 1
means it is required and 0 means it isn't. The Plus 3
drive does require write pre-compensation, and the
default value of the bit is 1.

bit 7 This is unused by the current Electron operating 
system and by ADFS.

87



4 OSWORD Calls
The OSWORD routines are very similar in concept to the 
OSBYTE routines. The major difference arises in the way of 
passing parameters. Instead of being passed in the X and Y 
registers, they are placed in a parameter block, The address of this 
parameter block is sent to the routine in the X (for the low byte) 
and Y (for the high byte) registers.

OSWORD OS call specified by contents of A taking 
parameters in a parameter block.

Call address &FFF1 Indirected through &20C

On entry,
A selects an OSWORD routine.
X contains low byte of the parameter block address.
Y contains high byte of the parameter block address.

OSWORDs which are called with accumulator values in the range
&E0 (224) to &FF (255) are passed to the USERV (&200). The 
routine indirected through the USERV is entered with the register 
contents unchanged from the original OSWORD call.

Other unrecognised OSWORD calls are offered to the paged 
ROMs (see service ROMs section 10.1, reason code 8).

OSWORD summary

A=0 Read line from currently selected input into memory.
A=1 Read system clock.
A=2 Write system clock.
A=3 Read interval timer.
A=4 Write interval timer.
A=5 Read byte of I/O processor memory.
A=6 Write byte of I/O processor memory.
A=7 Perform a SOUND command.
A=8 Define an ENVELOPE.

88



A=9 Read pixel value.
A=&A Read character definition.
A=&B Read palette value for a given logical colour.
A=&C Write palette value for a given logical colour.
A=&D Read previous and current graphics cursor positions.

OSWORD call with A=&0 Read line from input

This routine takes a specified number of characters from the 
currently selected input stream. Input is terminated following a 
RETURN or an ESCAPE. DELETE (&7F/127) deletes the 
previous character and CTRL U (&15/21) deletes the entire line. 
If characters are presented after the maximum line length has been
reached the characters are ignored and a BEL (ASCII 7) character 
is output.

The parameter block
XY+ 0 Buffer address for input LSB

1 MSB

2 Maximum line length

3 Minimum acceptable ASCII value
4 Maximum acceptable ASCII value

Only characters greater or equal to XY+3 and less than or equal to
XY+4 will be accepted.

On exit:
C=0 if a carriage return terminated input.
C=1 if an ESCAPE condition terminated input.
Y contains line length, excluding carriage return if used.

OSWORD call with A=&1 Read system clock

This routine may be used to read the system clock (used for the 
TIME function in BASIC). The five byte clock value is written to 
the address contained in the X and Y registers. This clock is 
incremented every hundredth of a second and is set to 0 by a hard
BREAK.

89



OSWORD call with A=&2 Write System Clock

This routine may be used to set the system clock to a five byte 
value contained in memory at the address contained in the X and 
Y registers.

OSWORD call with A=&3 Read interval timer

This routine may be used to read the interval timer (used for 
events, see section 6.4). The five byte clock value is written to the 
address contained in the X and Y registers.

OSWORD call with A=&4 Write interval timer

This routine may be used to set the interval timer to a five byte 
value contained in memory at the address in the X and Y registers.

OSWORD call with A=&5 Read I/O processor memory

A byte of I/O processor memory may be read across the Tube 
using this call. A 32 bit address should be contained in memory at 
the address contained in the X and Y registers.

XY+ 0 LSB of address to be read
1
2
3 MSB of address to be read

If the I/O processor uses 16 bit memory addressing only least 
significant two bytes need to be specified.

On exit:
The byte read will be contained in location XY+4.

90



OSWORD call with A=&6 Write I/O processor memory

This call permits I/O processor memory to be written across the 
Tube. A 32-bit address is contained in the parameter block 
addressed by the X and Y registers and the byte to be written 
should be placed in XY+4. For compatibility with future products 
it is recommended that XY+2 and XY+3 be set to zero.

OSWORD call with A=&7 SOUND command

This routine takes an 8 byte parameter block addressed by the X 
and Y registers. The 8 bytes of the parameter block may be 
considered as the four parameters used for the SOUND command 
in BASIC.

e.g. To perform a SOUND 1,-15,200,20

XY+ 0 Channel LSB 1 &01
1 MSB &00

2 Amplitude LSB -15 &F1
3 MSB &FF

4 Pitch LSB 200 &C8
5 MSB &00

6 Duration LSB 20 &14
7 MSB &00

This call has exactly the same effect as the SOUND command.

OSWORD call with A=&8 Define an ENVELOPE

The ENVELOPE parameter block should contain 14 bytes of data 
which correspond to the 14 parameters described in the 
ENVELOPE command. This call should be entered with the 
parameter block address contained in the X and Y registers.

91



OSWORD call with A=&9 Read pixel value

This routine returns the status of a screen pixel at a given pair of 
X and Y co-ordinates. A four byte parameter block is required and 
the result is contained in a fifth byte.

XY+ 0 LSB of the X co-ordinate
1 MSB of the X co-ordinate
2 LSB of the Y co-ordinate
3 MSB of the Y co-ordinate

On exit:
XY+4 contains the logical colour at the point or &FF if 
the point specified was outside the window.

OSWORD call with A=&A Read character definition

The 8 bytes which define the 8 by 8 matrix of each character 
which can be displayed on the screen may be read using this call. 
The ASCII value of the character definition to be read should be 
placed in memory at the address stored in the X and Y registers. 
After the call the 8 byte definition is contained in the following 8 
bytes.

XY+ 0 Character required
1 Top row of character definition
2 Second row of character definition
.
.
.
8 Bottom row of character definition

92



OSWORD call with A=&B Read palette

The physical colour associated with each logical colour may be 
read using this routine. On entry the logical colour is placed in the
location at XY and the call returns with 4 bytes stored in the 
following four locations corresponding to a VDU 19 statement.

e.g. Assuming that a VDU 19,2,3,0,0,0 had previously been 
issued then OSWORD &B with 1 at XY would yield
XY+ 0 2 logical colour

1 3 physical colour
2 0 padding for future expansion
3 0
4 0

OSWORD call with A=&C Write palette

This call performs the same task as a VDU 19 command (which 
can be used from machine code using OSWRCH). The advantage 
of using this OSWORD call rather than the conventional VDU 
route is that there is a significant saving in time. Another 
advantage is that OSWORD calls can be used in interrupt routines
while VDU routines cannot. This call works in the same way as 
OSWORD &B (see above); a parameter block should be set up 
with the logical colour being defined at XY, the physical colour 
being assigned to it in XY+1 and XY+2 to XY+4 containing 
padding 0s.

93



OSWORD call with A=&D Read last two graphics cursor
positions

The operating system keeps a record of the last two graphics 
cursor, positions in order to perform triangle filling if requested. 
These cursor positions may be read using this call. X and Y should
provide the address of 8 bytes of memory into which the data may
be written.

XY+ 0 previous X co-ordinate, low byte
1 high byte

2 previous Y co-ordinate , low byte
3 high byte

4 current X co-ordinate, low byte
5 high byte

6 current Y co-ordinate, low byte
7 high byte

94



5 Filing System Calls
Any filing system implemented on the Electron offers its facilities
by intercepting the standard OS filing system calls. The tape and
*ROM filing system code is contained within the operating 
system ROM. Other filing system software may be implemented 
in service type paged ROMs. The currently selected filing system 
must place pointers to relevant routines in the vectors provided for
this purpose in page two of memory.

The description of the filing system calls given in this chapter 
covers a general filing system. The actual implementation will 
differ slightly between filing systems depending on the suitability 
of certain calls to their filing system medium.

The filing system calls are:

name call address indirection vector

OSFILE &FFDD &212
OSARGS &FFDA &214
OSBGET &FFD7 &216
OSBPUT &FFD4 &218
OSGBPB &FFD1 &21A
OSFIND &FFCE &21C
OSFSC n/a &21E

Each of these calls should respond in an appropriate and relevant 
manner as described in the sections below. Even though the nature
of certain filing systems’ hardware implementation may appear to 
vary widely, the user is presented with a standard filing system 
interface wherever possible. Software can be written which 
functions identically using a number of different filing systems. 
Where both X and Y are used to point to a parameter block. X 
holds the low byte and Y holds the high byte of the address.

95



5.1 OSFILE Read/write entire file or its attributes

Call address &FFDD Indirected through &212

This routine is used to manipulate an entire file. The precise 
function performed by this routine depends on the value in the 
accumulator. This call can be used to load a file into memory, save
a file from memory, delete a file and re-write the file’s attributes 
(e.g. load address, execution address, name etc.). Any information 
required by the routine to perform its task should be placed in 
memory. The address of this information should then be passed to 
the routine in the X and Y registers.

Entry parameters:
A contains a value indicating what action is required
X+Y contain the address of a parameter block

The format of the information placed in the parameter block 
addressed by X and Y is as follows:

&00 - &01 Address of file name

&02 - &05 Load address of file

&06 - &09 Execution address of file

&0A - &0D Start address of data (write operations) or Length
of file (read operations)

&0E - &11 End address of data (read/write operations) or
File attributes (write attributes operation)

The file name should be stored in another part of memory (not 
sideways ROMs) and be terminated by a carriage return character 
(&0D) or a space (&20). The least significant byte of the address 
should be stored in the first of the two bytes. All other parameters 
are stored in the same order, least significant byte stored first.

96



The file attributes when required should be provided in the last 
four bytes of the parameter block. The least significant 8 bits (i.e. 
the first byte) have the following meanings:

Bit Meaning if set

0 not readable by you
1 not writable by you
2 not executable by you
3 not deletable by you
4 not readable by others
5 not writable by others
6 not executable by others
7 not deletable by others

The term you here means the originator of the call and the term 
others means other users of a network filing system.

The action codes passed to OSFILE in the accumulator have the 
following effects:

A=0
Save a section of memory as a named file using the information 
supplied in the parameter block.

A=1
Re-write the catalogue information of an existing file using the 
information provided in the parameter block. i.e. load and 
execution addresses.

A=2
Re-write the load address (only) of an existing file identified by 
the name passed in the parameter block.

A=3
Re-write the execution address (only) of an existing file identified 
by the name passed in the parameter block.

97



A=4
Re-write the file attributes (only) of an existing file identified by 
the name passed in the parameter block.

A=5
Read the named file’s catalogue entry and return the file type in 
the accumulator. These are as follows:

0 returned in A Nothing found
1 returned in A File found
2 returned in A Directory found

A=6
Delete the named file.

A=7
Create a file with a catalogue entry representing the parameter 
block information but instead of transferring any data pad with 
null characters.

A=&FF
Load the named file into memory. If the first byte of the execution
address field of the parameter block is zero then load to the load 
address given in the parameter block. If the first byte of the 
execution address is non-zero then use the file’s own load address.

During this call if an error occurs a BRK instruction will be 
executed which may be trapped if required. During this call 
interrupts may be enabled but the interrupt status is preserved.

On exit:
A contains the file type
X and Y are preserved
C, N, V and Z are undefined
Information may be written to the parameter block
addressed by X+Y.

98



5.2 OSARGS Read/write open file’s attributes
Return current filing system

Call address &FFDA Indirected through &214

This routine is used to manipulate files which are being used for 
random access. Files used in this way have to be opened using the 
OSFIND call. When data is being written to or read from the file 
OSBPUT, OSBGET and OSGBPB can be used but this call 
should be used to move the sequential pointer used by these calls 
when data is not transferred. This call is the only way of moving 
the sequential pointer backwards through a file. OSARGS may 
also be used to force an update of files onto the medium in use i.e.
ensuring that the latest copy of the memory buffer is saved. A 
number of other functions are performed by this call as detailed 
below.

Entry parameters:
A contains a value determining the call’s actions
X contains a zero page address of a parameter block
Y contains the file handle (see OSFIND) or zero

The parameter block in zero page should be in the user’s 
allocation of zero page. A block of four bytes is required, this will 
contain the value of the sequential file pointer for read operations 
or should be set up with a value prior to the call for a write 
operation. It should be noted that because filing systems should 
not be languages and so are not copied across to a second 
processor this parameter block will always exist in the I/O 
processor even when a Tube is active. If called from the second 
processor, the parameter block will be copied across into the I/O 
processor before the filing system is called.

Interrupts may be enabled during a call but the interrupt status will
be preserved.

If Y=0 and A=0 then return the current filing system in A.
value returned filing system

0 no current filing system
1 1200 baud cassette

99



2 300 baud cassette
3 ROM filing system
4 Disc filing system
5 Econet filing system
6 Telesoftware filing system
7 IEEE filing system
8 ADFS
9 Reserved

10 Acacia RAM filing system

If Y=0 and A= 1 then return the address in the I/O processor of the
rest of the command line will be returned in the two least 
significant bytes of the zero page parameter block. This enables 
software to access the parameters passed with ‘*’ commands.

If Y=0 and A=&FF then update all files onto the filing system 
medium; this ensures that the medium has the latest copy of the 
buffers.

If Y is non-zero then the value in Y is assumed to be a file handle 
(see OSFIND). The value passed in A determines the action on the
open file specified by Y

A=0

Read sequential file pointer (written to the zero page parameter 
block). This pointer is the same as that used by BASIC called
PTR#.

A=1

Write sequential file pointer.

A=2

Read length of sequential file. This value is the same as that 
returned by EXT# in BASIC.

100



A=3

Write length of sequential file. This call is not implemented in all 
filing systems but where implemented may be used either to 
truncate a file or to extend it (in which case it will be padded with 
zeroes).

A= &FF

Update this file onto the filing system medium.

On exit:
A is preserved except on a call with A=0 and Y=0
X and Y are preserved

C, N, V and Z are undefined
D=0

5.3 OSBGET Get a single byte from an open file

Call address &FFD7 Indirected through &216

This routine returns the value of a byte read from a file opened for
random access. The file should have been previously opened 
using OSFIND, The file handle required by this call will have 
been provided from this OSFIND call.

Entry parameters:
Y contains file handle

A byte is read from that point in the file determined by the 
sequential file pointer. During each call of OSB GET the 
sequential file pointer is incremented by one. Thus successive 
OSBGET calls can be used to read bytes from the file 
sequentially. This pointer may be read or written using the 
OSARGS call thus enabling the use of random access.

Interrupts may be enabled during a call but the interrupt status will
be preserved.

101



A is returned containing the value of the byte read.

On exit:
X and Y are preserved
C= 1 if the end of file was reached i.e. invalid call , in 
which case A=&FE.

N, V and Z are undefined

5.4 OSBPUT Write a single byte to an open file

Call address &FFD4 Indirected through &218

This call is the complement to the OSBGET call described above. 
A file handle should be provided from a prior OSFIND call and 
the sequential file pointer is used to locate the point in the file 
where the byte is written.

Entry parameters:
A contains the byte to be written to the file.
Y contains the file handle.

During the call a byte will be written to the file and the sequential 
pointer will be incremented. If the sequential file pointer reaches 
the end of the file the file will be extended to accommodate any 
new data written where possible.

Interrupts may be enabled during a call but the interrupt status will
be preserved over a call.

On exit:
A, X and Y are preserved

C, N, V and Z are undefined

102



5.5 OSGBPB Read/write a group of bytes to/from an open file

Call address &FFD1 Indirected through &21A

This routine enables the transfer of a group of bytes to or from an 
open file. This routine is implemented particularly for filing 
systems which have a high time overhead associated with each 
data transfer e.g. the Econet.

Entry parameters:
A contains a value which determines the action
performed
X+Y contain a pointer to a parameter block in memory

The parameter block should contain information in the following 
format:

&00 file handle
&01 - &04 address of data for transfer
&05 - &08 number of bytes to transfer
&09 - &0C sequential file pointer to be used

The bytes in each parameter should be placed least significant 
byte first.

The address should include a high order address (see OSBYTE 
&82) to indicate if the data is in an i/o processor or a second 
processor.

The sequential file pointer passed in the parameter block will only
replace the old value of this pointer when appropriate.

The action codes passed to the routine will have the following 
effects:

103



A=1

Write a group of bytes to the open file. The sequential pointer 
given will indicate the point in the file where these bytes are put 
and this pointer will be incremented by the number of bytes 
written.

A=2

Write a group of bytes to the open file without using the 
sequential file pointer value given in the parameter block. The 
existing value of the pointer will mark the point in the file where 
these bytes are put and the pointer will then be incremented by the
number of bytes written.

A=3

Read a group of bytes from an open file. The sequential pointer 
given in the parameter block will indicate where the bytes should 
be read from within the file. The pointer will then be incremented 
by the number of bytes read.

A=4

Read a group of bytes from an open file disregarding the 
sequential file pointer value given in the parameter block. The 
existing pointer value will be used and subsequently incremented 
by the number of bytes read.

A=5

Return the title associated with the currently active medium and 
return boot/startup attribute, This information is written to the 
address pointed at by the X and Y registers. The format of the data
is:

&00 n, the length of the title string
&01 - n+1 the title string, ASCII characters
n+2 value indicating boot/start up options

The start up information is filing system dependent.

104



A=6

Return the currently selected directory and device identity. Two 
items of data are written to the parameter block. The format of the 
data is:

&00 n, the length of the directory name
&01 - n+1 directory name, ASCII string
n+2 m, the length of the device identity
n+3 - n+m+3 the device identity

A=7

Read the currently selected library, and device, The data format is 
the same as that used for A=6.

A=8

This call is used to read file names from the current directory. The 
parameter block should be set up so that the number of file names 
to transfer is placed in the ‘No. of bytes to transfer’ field, For the 
first call the ‘sequential file pointer’ field should be set to zero. 
The sequential file pointer is incremented each time this call is 
made so that it points to the next file name for transfer.

The data is transferred to the specified address in the form of a list
of file names. Each file name takes the form of an ASCII string 
preceded by a single byte value indicating the length of the string. 
The number of filenames in this list is determined by the value 
passed in the parameter block unless the end of the directory is 
reached.

This call also returns a cycle number in the ‘file handle’ field of 
the parameter block. This cycle number represents the number of 
times the current catalogue has been written to.

105



Exit conditions:
A, X and Y are preserved
N, V and Z are undefined
C= 1 if the transfer could not be completed

In the event of a transfer not being completed the parameter block 
contains the following information:

(a) the number of bytes or names not transferred in the ‘number 
of bytes to transfer’ field

(b) the ‘address’ field contains the next location of memory due 
for transfer

(c) the ‘sequential pointer’ field contains the sequential file 
pointer value indicating the next byte in the file due for 
transfer

5.6 OSFIND Open or close file for random access

Call address &FFCE Indirected through &21C

This call is used to allocate a file handle for subsequent use by 
OSARGS, OSBGET, OSBPUT and OSGBPB. This call should 
also be used to close a file when no further access is required. In 
this instance the file handle is released for re-allocation and the 
file medium is updated from the buffers in memory.

The file handle is a single byte value which uniquely identifies an 
open file. This provides a less cumbersome method of addressing 
the file in question than using the filename each time. The number
of files which can be open at any one time is filing system 
dependent. The actual range of handle values allocated by each 
filing system is different. The ranges which have been allocated 
by Acorn are listed under OSFSC with A=&07.

106



Entry parameters

(a) To open a file

The accumulator contains a code indicating the type of access for 
which the file should be opened:

A=&40 input only
A=&80 output only (i.e. will attempt to delete file first)
A=&C0 input and output

X and Y contain the address of a file name string (low byte, high 
byte). The filename string should be terminated by a carriage 
return character (&0D).

The accumulator will be returned containing the file handle which
has been allocated or zero if the file could not be opened. Note 
that if the filename is syntactically bad, or involves a non-existent 
directory, a BRK ‘Not found’ error may occur.

(b) To close a file

A=0 Y contains the handle of the file to be closed or Y=O to
close all currently open files.

On exit:
A returns file handle on opening otherwise preserved
X and Y are preserved

C, N, V and Z are preserved
Interrupts may be enabled during call, status preserved

5.7 OSFSC Miscellaneous filing system control

No OS call address Indirected through &21E

This vector contains an entry point into the current filing system 
which may be used to invoke a number of miscellaneous filing 
system functions. Because there is no direct call address this call 
can only be made from within an I/O processor and is not

107



available for code running on a second processor. However many 
of the facilities are indirectly available via other OS calls which 
subsequently make calls through this vector.

Entry parameters:

The accumulator contains an action code determining which 
control function is performed.

A=0 *OPT command

The operating system makes this call in response to ‘*OPT’ being 
submitted to the command line interpreter or in response to 
OSBYTE &8B. X and Y contain the parameters passed with the
‘*OPT’ command.

A= 1 Check for end of file (EOF)

This call is made by the operating system in response to OSBYTE
&7F. The call is entered with a file handle value in the X register. 
The X register should be returned containing the value &FF if an 
EOF condition exists, otherwise it should be returned containing 
zero.

A=2 ‘*/’ command

The filing system should attempt to *RUN the file whose name 
follows the ‘/’ character. The operating system command line 
interpreter will make this call in response to a command 
beginning ‘*/’. The X and Y registers contain the address of the 
file name string (not including the ‘*/’ characters).

A=3 Unrecognised *command

The operating system issues this call when an unrecognised 
command has been submitted to the command line interpreter. 
This call is made after the ‘unrecognised *command’ paged ROM 
service call has been made (see paged ROMs section 10.1). The 
command name string is addressed by the X and Y registers.

108



Filing systems will respond to this call by attempting to *RUN the
file having the command name. The idea behind this is to enable 
the implementation of command like utilities which are stored on 
the filing system media. However in the case of a filing system 
being unable to execute the file without delay the filing system 
should respond to this call with a ‘Bad Command’ message 
instead.

A=4 *RUN attempted

The operating system passes on the file name given with a *RUN 
command to the current filing system using this call. The X and Y 
registers contain the address of the file name string, The filing 
system should then load and execute the code in this file.

A=5 *CAT attempted

This call is made by the operating system in response to a *CAT 
command. The X and Y registers contain the address of the rest of 
the command string where any parameters required by the routine 
may be found.

A=6 New filing system selected

This call is issued when the current filing system is being 
changed. The deselected filing system should respond by closing 
any *SPOOL or *EXEC files using OSBYTE &77 and prepare 
itself for the handover.

A=7 Return handle range

This call may be made to determine the range of values allocated 
as file handles by the currently selected filing system. Below is a 
list of the handle ranges that have been allocated by Acorn.

filing system handle range, inclusive

Tape filing system 1 (&01) 2 (&02)
*ROM filing system 3 (&03) 3 (&03)
Teletext filing system 14 (&0E) 15 (&0F)
Disc filing system 17 (&12) 21 (&15)
Network filing system 32 (&20) 39 (&29)

109



Winchester DFS 48 (&30) 57 (&39)
reserved values 64 (&40) 71 (&49)
Acacia RAM filing system 96 (&60) 101 (&65)
IEEE filing system 240 (&F0) 255 (&FF)

The X register is returned with the lowest value which may be 
allocated as a file handle and the Y register returned with the 
highest value used.

A=8 OS *command about to be processed

The operating system makes this call prior to executing a
*command. Acorn DFS uses this call to implement the 
‘*ENABLE’ protection mechanism. This call may also be used by
filing systems to output extra messages e.g. ‘Compaction 
recommended’ when free space has become highly fragmented on 
a disc.

On exit:
Registers returned as described above
Otherwise registers undefined
Status flags undefined
Interrupts may be enabled, status preserved

110



6 Operating System 
Vectors

Many of the operating system routines are indirected through 
addresses stored in RAM. This enables other software to intercept 
these calls as they are made.

During a reset the operating system stores the addresses of its 
internal routines for such things as reading and writing characters 
in locations in page two. The official entry point of these routines 
point to instructions like JMP (vector). If another piece of 
software replaces the address stored in the vector then each 
subsequent call is passed to the intercepting software.

Consider the following example:

This program assembles a routine which intercepts ‘$’ and ‘£’ 
characters passed to the OSWRCH routine and exchanges them.

10 DIM code% 100
20 WRCHV=&20E
30 FOR opt%=0 TO 3 STEP3
40 P%=code%
50 [
60 OPT opt%
70 .init LDA WRCHV \ A=lo byte of vector
80 STA ret_vec \ make a copy
90 LDA WRCHV+1 \ A=hi byte of vector
100 STA ret_vec+1 \ make a copy
110 LDX #intrcpt AND &FF \ X=lo byte of new routine
120 LDY #intrcpt DIV &100 \ Y=hi byte of new routine
130 SEI \ disable interrupts
140 STX WRCHV \ store new routine address
150 STY WRCHV+1 \ in WRCH Vector
160 CLI \ enable interrupts
170 RTS \ finished initialisation
180 .intrcpt CMP #ASC”£” \ trying to print a £ ?
190 BEQ pound \ if so branch
200 CMP #ASC”$” \ trying to print a $ ?
210 BEQ dollar \ if so branch
220 JMP (ret_vec) \ neither goto old routine

111



230 .pound LDA #ASC”$” \ replace £ with $
240 JMP (ret_vec) \ goto old routine
250 .dollar LDA #ASC”£” \ replace $ with £
260 JMP (ret_vec) \ goto old routine
270 .ret_vec EQUW 0 \ space for return vector
280 ]
290 NEXT
300 CALL init

This program, although not very long, illustrates a few points 
regarding the way in which vectors should be intercepted.

One of the most important aspects concerning the interception of 
calls through vectors is to make sure that the call is passed on to 
the previous owner of the vector. There are occasions when a 
routine is intended to be the sole replacement of a vector but as a 
rule it is good programming practice to copy the old vector 
contents to a returning vector. By returning via the old vector 
contents any number of intercepting routines can be daisy chained
into the operating system call.

While the initialising routine is changing the vector contents to 
point at the new routine it is wise to disable interrupts, It would 
obviously be quite catastrophic if the OSWRCH routine were to 
be called when the vector was only half changed. An interrupt 
handling routine is unlikely to use the WRCHV but there is no 
reason why it should not.

The intention in this section has been to make programmers aware
of the problems which may occur when intercepting these vectors.
They have been implemented so that they may be used to insert 
extra code into some of the operating system routines and 
individuals should not be afraid of using them to this end. 
However, careful thought is required; take full account of the 
ramifications of altering the operating systems usual response to 
calls. If in doubt try out a routine. Play about with trivial examples
such as the one given above. There is nothing to be lost and much 
to be learnt.

112



OS and filing system calls indirection 
vectors

The vector addresses associated with those operating system calls 
which are indirected are given in the detailed description of each 
call in chapter 2. The entry conditions with which the routine 
whose address is contained within these vectors will be unchanged
from the initial OS call.

Other page 2 vectors

The other vectors reserved for containing the addresses of other 
operating system and miscellaneous routines are described below. 
These are:

Name addr. description

USERV &200 The user vector
BRKV &202 The BRK vector
IRQ1V &204 Primary interrupt vector
IRQ2V &206 Unrecognised IRQ vector
FSCV &21E File system control entry
EVNTV &220 Event vector
UPTV &222 User print routine
NETV &224 Econet vector
VDUV &226 Unrecognised VDU commands
KEYV &228 Keyboard vector
INSV &22A Insert into buffer vector
REMV &22C Remove from buffer vector
CNPV &22E Count/purge buffer vector
IND1V &230 unused/reserved for future expansion
IND2V &232 unused/reserved for future expansion
IND3V &234 unused/reserved for future expansion

113



6.1 The User Vector &200

The user vector is called by the operating system in three 
circumstances:

(a) When *CODE is passed to the command line interpreter

The *CODE command takes two parameters which are placed in 
the X and Y registers. The user vector is then called with an 
accumulator value of zero. OSBYTE &88 may also be used to 
generate a *CODE command.

(b) When *LINE is passed to the command line interpreter

The *LINE command takes a line of text as a parameter. The user 
vector is entered with the X and Y registers containing the address
of this text and A= 1.

(c) When an OSWORD call &E0 to &FF has been made.

The user vector is entered with the register values they were when
the original OSWORD call was made.

The default address stored in this vector points to a routine which 
generates an error with the message ‘Bad command’ and error 
number &FE.

This vector is fully implemented on the BBC microcomputer and 
the Electron. On a Tube machine only the vector on the I/O 
processor is offered these calls.

Listed below is a program which assembles a routine to intercept 
calls made to the user vector. It may be noticed that this routine 
does not offer the calls back to the original vector routine, this is 
because the default routine generates an error. There should only 
be one user vector handling routine active at any one time.

114



0 REM User vector handling routine
10 DIM code% &100
20 OSASCI=&FFE3
30 USERV=&200
40 FOR opt%=0 TO 3 STEP 3
50 P%=code%
60 [
70 OPT opt%
80 .init LDX #userrt AND &FF \ X=lo byte of routine addr.
90 LDY #userrt DIV &100 \ Y=hi byte of routine addr.
100 SEI \ disable interrupts
110 STX USERV \ set up vector with addr.
120 STY USERV+1
130 CLI \ enable interrupts
140 RTS \ and return
150 .userrt CMP #1 \ compare contents of A with1
160 BCC code \ A<1 then must be *CODE
170 BNE osword \ now if A<>1 must be OSWORD
180 STX &70 \ *LINE routine
190 STY &71 \ store text address in page0
200 LDY #&FF \ set Y as loop counter
210 .loop INY \ beginning of loop Y=Y+1
220 LDA (&70),Y \ load first byte of string
230 JSR OSASCI \ print it
240 CMP #&D \ was character a cr?
250 BNE loop \ if not get the next char.
260 RTS \ if it was return
290 .code TXA \ A=X
300 JSR prntbt \ print value of X
310 JSR space \ print a space
320 TYA \ A=Y
330 JSR prntbt \ print value of Y
340 JMP new_ln \ print newline and return
350 .osword PHA \ save contents of A
360 LDX #&FF \ set X as loop counter
370 .loop1 INX \ beginning of loop, X=X+1
380 LDA string,X \ load character from string
390 JSR OSASCI \ print it
400 CMP #ASC”&” \ & char. is end of string
410 BNE loop1 \ loop if not end of string
420 PLA \ reload the value of A
430 JSR prntbt \ print it out in hex
440 JMP new_ln \ print cr and return

115



450 .space LDA #&20 \ A=space character
460 JMP OSASCI \ print space and return
470 .new_ln LDA #&D \ A=carriage return character
480 JMP OSASCI \ print cr and return

490 .string EQUS “OSWORD &“ \ string for OSWORD routine

499 \*** This routine prints hex number given in A
500 .prntbt PHA  \ save copy of accumulator
510 LSR A
520 LSR A
530 LSR A
540 LSR A \ shift nibble hi to lo
550 JSR nibble \ print hi nibble hex digit
560 PLA \ reload accumulator
570 .nibble AND #&0F \ mask out high nibble
580 CMP #&0A \ digit or letter?
590 BCC number \ A<10 print number
600 ADC #&06 \ otherwise add 7 (C=1)
610 .number ADC #&30 \ add &30 to convert to ASCII
620 JMP OSASCI \ print character and return
630 ]
640 NEXT
650 CALL init

Once assembled this routine will respond to *CODE by printing 
out the parameters passed with the command. A *LINE command 
will result in the parameter string being repeated on the screen and
an OSWORD in the region &E0 to &FF will print out the number 
of the call.

e.g.

>*CODE 1,2
01 02
>*LINE SOME TEXT
SOME TEXT
>A%=&E0:CALL &FFF1
OSWORD &E0
>

116



6.2 The BRK Vector &202

When a BRK instruction (op code value 0) is executed an 
interrupt is generated. The operating system stores the address of 
the byte following the BRK instruction in &FD and &FE, offers 
the BRK to paged ROMs with service call &06, stores the ROM 
number of the currently active paged ROM for recovery using 
OSBYTE &BA (ROM active at last BRK), restores registers, 
selects the current language ROM and then passes the call to the 
BRKV code.

The BRK instruction is normally used on Acorn machines to 
represent an error condition and the BRK vector routine is an error
handling routine. In BASIC this error handling routine starts off 
by putting its house in order and then prints out an error message.

In addition to the use of BRKs for the generation of errors it is 
often useful in machine code programming to include BRKs 
(break-points) as a debugging aid.

If a BRK instruction is executed on the Electron, the BRK vector 
is entered with the following conditions:

(a) The A, X and Y registers are unchanged from when the BRK 
instruction was executed.

(b) An RTI instruction will return execution to the address two 
bytes after the BRK instruction (i.e. jumps over the byte following
the BRK). The RTI instruction also restores the status register 
value from the stack.

(c) The address of the byte following the BRK instruction is 
stored in zero page locations &FD and &FE, This address can 
then be used for indexed addressing.

Error handling BRK routines should not return to the code which 
executed the BRK but should reset the stack (using a TXS 
instruction) and JMP into a suitable reset entry point. In fact the 
convention used by Acorn is to follow the BRK instruction by:

117



a single byte error number
an error message
a zero byte to terminate the message

and the BRK routine prints out the error name. The BRK
handling routine should normally be implemented by the current 
language. Service paged ROMs should copy a BRK instruction 
followed by the error number and message down into RAM when 
wishing to generate an error. This has to be done because 
otherwise the current language ROM is paged in and the BRK 
handling routine tries to print out the error message from the 
wrong ROM. The bottom of page 1 is often used and is quite safe 
as long as the BRK handling routine resets the stack pointer.

The use of BRKs as break-points in machine code programming 
can be of great use to the machine code programmer. The example
below shows how a BRK handling routine may be used to print 
out the register values. This routine could be further enhanced by 
printing out the value of the byte following the BRK instruction 
which would then give the programmer 256 individually 
identifiable break-points.

10 REM Primitive BRK handling routine
20 DIM code% &100
30 OSASCI=&FFE3
40 OSRDCH=&FFE0
50 BRKV=&202
60 FOR opt%=0 TO 3 STEP 3
70 P%=code%
80 [
90 OPT opt%
100 .init LDX #brkrt AND &FF \ load registers with address
110 LDY #brkrt DIV &100
120 SEI \ disable interrupts
130 STX BRKV \ set up BRK vector
140 STY BRKV+1
150 CLI \ enable interrupts and return
160 RTS
170 .brkrt PHA \ save A CX and Y not used)
180 STA byte \ store A in workspace
190 LDA #ASC”A” \ register id
200 JSR prntrg \ print register value
210 STX byte \ store X in workspace
220 LDA #ASC”X” \ register id

118



230 JSR prntrg \ print register value
240 STY byte \ store Y in workspace
250 LDA #ASC”Y” \ register id
260 JSR prntrg \ print register value
270 JSR newln \ print carriage return
280 JSR OSRDCH \ wait for key press
290 PLA \ restore A
300 RTI \ return

310 .prntrg JSR OSASCI \ print register id
320 LDA #ASC”:”
330 JSR OSASCI \ print colon
340 JSR space \ print space
350 LDA #ASC”&”
360 JSR OSASCI \ print ampersand
370 LDA byte \ get register value
380 JSR prntbt \ print hex number
390 JSR space
400 JSR space \ print two spaces
410 RTS
420 .space LDA #&20
430 JMP OSASCI \ print space

440 .newln LDA #&D
450 JMP OSASCI \ print carriage return
460 .prntbt PHA \ for comments refer to
470 LSR A \ previous example
480 LSR A
490 LSR A
500 LSR A
510 JSR nibble
520 PLA
530 .nibble AND #&0F
540 CMP #&0A
550 BCC number
560 ADC #&06
570 .number ADC #&30
580 JMP OSASCI
590 .byte EQUB 0 \ workspace byte
600 .test BRK \ cause an error
610 EQUB 0 \ RTI returns to next byte
620 DEX \ Loop X times
630 BNE test \ if X=0 Loop again
640 RTS
650 ]
660 NEXT
670 CALL init
680 A%=1:X%=8:Y%=&FF:CALL test

119



6.3 The interrupt vectors, IRQ1V &204 and IRQ2V &206

The interrupt system on the Electron is described in chapter 7. The
function of the two interrupt vectors are described there.

6.4 The event vector, EVNTV &220

This vector is called by the operating system during its interrupt 
routine to provide users with an easy to use interrupt, A number of
‘events’ may cause the event handling routine to be called via this 
vector but unlike an interrupt the reason for the call is passed to 
the routine. The value in the accumulator indicates the type of 
event:

event no. cause of event

0 output buffer becomes empty
1 input buffer becomes full
2 character entering input buffer
3 ADC conversion complete
4 start of VSYNC
5 interval timer crossing zero
6 ESCAPE condition detected
7 RS423 error detected
8 Econet event
9 user event

To avoid unnecessary and time consuming calls to the event 
vector two OSBYTE calls are used to enable and disable these 
event calls being made. These are &D (13) for disabling and &E 
(14) for enabling events.

The event handling routine should not enable interrupts and not 
last for more than about 2 milliseconds. So that event handling 
routines may be daisy chained they should preserve registers and 
return using the old vector contents.

120



Output buffer empty 0

This event enters the event handling routine with the buffer 
number (see OSBYTE &15/*FX21) in X. It is generated when a 
buffer becomes empty (i.e. just after the last character is 
removed).

Input buffer full 1

This event enters the event handling routine with the buffer 
number (see OSBYTE &15, *FX 21) in X. It is generated when 
the operating system fails to enter a character into a buffer 
because it is full. Y contains the character value which could not 
be inserted.

Character entering input buffer 2

This event is normally generated by a key press and the ASCII 
value of the key is placed in Y. It is generated independently of the
input stream selected.

ADC conversion complete 3

When an ADC conversion is completed on a channel this event is 
generated. The event handling routine is entered with the channel 
number on which the conversion was made in Y. This event is 
generated by the Plus 1 expansion software.

Start of vertical sync 4

This event is generated 50 times per second coincident with 
vertical sync. One use of this event is to time the change to a 
video ULA register so that the change to the screen occurs during 
fly back and not while the screen is being refreshed. This avoids 
flickering on the screen.

121



Interval timer crossing zero 5

This event uses the interval timer (see OSWORD calls &3 and 
&4, in chapter 4). This timer is a 5 byte value incremented 100 
times per second. The event is generated when the timer reaches 
zero.

ESCAPE condition detected 6

When the ESCAPE key is pressed or an ESCAPE is received from
the RS423 (if RS423 ESCAPEs are enabled) this event is 
generated.

RS423 error event 7

This event should be generated by software servicing expansion 
RS423 hardware.

Network error event 8

This event is generated when a network event is detected. If the 
net expansion is not present then this could be used for user 
events.

User event 9

This event number has been set aside for the user event, This is 
most usefully generated from a user interrupt handling routine to 
enable other user software to trap an interrupt easily (e.g. an event
generated from an interrupt driven utility in paged ROM). An 
event may be generated using OSEVEN, see section 2.10

6.5 User print vector, UPTV &222

A user print routine can be implemented by intercepting this 
vector, Whenever a change in printer type is made using OSBYTE
&05 the print vector is called. A user print routine should respond 
when printer type 3 is called.

122



The operating system will activate the user printer routine and 
there after call it regularly at intervals of 10 milliseconds. 
Characters will be placed in the printer buffer and it is up to the 
user printer routine to remove characters and send them to the 
printer hardware. When the printer routine finds that the buffer is 
empty it should then declare itself inactive. The operating system 
will then re-activate the routine when characters start entering the 
buffer again.

The user printer driver should preserve all registers and return via 
the old UPTV value.

On entry:
X contains the buffer number to be used
Y contains the printer number (i.e. the *FX 5 value)

N. B. The routine should only respond if it recognises the printer 
number as its own.

The accumulator contains a reason code for the call:

A=0

When the printer driver is active the operating system makes this 
call every 10 ins. The printer driver should examine its hardware 
and if it is ready for another character should remove a character 
from the assigned buffer and send it to the printer. A call to the 
REMV vector should be made to obtain the character (see section 
6.9.2) or use OSBYTE &91, When the printer driver has emptied 
the printer buffer it should then declare itself inactive by making 
an OSBYTE call &7B. This will allow the user to select a new 
printer driver using OSBYTE &5, will stop further calls with A=0 
and thereafter when the printer buffer is used again will cause a 
call with A=1 to be made (see below).

A=1

When a printer driver is inactive this call is made to tell the 
routine that the printer buffer is no longer empty and the printer 
driver should now become active. If the printer driver is able to 
become active it should remove a character from the assigned

123



buffer and if the buffer is still not empty it should return with the 
carry flag clear to indicate that it is now active. Having thus 
signalled itself as active the printer driver will receive the 10 ms 
calls with A=0.

A=2

When the VDU drivers receive a VDU2 this call is made. 
Characters may be printed even when this control character has 
not been received if certain *FX3 options are selected.

A=3

This call is made when a VDU3 is received.

A=5

The selection of a new printer driver will cause this call to be 
made to the printer vector. Any OSBYTE &5 call causes this call 
to be made.

6.6 Econet vector, NETV &224

The Econet vector allows the Network filing system to intercept a 
wide range of operating system functions. This vector is called 
with a reason code in the accumulator. The conditions under 
which this vector is called are:

A=0, 1, 2, 3 and 5

These codes are used to control the net printer. These calls are 
made under identical circumstances as for the user print vector 
described above. The net printer is assigned the printer number 4.

A=4

OSWRCH call made. This call is indirected through the net vector
after OSBYTE &D0 has been used. The Y register contains the 
value originally passed in the accumulator. If, on exit, the carry 
flag is set then the output call is not performed.

124



A=6

OSRDCH call made. This call is indirected through the net vector 
after OSBYTE &CF has been used. The ASCII value for a key 
read should be returned in the accumulator.

A=7

OSBYTE call made. This indirection is performed after OSBYTE 
&CE has been used. The OSBYTE parameters are stored in 
locations &EF, &F0 and &F1. If the overflow flag is set on return 
from this call then the OSBYTE call is not performed.

A=8

OSWORD call made. Circumstances as for call with A=7.

A=&0D

After completion of a line of input using OSWORD &01 this call 
is made. This is implemented so that the Network filing system 
doesn’t takeover the RDCH routine in the middle of line input.

6.7 VDU extension vector, VDUV &226

This vector is called when the VDU drivers are presented with an 
unknown command or a known command in a non-graphics 
MODE.

A VDU 23,n command with a value of n in the range 2 to 31 will 
cause a call to be made to this vector with the carry flag set. The 
accumulator will contain the value n.

An unrecognised PLOT command or the use of a PLOT command
in a non-graphics MODE will result in this call being made with 
the carry flag clear. The accumulator will contain the PLOT 
number used.

125



6.8 The keyboard vector, KEYV &228

This vector is used whenever the keyboard is being looked at. 
There are four different calls made through this vector on the 
Electron.

(a) Test SHIFT and CTRL keys On entry: C=0, V=0

Should exit with the N (negative) flag set if the CTRL key is 
pressed and with the V (overflow) flag set if the SHIFT key is 
pressed.

(b) Scan keyboard as for OSBYTE &79

On entry: C=1 , V=0 other parameters identical to OSBYTE &79

Should exit with the appropriate register values (see OSBYTE
details) but with A=X.

(c) Timer interrupt service with keys active

On entry: C=1, V=1

This entry is actually used for the bulk of all keyboard processing. 
After an interrupt the actual keyboard scan is carried out during 
this call. If the user’s program does not require use of the 
keyboard, intercepting this call to the KEYV routine and returning
it speeds up the machine enormously. Alternatively, OSBYTE 178
may be used to switch off the interrupt altogether (see Chapter 3). 
The keyboard may still be read by direct access to it, see section 
14.2.

(d) Timer interrupt service with no keys active

On entry: C=0, V=1

126



6.9 The buffer maintenance vectors

This vector and the two following vectors enable the user to 
intercept or use the operating system buffer maintenance routines.

The operating system uses buffers for keyboard input, RS423 
input and output, the printer, the sound system (4 buffers) and the 
speech system. These buffers contain data which should be 
processed by the various routines. Even though the servicing 
routine may not be able to respond to the request immediately the 
calling routine returns (unless the buffer is full) and is able to get 
on with its foreground task. While a buffer contains a queue of 
data for processing, the interrupt routine (the background task) 
sees to it that the relevant routines service this data.

In this way the user is able to type ahead when the machine is 
unable to respond immediately and may initiate sounds which 
then continue while he issues further commands.

Buffers operate on a first in first out (FIFO) basis for obvious 
reasons.

The Acorn BBC range of machines use the following numbers as 
buffer IDs:

title number
keyboard buffer 0
RS423 input buffer 1
RS423 output buffer 2
printer buffer 3
SOUND channel 0 buffer 4
SOUND channel 1 buffer 5
SOUND channel 2 buffer 6
SOUND channel 3 buffer 7
speech buffer 8

On the BBC microcomputer and the Electron memory is reserved 
for each of these buffers even though the software/hardware using 
the buffer may not be present. The buffer maintenance calls still 
service these buffers but the contents will not be processed by the 
relevant service routine. The expansion software/hardware will 
use the appropriate buffer when installed. Thus when the speech 
expansion is fitted on a BBC microcomputer the speech buffer is 

127



used and on an Electron with a Plus 1 the printer buffer is used.

The following OSBYTE calls may also be of interest when 
considering the buffer facilities:

Description OSBYTE number

flush selected buffer class &0F (15)
flush particular buffer &15 (21)
get buffer status &80 (128)
insert value into buffer &8A (138)
get character from buffer &91 (145)
examine buffer status &98 (152)
insert value into i/p buffer &99 (153)

6.9.1 Insert value into buffer vector, INSV &22A

This vector contains the address of a routine which inserts a value 
into a selected buffer.

Entry parameters:
A=value to be inserted
X=buffer id

On exit:
A and X are preserved
Y is undefined

C flag is set if insertion failed (i.e. buffer full)

6.9.2 Remove value from buffer vector, REMV &22C

This vector contains the address of a routine which removes a 
value from the selected buffer. This routine may also be used to 
examine the next character to be removed from a buffer without 
actually removing it.

128



Entry parameters:
X=buffer ID
V= 1 (overflow flag set) if only examination requested

On exit:
A contains next byte to be removed (examination call)
(A undefined for removal call)
X is preserved
Y contains the value of the byte removed from the buffer
(Y undefined for examination call)
C flag is set if buffer empty when call made

6.9.3 Count/purge buffer vector, CNPV &22E

This vector contains the address of a routine which may be used to
clear the contents of a buffer or to return information about the 
free space or contents of a buffer.

Entry parameters:
X=buffer ID
V=1 (overflow flag set) to purge buffer
V=0 (overflow flag clear) for count operation
C=1 count operation returns amount of free space
C=0 count operation returns length of buffer contents

On exit:
X and Y contain value of count (low byte, high byte)
X and Y are preserved for a purge operation
A is undefined
V and C are preserved

6.9.4 Using the buffer vectors

It should be noted that none of the buffer maintenance routines 
check for valid buffer IDs. Using a buffer ID outside the assigned 
range will have undefined effects unless specifically intercepted.

None of these vectors are implemented on second processors and 
so none of the buffer maintenance calls are sent across the Tube. 
Calls using the buffer vectors should always be made by code

129



resident in the I/O processor. It should be noted that considerable 
manipulation of the buffers may be carried out using OS routines 
such as OSBYTE, OSWRCH, OSWORD etc. which may affect 
buffer contents either directly or indirectly. Routines intercepting 
these vectors must always be resident on the I/O processor, ideally
in service type paged ROMs.

The program below illustrates how the buffer vectors can be 
intercepted to implement a much larger printer buffer. The 
standard printer buffer is less than &100 bytes long and since 
printers as a rule tend to be quite sluggish peripherals this buffer 
rapidly fills up. A buffer is required which will hold a reasonable 
sized listing, or a document before filling up and refusing to 
accept further input. Having placed the item for printing in an 
enlarged buffer the user may return to word processing or 
programming leaving the operating system to get on with the 
printing.

The routine used below creates a buffer of variable size as defined
by the variable ‘size’. The usefulness of this program is limited. 
For the reasons given above it will only work when run on a non-
Tube machine. It will only work as long as its code is not 
corrupted; this means that renumbering the program after it has 
been run will crash the machine as BASIC tramples all over the 
area originally reserved for the assembled code. Similarly another 
language ROM is unlikely to allow the routine to run in peace. If 
this routine becomes corrupted the machine is totally disabled 
because each time a key is pressed this routine is called. 
Experimenting with this example will provide valuable experience
in the use of critical operating system routines. One note of 
warning however, be sure to save a copy of the program before 
trying to run it; it is quite possible for the program to corrupt itself
or even crash the machine irrevocably so that a power on reset is 
required (that is, the machine will have to be turned off, then on 
again).

This program consists of three main routines which intercept the 
buffer maintenance calls for the printer buffer. Calls for any of the
other buffers are carefully handed on to the original routines 
pointed to by the contents of the buffer vectors. An area of RAM 
is reserved for use as a buffer by using a DIM statement. Four 
bytes of zero page memory are used to house two 16 bit pointers.

130



One pointer is used as an index for the insertion of values into the 
buffer and the other pointer is used as an index for the removal of 
bytes. When a pointer reaches the end of the buffer it is pointed to 
the beginning again, In this way the two pointers cycle through 
the buffer space. A full buffer is detected by incrementing the 
input pointer and comparing it to the output pointer. If the two 
pointers are equal the buffer is full, the character cannot be 
inserted; the input pointer is restored. If after the removal of a 
character the output pointer becomes equal to the input pointer 
then the buffer is now empty. By using this system the full size of 
the buffer is always available to contain data.

10 REM user printer buffer routine
20 MODE7
30 size=&2000
40 DIM buffer size
50 DIM code% &400
60 INSV~&22A
70 RMV=&22C
80 CNPV=&22E
90 ptrblk=&80: !ptrblk=buffer+buffer*&10000
100 ip_ptr=ptrblk:op_ptr=ptrblk+2
110 FOR I=0 TO 3 STEP 3
120  P%=code%
130 [
140 OPT I
150 .init LDA INSV \ make copies of old vector
160 STA ret1 \ contents to pass on calls
170 LDA INSV+1
180 STA ret1+1
190 LDA RMV
200 STA ret2
210 LDA RMV+1
220 STA ret2+1
230 LDA CNPV
240 STA ret3
250 LDA CNPV+1
260 STA ret3+1
270 LDX #ins AND &FF \ store address of new
280 LDY #ins DIV &100 \ routines in vectors
290 SEI \ disable interrupts
300 STX INSV
310 STY INSV+1
320 LDX #rem AND &FF
330 LDY #rem DIV &100
340 STX RMV
350 STY RMV+1
360 LDX #cnp AND &FF

131



370 LDY #cnp DIV &100
380 STX CNPV
390 STY CNPV+1
400 CLI \ enable interrupts
410 RTS \ finished
420 .wrkbt EQUB 0 \ byte of RAM workspace
430 .retl EQUW 0 \ reserve space for vectors
440 .ret2 EQUW 0
450 .ret3 EQUW 0
460 .wrngbfl PLP:PLA:JMP (ret1) \restore S & A, call OS
470 \New insert char. into buffer routine
480 .ins PHA:PHP \ save A and status register
490 CPX #3 \ is buffer id 3 ?
500 BNE wrngbfl \ if not pass to old routine
510 PLP \ not passing on, tidy stack
520 LDA ip_ptr \ A=lo byte of input pointer
530 PHA \ store on stack
540 LDA ip_ptr+l \ A=hi byte of input pointer
550 PHA \ store on stack
560 LDY #0 \ Y=0 so ip_ptr incremented
570 JSR inc_ptr \  by the inc_ptr routine
580 JSR compare \ compare the two pointers
590 BEQ insfail \ if ptrs equal, buffer full
600 PLA:PLA:PLA \ don’t need ip_ptr copy now
610 STA (ip_ptr),Y \ A off stack, insrt in bufr
620 CLC \ insertion success, C=0
630 RTS \ finished
640 .insfail PLA \ buffer was full so must
650 STA ip_ptr+1 \  restore ip_ptr which was
660 PLA \  stored on the stack
670 STA ip_ptr
680 PLA
690 SEC \ insertion fails so C=a
700 RTS \ finished
710 .wrngbf2 PLP:JMP (ret2) \ restore 5, call OS
720 \New remove char. from buffer routine
730 .rem PHP \ save status register
740 CPX #3 \ is buffer id 3 ?
750 BNE wrngbf2 \ if not use OS routine
760 PLP \ restore status register
770 BVS examine \ V=1, examine not remove
780 .remsr JSR compare \ compare i/p and o/p ptrs
790 BEQ empty \ if the same, buffer empty
800 LDY #2 \ Y=2 so that increment ptr
810 JSR inc_ptr \ routine inc’s op_ptr
820 LDY #0 \ Y=0, for next instruction
830 LDA (op_ptr),Y \ fetch character from bufr
840 TAY \ return it in Y
850 CLC \ buffer not empty, C=0
860 RTS \ return

132



870 .empty SEC \ buffer empty, C=a
880 RTS \ return
890 .examine LDA op_ptr \ examine only, so store a
900 PHA \ copy of the oip pointer
910 LDA op_ptr+1 \ on the stack to restore
920 PHA \ ptr after fetch
930 JSR remsr \ fetch byte from buffer
940 PLA \ restore ptr from stack
950 STA op_ptr+1 \ (if buffer was empty
960 PLA \ C=1 from fetch call)
970 STA op_ptr
980 TYA \ examine requires ch, in A
990 RTS \ finished
1000 .wrngbf3 PLP:JMP (ret3) \ restore 5, call OS
1010 \ New count/purge buffer routine
1020 .cnp PHP \ save status reg. on stack
1030 CPX #3 \ is buffer id 3 ?
1040 BNE wrngbf3 \ if not pass to old subr
1050 PLP \ restore status register
1060 PHP \ save again
1070 BVS purge \ if V=1, purge required
1080 BCC len \ if C=0, amount in buffer
1090 LDA ip_ptr \ o/w free space request
1100 PHA
1110 LDA ip_ptr+1 \ store ip_ptr on stack
1120 PHA
1130 LDX #0 \ X=0 for use as counter
1140 STX wrkbt \ wrkbt=0 for hi counter
1150 LDY #0 \ Y=0, so ip_ptr incr’d
1160 .loopl JSR inc_ptr \ increment ip_ptr
1170 JSR compare \ does it equal op_ptr
1180 BEQ finshdl \ if so count~free space
1190 INX \ X=X+1
1200 BNE no_inc \ if X=0 don’t inc wrkbt
1210 INC wrkbt \ hi byte of count inc’d
1220 .no_inc JMP loopi \ loop round again
1230 .finshdl PLA \ restore ip_ptr off stack
1240 STA ip_ptr+1
1250 PLA
1260 STA ip_ptr
1270 LDY wrkbt \ Y=hi byte of free space
1280 PLP \ restore status register
1290 RTS \ finished
1300 .len LDA op_ptr \ store op_ptr on stack
1310 PHA
1320 LDA op_ptr+1
1330 PHA
1340 LDX #0 \ X=0 for use as counter
1350 STX wrkbt \ wrkbt=0 hi byte of count
1360 LDY #2 \ Y=2 so op_ptr incremented
1370 .loop2 JSR compare \ are ptrs equal ?

133



1380 BEQ #nshd2 \ if so buffer empty
1390 JSR inc_ptr \ increment op_ptr
1400 INX \ increment count
1410 BNE no_inc2 \ if X=0 then increment hi
1420 INC wrkbt \ byte of count
1430 .no_inc2 JMP loop2 \ loop round again
1440 .finshd2 PLA \ restore op_ptr off stack
1450 STA op_ptr+1
1460 PLA
1470 STA op_ptr
1480 LDY wrkbt \ Y=hi byte of length
1490 PLP \ restore status register
1500 RTS \ finished
1510 .purge LDA #buffer AND &FF\ to purge buffer reset
1520 STA ip_ptr \ oip and i/p ptrs to
1530 STA op_ptr  \ start of buffer
1540 LDA #buffer DIV &100
1550 STA ip_ptr+1
1560 STA op_ptr+1
1570 PLP \ restore status register
1580 RTS \ return
1590 \ Increment pointer routine. Y=0 op_ptr, Y=2 ip_ptr
1600 .inc_ptr CLC \ C=0
1610 LDA ptrblk,Y \ A=?(ptrblk+Y)
1620 ADC #1 \ A=A+1+C
1630 STA ptrblk,Y \ ?(ptrblk+Y)=A
1640 LDA ptrblk+1,Y \ A=?(ptrblk+1+Y)
1650 ADC #0 \ A=A+0+C
1660 STA ptrblk+1,Y \ ?(ptrblk+1+Y)=A
1670 CMP #(buffer+size) DIV &100 \ hi byte end of bufr
1680 BNE home \ not end of buffer
1690 LDA ptrblk,Y \ A=low byte of pointer
1700 CMP #(buffer+size) AND &FF \ end of buffer ?
1710 BNE home
1720 LDA #buffer AND &FF \ if the end of buffer has
1730 STA ptrblk,Y \ been reached set pointer
1740 LDA #buffer DIV &100 \ to the beginning again
1750 STA ptrblk+1,Y
1760 .home RTS \ return
1770 \ Compare pointers, if equal Z=1 don’t care otherwise
1780 .compare LDA ip_ptr+1
1790 CMP op_ptr+1 \ compare ptr high bytes
1800 BNE return \ if not equal return
1810 LDA ip_ptr
1820 CMP op_ptr \ compare pointr low bytes
1830 .return RTS \ return
1840 ]
1850 NEXT
1860 CALL init

134



This program requires the presence of the Plus 1 expansion to be 
of any use. It could however be modified to replace any of the 
operating system’s buffers. A paged ROM version of this program 
can be found in chapter 10.

6.10 Unused vectors, IND1V, IND2V & IND3V &230

These vectors are reserved by Acorn for future expansion. 
Software which uses these vectors cannot be guaranteed to be 
compatible with any future versions of operating system software 
or other Acorn products.

6.11 The default vector table

The BBC microcomputer operating system (version 1.2 onwards) 
and the Electron operating system contain a table of default values
in a block of data. This may be accessed using the following 
addresses:

&FFB6 - contains the length of the data in bytes
&FFB7 - contains the low byte of the data’s address
&FFB8 - contains the high byte of the data’s address

135



7 Interrupts
7.1 An introduction to interrupts

An interrupt is a hardware signal to the microprocessor. It informs
the 6502 that a hardware device, somewhere in the Electron or on 
an expansion module, requires immediate attention. When the 
microprocessor receives an interrupt, it suspends whatever it was 
doing, and executes an interrupt servicing routine. Upon 
completion of the servicing routine, the 6502 returns to whatever 
it was doing before the interrupt occurred.

A simple analogy of an interrupt is a man working hard at his
desk writing a letter (a foreground task). Suddenly the telephone 
rings (an interruption). The man has to stop writing and answer 
the telephone (the interrupt service routine). After completion of 
the call, he has to put the telephone down, and pick up his writing 
exactly where he left off (return from interrupt).

In an Electron, the main objective is to perform foreground tasks 
such as running BASIC programs. This is equivalent to writing 
the letter in the above example. The computer may however be 
concerned with performing lots of other functions in the 
background (equivalent to the man answering the telephone). An 
Electron which is running the house heating system for example 
would not wish to keep on checking that the temperature in every 
room is correct — this would take up too much of its processing 
time. However, if the temperature gets too high or too low in any 
of the rooms it must do something about it very quickly. This is 
where interrupts come in. The thermostat could generate an 
interrupt, causing the computer to jump quickly to the interrupt 
service routine, switch a heater on or off, and return to the main 
program.

There are two basic types of interrupts available on the 6502. 
These are maskable interrupts (IRQs) and non-maskable interrupts
(NMIs). To distinguish between the two types, there are two 
separate pins on a 6502. One of these is used to generate IRQs 
(maskable) and the other is used to generate NMIs (non-
maskable).

136



7.1.1 Non-Maskable Interrupts

In order to generate a non-maskable interrupt, a piece of hardware
must pull the NMI line low. This forces the 6502 to stop whatever 
it was doing, and to start executing the NMI service routine at 
&0D00. NMIs are extremely powerful, because they cannot be 
turned off under software control. If the ULA is currently 
accessing RAM to produce the video display in modes 0 to 3, it is 
also forced to give the memory back to the 6502. NMIs can 
therefore create snow on the screen - the urgency of this signal is 
such that even the screen cannot take priority over the interrupting
device.

Only very high priority devices, such as the Floppy Disc or 
Econet interfaces, are allowed to generate NMIs. This ensures that
the 6502 is only interrupted in very urgent situations. These high 
priority devices are then guaranteed to get immediate attention 
from the 6502. To return to the main program from an NMI, an 
RTI instruction is executed. It is always necessary to ensure that 
all of the 6502 registers are restored to their original state before 
returning to the main program. If they are modified, the main 
program will suddenly find garbage in its registers in the middle 
of some important processing. It is highly probable that a total 
system crash would result from this.

7.1.2 Maskable Interrupts

Maskable interrupts are similar to non-maskable interrupts in most
respects. A hardware device can generate a maskable interrupt to 
which the 6502 must normally respond. The difference is that the 
6502 can choose to ignore all maskable interrupts, if it so desires, 
using software control. To disable interrupts (only the maskable 
ones though), an SEI (set interrupt disable flag) instruction is 
executed. Interrupts can be re-enabled at a later time using the 
CLI (clear interrupt disable flag) instruction.

When an interrupt is generated, the processor knows that an 
interrupt must have come from either the ULA, or an expansion 
module device. Initially though, it can’t tell where the interrupt 
has come from. If there was only one device that could have 
caused the interrupt, then there would be no problem. However,

137



since there is more than one device causing interrupts in the 
Electron, each device must be interrogated. Each device is asked 
whether it caused the interrupt. This is normally quite easy, 
because all of the standard Electron devices are controlled by the 
ULA register at address &FE00. Any other devices connected to 
the expansion bus would have to be interrogated separately.

When the interrupt processing routine has discovered the source 
of a maskable interrupt, it must decide upon the type of action is 
required. This usually involves transferring some data to or from 
the cassette interface, incrementing the clock, or flashing the 
colours on the screen. The interrupt condition must then be 
cleared by writing to &FE05. This is because most devices 
(except the cassette receive and transmit registers) continue to 
signal an interrupt until they have been serviced. The completion 
of servicing often has to be signalled by the processor writing to a 
special register in the device, or, in the case of interrupts from the 
ULA, to address &FE05.

Interrupts must never affect the interrupted program. All of the 
processor registers and flags must therefore be exactly the same 
after return from an interrupt routine as they were before the 
interrupt occurred. Thus an interrupt routine must either not alter 
any registers (which is difficult) or restore all register contents to 
their original values before returning.

Interrupt routines are entered with interrupts disabled. An 
additional interrupt will therefore not be recognised whilst the first
interrupt routine is still processing. If the interrupt service routine 
is going to take an appreciable time, this could create problems. 
Other more urgent interrupts may occur, and have to wait until the
previous one has finished processing. The solution is normally to 
ensure that interrupt routines are not too long. However, if care is 
taken, interrupts can be re-enabled inside a long interrupt routine. 
In this case, fixed memory locations must not be used to store 
variables within the routine, because these locations will be 
overwritten if another interrupt routine uses them (or indeed if the 
same interrupt occurs again!). All variables should therefore be 
stored on the stack so they can be restored at the end of any 
routine.

138



7.2 Interrupts on the Electron

Interrupts are required on the Electron to process all of the 
background operating system tasks. These tasks include 
incrementing the clock, processing envelopes, or transferring keys
pressed to the input buffer. All of these tasks must continue whilst 
the user is typing in, or running his program. Using interrupts 
gives the impression that there is more than one processor; one for
the user, one for updating the clock, one for processing envelopes,
etc.

As was mentioned in the introduction, normal (maskable) 
interrupts can be disabled. Interrupts should only be disabled for 
critical operations. For example, when changing the two bytes of a
vector. If an interrupt occurs in the middle of the change, it might 
be indirected to an erroneous address.

When interrupts are disabled, the clock stops, and all other 
interrupt activities cease. Interrupts are disabled by the SEI 
assembler instruction, and re-enabled with CLI. Most devices that 
generate interrupts will continue to signal an interrupt until it is 
serviced. The cassette read register is one exception. If it isn’t 
serviced within 2ms, data from the cassette will almost certainly 
be lost forever.

7.3 Using Non-Maskable Interrupts

Generally, NMIs are reserved for specialised pieces of hardware 
which require very fast response from the 6502. NMIs are not 
used on a standard system. They are used on DISC and ECONET 
systems. An NMI causes a jump to location &0D00 to be made.

7.4 Using Maskable Interrupts

Most of the interrupts on the Electron are maskable. This means 
that a machine code program can choose to ignore the interrupts 
by disabling them. Since all of the operating system features such 
as scanning the keyboard, updating the clock, and running the 
cassette system are run on an interrupt basis, interrupts should 
never be disabled for more than about 2ms.

139



There are two levels of priority for maskable interrupts, defined 
by two indirection vectors in page &02. The priority of an 
interrupt indicates its relative importance with respect to other 
interrupts. If two devices signal an interrupt simultaneously, the 
higher priority interrupt is serviced first.

7.5 Intercepting interrupts

Maskable interrupts can be intercepted on the Electron, and re-
directed to a user specified address. This interception process 
consists of changing the value of a vector.

There are two interrupt interception vectors called IRQ1V and 
IRQ2V, The first of them is indirected via the vector stored at 
&204,5 and the second via &206,7. If either of the vectors stored 
in these locations is changed to point at a user supplied routine, 
that user routine will be called when there is next an interrupt.

Interrupt Request Vector 1 (IRQ1V)

Indirects through &204,5

This is the highest priority vector through which all maskable 
interrupts are indirected, This is nominally reserved for the system
interrupt processing routine, which copes with all of the interrupts 
from the ULA. Any interrupt which cannot be dealt with by the 
operating system routine (those which are generated by a user 
expansion module) are passed on through the second interrupt 
vector, IRQ2V. Occasionally, IRQ1V can be intercepted before the
operating system gets hold of it. This will only be necessary for 
high priority user interrupts.

Interrupt Request Vector 2 (IRQ2V)

Indirects through &206,7

This vector is normally used to deal with any interrupts which 
cannot be dealt with by the operating system. On an unexpanded 
Electron, the vector simply points to a couple of lines of code to 
restore the A register from &FC, then return from the interrupt 
service.

140



Several points should be born in mind when producing interrupt 
service routines.

a) When the vector value is changed to point at the new user 
supplied routine, the previous contents of the vector should be
saved somewhere. This will allow the user routine to go on to 
the correct address after it has finished, Note that this method 
of linking into IRQ1V or IRQ2V allows several independent 
routines to link in separately. Each stores the previous 
contents of the vector (which point to the next routine).

b) Disable interrupts using the SEI instruction before changing 
the contents of the interrupt vectors, This is merely a 
precaution to guard against the possibility of interrupts 
occurring between writing the low and high bytes of the 
vector If an interrupt were to occur in the middle of this 
operation, the indirection vector would be erroneous, and 
would probably cause the machine to crash.

c) The conditions which will be in force when the user routine is
entered are that; the original 6502 status byte and return 
address are already stacked on the 6502 stack (ready for an 
RTI instruction to resume normal operation). The X and Y 
registers are still in their original states, but haven’t been 
saved anywhere. The original A register contents are in 
location &FC.

d) Operating system calls should not normally be made from 
within an interrupt service routine, This is because they may 
not be re-entrant (eg. if any zero page locations are used). 
Most OSBYTEs and some OSWORDs are ‘IRQ-proof’. 
Avoid *FX0, OSBYTE &81 (positive INKEY), fast Tube 
BPUT, OSWORD 0, and all VDU OSWORDs except palette 
write/read. Such use of OS calls will often cause the 
foreground task to be disturbed and crash.

e) The user’s interrupt routine should be re-entrant. This means 
that if there is a possibility of interrupts being re-enabled 
during the routine (eg. because it is very long), the code can 
be run again without affecting the first foreground interrupt. 
This can only be done by pushing the X and Y registers plus

141



the contents of &FC onto the stack, and restoring them after the
call. It is also important to ensure that no fixed memory locations
are used for storing variables, since these will be overwritten by
an interrupting routine.

The following example illustrates most of these points. When run,
it will cause the Electron to make a continuous decreasing pitch
tone.

Several points in the program are worthy of note. The first is that
IRQ1V is used instead of IRQ2V. On an unexpanded Electron, all
interrupts are serviced by IRQ1V, so the OS doesn’t bother to pass
them on to IRQ2V, When the tone is running, switch the listing to
page mode (by pressing CTRL N). Then list the program. The
sound is totally messed up because the OS is writing to the ULA
as well. This illustrates one of the reasons why the official
operating system calls should normally be used —to avoid clashes
like that.

10 REM Interrupt utilisation example
20 REM Must operate in mode 6
30 MODE 6
40 REM Allocate space for program
50 DIM M% 100
60 FOR opt%= 0 TO 3 STEP 3
70 P%=M%
80   [
90   OPT opt%
100   .init SEI \ Disable interrupts
110   LDA &204 \ Save old IRQ1V vector
120   STA oldv
130   LDA &205
140   STA oldv+1
150   LDA #int MOD 256 \ Low byte of address
160   STA &204 \ IRQ1V Low
170   LDA #int DIV 256 \ High byte of address
180   STA &205
190   CLI \ Turn interrupts on again
200   RTS \ Exit initialisation routine
205
210 \ This is the interrupt service routine
220   .int TXA \ Save X register
230   PHA
240   TYA \ Save Y register
250   PHA
260   INC &70 \ Counter in zero page
270   LDA &70

142



280   STA &FE06 \ Load into ULA counter
290   LDA #&32 \ Set sound mode
300   STA &FE07 \ Write to ULA control register
310   PLA \ Restore the registers
320   TAY
330   PLA
340   TAX
350   JMP (oldv) \ Go on to next service routine
355
360   .oldv EQUW 0 \ Reserve space for old vector
370   ]
380   NEXT opt%
390 REM Grab the interrupt vector
400 CALL init
410 REM Bleeping should now start
420 END

143



8 Paged ROMs
The Acorn Electron and the BBC micro both support the concept
of a number of ROM based programs being resident in a machine
in the same address space. Each ROM is paged in as required and
then paged out as software in another ROM is required.

Paged ROMs work broadly in one of two ways. They act either as
languages such as BASIC and LISP or they act as utilities such as
filing systems and device drivers. Languages may also include
such things as word processors and CAD graphics packages.

At any one time only one language should be active. Thus most
Electrons will enter BASIC as the default language. The current
language has access or control over the user RAM which it in turn
may allocate to users e.g. for BASIC programs or word processing
text.

While the one language is active any other ROM offering a
service may be called upon as is appropriate, When a request for a
service is generated the operating system interrogates each paged
ROM in turn until the request is acknowledged and acted upon.
Different types of request are indicated to each ROM by the
operating system entering the service entry point of that ROM
with an accumulator value representing the reason. These calls are
called paged ROM service calls. If the service entry point is
entered with A=7 this indicates that someone has asked the
operating system for an OSBYTE call which the operating system
failed to recognise and so is now asking the paged ROMs if they
wish to claim it. If a service call is recognised then the ROM
should act upon it and clear the accumulator before returning
control back to the operating system. If the ROM does not wish to
claim the call it should return control to the operating system with
the accumulator value unchanged.

There are two sets of paged ROMs, service ROMs and language
ROMs. All language ROMs should respond to paged ROM
service calls and so should be service ROMs as well. BASIC is an
exception to this rule and the operating system recognises it by
virtue of the fact that it is a language ROM not offering a service
entry.

144



8.1 Paged ROM header format

In order to enable the operating system to recognise ROM types 
and treat them accordingly, a protocol has been drawn up for a 
standard ROM format.

ROM offset size description

0 3 language entry (JMP address)
3 3 service entry (JMP address)
6 1 ROM type flag
7 1 copyright string offset pointer

(=10+t+v)
8 1 version number (binary)
9 [t] title string
9+t 1 zero byte
10+t [v] version string
10+t+v 1 zero byte
11+t+v [c] copyright string
11+t+v+c 1 zero byte
16+t+v+c 4 2nd Processor relocation

address
16+t+v+c.... rest of ROM, code and data

Below is a full description of each field of the paged ROM format.

8.2 Language Entry

This should consist of a three byte JMP instruction referring to the
language entry point. This code is called upon when a language is 
initialised, When a Tube is active the language may be copied 
across to the second processor and then entered, When a language 
is copied across the tube it may be relocated to a different address 
(see section 8.4 below).

If a ROM is not a language ROM this field should contain zeros.

145



8.3 Service Entry

This should consist of a three byte JMP instruction referring to the
service entry point. This should point to code which responds to 
paged ROM service calls acting if and when appropriate.

If a ROM is not a service ROM this field may contain user code.

8.4 ROM Type Byte

The value of this byte gives information to the operating system 
about the nature of the ROM. The setting of each bit indicates a 
separate thing.

Bit No. Meaning if set

0 processor/language bit
1 ditto
2 ditto
3 ditto
4 Controls Electron firm key expansions
5 Indicates that ROM has a relocation address
6 Indicates that this is a language ROM
7 Indicates that this ROM has a service entry

The first 4 bits indicate the processor type for which the code is 
intended, This is of importance to second processors who may get 
languages copied across to them. A second processor will look for 
the correct value of these bits before attempting to run the 
language. The following values have been assigned:

0 6502 BASIC
1 reserved
2 6502 code (not BASIC)
3 68000 code
8 Z80 code
9 16032 (or 32016)

146



If bit 5 is set this indicates that the language code in this ROM has
been assembled at a different address and the ROM should be 
copied across the Tube to the second processor to this address. 
Service routines are not executed from the Tube copy.

If bit 6 is set this indicates that this is not a language ROM. This 
does not mean that the ROM cannot have a language entry point. 
If this bit is not set a language will not be considered for 
initialisation following a hard reset. However, if the language is 
entered via a service call (i.e. *<name> ) a soft reset will 
reinitialise that language.

8.5 Copyright Offset Pointer

This is an offset value from the beginning of the ROM to the zero 
byte preceding the copyright string, It is important that this points 
to a zero byte followed by ‘(’, ‘C’ and ‘)’ ASCII character values 
because the operating system uses this fact to determine whether a
ROM physically exists in a ROM position.

8.6 Binary Version Number

This eight bit version number of the software contained in a ROM
helps identify software. This byte is not used by any operating 
system and need not correspond to the version string.

8.7 Title String

This is a string which is printed out as the operating system enters 
the ROM as a language.

147



8.8 Version String (optional)

This should be a string identifying the release number of the 
software. The format of this string should be A.BB where A and B
are ASCII characters of decimal digits.

On entry to a language the error pointer is set to this or if there is 
no version string the error pointer is directed to the copyright 
string.

8.9 Copyright String

This string is essential for the operating system recognition of a 
paged ROM (see section 8.5 above). The copyright string should 
always be preceded by a zero byte and start with the characters 
‘(C)’.

8.10 The Tube Relocation address

This is the address which is used when a ROM is relocated when 
copying across the Tube to a second processor.

The language code should be assembled to run at that address but 
the service code should be assembled to run from &8000 as it will
be executed within the ROM in the I/O processor.

Executing Software in Paged ROMs

It is possible to execute machine code in a paged ROM in one of 
three ways, via the language entry point after a reset, via the 
service entry point when the operating system performs a service 
call or via an extended vector (which is usually set up by a paged 
ROM in response to a service call). The following two chapters 
describe how the two types of paged ROMs may be implemented.

148



9 Language ROMs
The term language ROM is something of a misnomer given most 
peoples’ idea of what a language is. In the context of paged ROM 
software the language is the primary paged ROM. Other paged 
ROMs may perform functions transiently but control is then 
returned to the current language ROM. The language ROM 
receives a large allocation of zero page workspace and is allocated
pages 4 through to 7 as private workspace. In addition to this the 
language has control of the user RAM which may or may not be 
used as additional workspace. BASIC, for example, uses a 
variable portion of the user RAM (from LOMEM to HIMEM) for 
the storage of program variables.

Languages are most typically implemented in language ROMs as 
would be expected. Thus BASIC, FORTH, LISP and BCPL are all
language ROMs but other software implemented as language 
ROMs include word processors and terminal emulators.

No paged ROM software should be executed unless a service call 
has been performed first with the possible exception of a language
entered following a reset. The language entered after a hard reset 
will be the language ROM identified by the ROM type byte in its 
header occupying the highest priority socket. Following a soft 
reset the language active when the reset occurred will be 
reinitialised. Any language should respond to a *command to 
enable its activation when this command is issued. This 
mechanism allows the user to switch between languages. This 
command would be unrecognised by the operating system which 
would then issue an unrecognised * command paged ROM service
call to which the language ROM would respond via its service 
entry point.

9.1 Language initialisation

A language ROM will be entered via the language entry point with
an accumulator value of &01 when the language is selected. The 
language is entered with a JMP instruction and no return is 
expected. The stack pointer should be reinitialised as the stack 
state is undefined on entry.

149



The language ROM should also be able to respond to service calls
which may affect it (see below) e.g. be able to respond to the 
service call which warns of a changing OSHWM due to font 
explosion.

9.2 Firm keys

On the Electron the function keys are implemented as a 
combination key press requiring the use of the CAPS LK/FUNC 
key with the number keys. In addition to these soft keys there are a
number of non-programmable firm keys which also produce text 
strings when pressed. The other character keys (A to Z plus the 
comma, full stop and slash keys) pressed in combination with the 
CAPS LOCK/FUNC key constitute the firm keys.

A language ROM indicates that it has the facility to expand these 
keys by bit 4 of the ROM type byte being set (see section 8.4).

When the operating system detects that a firm key has been 
pressed it calls the language via its entry point to request the 
expansion of the key. The language should then yield the firm key 
string one character at a time in response to further calls.

The two calls made through the language entry point are:

A=2 This call expects the next key in the firm key expansion to be
returned in Y.

A=3, Y=firm key code This call is an initialising call. The 
language should return the length of the firm key string in Y.

150



The key values passed to the language with this call are:

&90 to &A9 FUNC+A to FUNC+Z
&AA FUNC+:
&AB FUNC+;
&AC FUNC+,
&AD FUNC+=
&AE FUNC+.
&AF FUNC+/

The operating system inserts these key values into the input buffer
as they are received.

OSBYTE &CC (204) may be used to read or write the OS copy of
its firm key pointer and OSBYTE &CD (205) may be used to read
or write the length of the current firm key string being expanded.

9.3 Language ROM compatibility

It is quite feasible to write a language ROM which will work with 
the entire range of Acorn machines supporting paged ROMs in all 
their configurations.

The first question that a programmer should consider before 
implementing software in a Language type ROM is whether it 
actually needs to be a language ROM? Many utilities are only 
required transiently and it is better to implement them as service 
type ROMs. A routine in a service type ROM can then be used 
from the language environment.

As has been mentioned above the language should have a service 
entry point so that it may be selected by a *command and be able 
to respond to changes in OSHWM. For information about service 
type ROMs read the next chapter. It must be remembered however
that a language ROM is copied across to the second processor 
when a Tube is active. Therefore, when executing, the language 
must not rely on receiving service calls (i.e. the only

151



ones the language code should respond to are those of relevance 
when on an I/O processor such as the font explosion warning). 
The service code should not share or use the language work space 
(&400-&7FF or language zero page) because the service code is 
executed in the I/O processor of a Tube machine where the Tube 
code has the status of the current ‘language’ and the actual 
language is across on the second processor. The language code 
should not attempt to perform any manipulation of hardware by 
direct poking because this would make it machine dependent. The 
programmer may wish to implement hardware dependent routines 
in the service section of the ROM. The language code should 
communicate with the service code using unknown OSBYTE calls 
etc. for this purpose.

It is always easier to write ROM code to create software with 
limited compatibility. It is often the case that software written 
originally with just one machine or configuration in mind will be 
just as useful on another machine. A programmer should always 
have confidence in his or her skills such that they consider the 
extra effort worthwhile. The discipline in thought required to 
adhere to the compatibility protocols represents a professional 
attitude. The Electron and other Acorn products were designed by 
experts, and while ultimately human and thus fallible, have put 
great consideration into making it possible to run software over a 
wide a range of machines.

152



10 Service ROMs
Service ROMs are ROMs which contain code which is entered via
the service entry point. Service ROM code will always be 
executed in the ROM itself i.e. always in the I/O processor c.f. 
language ROMs. The calls made by the operating system to 
service ROMs are called paged ROM service calls but will usually
be referred to as just ‘service calls’.

The type of software which might be implemented in service type 
ROMs are filing systems, user printer drivers, extension VDU 
commands and languages; in fact just about anything. It should be
noted that extreme care should be taken to implement routines in 
service ROMs correctly.

To understand how software can be incorporated into a paged
ROM, be interfaced correctly with the operating system and thus
executed at the appropriate time an understanding of paged
ROM service calls is essential.

When a hard reset occurs the operating system makes a note of 
where physical ROMs exist in paged ROM sockets. Subsequently 
as the machine carries out its various tasks each time something 
which may be of significance to software in paged ROMs occurs 
these ROMs are given an opportunity to respond.

10.1 Paged ROM service calls

The mechanism by which this is performed is as follows. The 
operating system pages in each paged ROM in turn starting with 
that ROM in the highest priority socket (paging is performed by 
writing a value to a hardware latch, the hardware responds to the 
value written to this location and performs the relevant switching 
of the chip select signals). If the ROM has a service entry point 
this code is executed. Before entering the code the accumulator is 
loaded with a reason code, the X register will contain the current 
ROM number (a ROM is thus able to tell which socket it is in) 
and the Y register will be loaded with any further relevant 
information. The paged ROM can return control to the operating 
system following an RTS instruction. If the ROM has responded

153



and does not wish any further action to be taken, the accumulator 
should be set to zero to claim the call otherwise all registers 
should be unchanged.

Below is a list of the reason codes which may be presented to a 
paged ROM when a service call is performed.

Reason code &00: No operation

No operation, this service call should be ignored because a higher 
priority ROM has already claimed it.

Reason code &01: Absolute filing system space claim

This call is made during a reset. The operating system is 
interrogating each ROM to determine how much workspace 
memory would be required if that ROM was called. This 
workspace is available temporarily while the filing system ROM 
is active. Pages &E00 and above are available as a fixed area on 
the BBC micro and the Electron. Each paged ROM is entered with
A=&01 , X=ROM number and Y=top of fixed area. For the 
highest priority ROM on a BBC micro the Y register will contain 
&E. The Y register value should be increased in accordance to the 
requirements of the ROM. If the Y register setting is sufficient or 
greater than required then the service routine should return the Y 
register unaltered.

Before using this workspace, the new filing system ROM should 
deselect the old filing system with OSFSC with A=6 (indirected 
through (&20E), see section 5.7); and the workspace must be 
claimed with OSBYTE &8F, X=&0A (see Reason Code &0A of 
this section).

Reason code &02: Relative space claim

This call is made by the operating system during a reset to 
determine how much private RAM workspace is required by each 
ROM. The position of this private area will start from the top of 
the absolute space claimed by the ROMs and on the relative

154



space claimed by higher priority ROMs. This call is made with the
Y register containing the value of the first available page. This 
value should be stored in the ROM workspace table at &DF0 to 
&DFF (for ROMs 0 to 15 respectively) and the Y register returned
increased by the number of pages of private workspace required.

Reason code &03: Auto-boot call

This call is issued during a reset to allow each service ROM to 
initialise itself. This enables the highest priority filing system to 
set up its vectors automatically rather than require explicit 
selection with a *command. To allow lower priority services to be 
selected the service ROM should examine the keyboard and 
initialise only if either no key is pressed or if its own ROM 
specific key is being pressed (e.g. D+BREAK for Acorn DFS). If 
the ROM initialises it should attempt to look for a boot file 
(typically !BOOT) to RUN, EXEC or LOAD if the Y register 
contains zero. This call is made during a reset after the start-up 
messages have been printed.

Reason code &04: Unrecognised *command

When a line of text is offered to the command line interpreter 
(CLI) the operating system will pass on any unrecognised 
command firstly to each of the paged ROMs and then if still 
unrecognised to the currently active filing system. When the 
unrecognised command is offered to the paged ROMs this service 
call is made.

Entry parameters:
A=&04
X=ROM number
Y contains an offset which if added to the contents of &F2 and

&F3 point to the beginning of the text with the asterisk and 
leading spaces stripped off and terminated with a carriage 
return

On exit:
Registers restored
A=0 if recognized

155



Filing systems should not intercept filing system commands 
(which will be common to all filing systems) using this service 
call but may intercept some filing system utilities (e.g. *DISC, 
*NET).

Reason code &05: Unknown interrupt

An interrupt which is not recognised by the operating system or 
which has been masked out by software will result in this call 
being generated. A service ROM which services devices which 
might cause interrupts should interrogate such devices to 
determine if they have generated this interrupt. If the interrupt has 
been recognised and processed the accumulator should be 
returned with zero to prevent other ROMs being offered the 
interrupt. The routine should terminate with an RTS not an RTI.

Reason code &06: BRK has been executed

If a BRK instruction is encountered this call will be generated 
before indirecting through the BRK vector (BRKV, &202). BRKs 
are usually used to indicate that an error condition has occurred, 
service ROMs are informed before the current language is able to 
respond to the BRK via BRKV.

Entry parameters:
A=&06
X=ROM number
Y is undefined but should be preserved.
&F0 contains the value of the stack pointer. 
&FD and &FE point to the error number which is not 
necessarily in the current ROM (OSBYTE &BA yields this
ROM number)

On exit:
All registers should be preserved

156



Reason code &0: Unrecognised OSBYTE call

When an OSBYTE call has been made and is not recognised by 
the operating system it is offered to the paged ROMs by this 
service call. The contents of the A, X and Y registers at the time of
the OSBYTE call are stored in locations &EF, &F0 and &F1 
respectively.

Reason code &08: Unrecognised OSWORD call

This service call is performed in response to the user issuing an 
OSWORD call not catered for in the operating system. The 
contents of the A, X and Y registers at the time of the call are 
stored in locations &EF, &F0 and &F1 respectively. Unrecognised
OSWORD calls with accumulator values greater than or equal to 
&E0 are offered to the user vector (USERV, &200). An OSWORD
call with A=7 (equivalent to the SOUND command in BASIC) 
given an unrecognised channel will also generate this service call.

Reason code &09: *HELP command interception

When the *HELP command is passed through the CLI this service
call is generated. The remainder of the command line is pointed to
by the address stored in locations &F2 and &F3 plus an offset in 
Y. Each ROM is required to respond to this call. If the remainder 
of the command line is blank the ROM should print its name and 
version number followed by a list of subheadings to which the 
ROM will respond.

e.g. Acorn DFS (version 0.90) outputs:

DFS 0.90
  DFS
  UTILS

Indicating that this ROM responds to *HELP DFS and *HELP 
UTILS

157



If the rest of the command line is not blank the service routine 
should compare it against its subheadings and if a match occurs 
should output the information under that subheading.

e.g. Acorn DFS responds to *HELP UTILS with:

DFS 0.90
BUILD <fsp>
DISC
DUMP <fsp>
TYPE <fsp>

If there is more than one item on a line then the ROM should deal 
with them individually. All registers should be preserved across 
the service routine.

Reason code &0A: Claim absolute workspace

This service call originates from a paged ROM which requires the 
use of the absolute workspace. When a filing system ROM is 
active and requires use of this workspace it should perform an 
OSBYTE call &8E with X=&0A which will generate this service 
call. The previous owner of the absolute workspace is then able to 
save any valuable contents of this memory in its own private data 
area in the relative workspace. The previous owner should also 
update a flag within its private data area indicating that it no 
longer owns the absolute workspace.

The active filing system is selected independently of the 
ownership of the absolute workspace. Thus while a filing system 
ROM may have ownership of this workspace the tape filing 
system may be selected (the tape FS does not require any absolute
workspace). Problems may arise when the active filing system 
paged ROM is called upon but does not have ownership of the 
absolute workspace. The active filing system should then issue 
this service call to obtain the use of the absolute workspace. This 
call should only be made by a filing system starting (see also 
Reason code &01).

158



Reason code &0B: NMI released

This service call also originates from paged ROMs and should be 
generated by performing an OSBYTE call &8F. This call should 
be issued when a ROM no longer requires the NMI. This releases 
the zero page locations &A0 to &A7 and the space for the NML 
routine in page &D00. On entry the Y register contains the filing 
system number of the previous owner (see OSARGS, section 5.2) 
and this should be compared to the ROM’s own identity before 
reasserting control of the NMI.

Reason code &0C: NMI claim

This call should be generated by a paged ROM using OSBYTE 
&8F when it wishes to take possession of the NMI. The service 
call should be generated passing &FF in the Y register (i.e. 
OSBYTE A=&8F, X=&0C and Y=&FF). The current owner 
should relinquish control returning its filing system number in the 
Y register in response to this call.

Reason code &0D: ROM filing system initialise

When the ROM filing system (RFS) is activated in response to a
*ROM command this call will be issued when a file is being 
searched for. On entry the Y register contains 15 minus the ROM 
number of the next ROM to be scanned. If this ROM number is 
less than the current ROM’s ID this call should be ignored. 
Otherwise the active ROM number should be stored in &F5 (in 
the form 15-ROM number) where the RFS active ROM number is
stored. The current ROM should indicate that the service call has 
been claimed by returning zero in the accumulator and should 
store a pointer to the data stored within the ROM in locations &F6
and &F7 set aside for use by the RFS.

See chapter 11.

159



Reason code &0E: ROM filing system get byte

This service call may be issued after a ROM containing RFS data 
has been initialised with service call &0D, A ROM should respond
only if it is the active RFS ROM as indicated by the value in 
location &F5 (stored in the form 15-ROM number). The fetched 
byte should be returned in the Y register.

See chapter 11.

Reason code &0F: Vectors claimed

This service call should be generated by any paged ROM (using 
OSBYTE &8F) which has been initialised and then changed any 
operating system vector. This call warns paged ROMs that a 
vector change has occurred.

Reason code &10: SPOOL/EXEC file closure warning

This service call should be produced by the operating system prior
to closure of any SPOOL or EXEC files when there is a change of 
the current filing system. This enables any paged ROM using such
a file to respond to the possibly premature closure of these files. 
SPOOL/EXEC file closure may be prevented by returning a zero 
in the accumulator otherwise all registers should be preserved.

Reason code & 11 : Font implosion/explosion warning

When OSBYTE &14 is used to change the RAM allocation for 
user defined characters this service call is issued. This call is 
issued to warn languages that the OSHWM has been changed and 
thus the user RAM allocation has changed.

160



Reason code &12: Initialise filing system

This call enables third party software to switch between one or 
more filing systems without having to issue *commands. A 
program may want to switch between two filing systems in order 
to transfer files. A filing system ROM should respond to this call 
if the value in the Y register corresponds to its filing system 
number. All filing systems should allow files to be open while 
inactive and so on receiving this call should restore any such files.

Reason code &13: Character placed in RS423 buffer

This call is made when the Electron OS has placed a character in 
the RS423 buffer. Expansion software handling RS423 hardware 
should respond to this call. If not claimed the operating system 
purges the RS423 buffer.

Reason code &14: Character placed in printer buffer

This call is made when the Electron OS has placed a character in 
the printer buffer. Expansion software controlling printer hardware
should respond to this call.

Reason code &15: 100 Hz poll

The Electron operating system will provide a 100 Hz polling call 
for the use of paged ROMs. A paged ROM requiring this call 
should increment the polling semaphore using OSBYTE &16 (22)
on initialisation and decrement it using OSBYTE &17 (23) when 
it no longer requires polling. The operating system will issue this 
service call when the semaphore is non-zero. The semaphore itself
may be read using OSBYTE &B9 (185). This facility is 
implemented mainly so that hardware devices may be supported 
as a background task without being interrupt driven. This would 
be suitable for hardware not requiring particularly urgent 
servicing.

161



The Y register contains the semaphore value, and should be 
decremented by the service routine if it is being polled. If a 
service routine finds it has decremented the Y register to zero, it 
should claim the call (set A to 0) to improve machine speed (there 
are no more ROMs which require polling).

Reason code &16: A BEL request has been made

When the external sound flag (OSBYTE &DB/219) is set this call 
is issued by the OS in response to an ASCII BEL code being 
output (VDU 7). This is to enable the external sound system to 
respond appropriately.

Reason code &17: SOUND buffer purged

This call is made when an external sound system is flagged on the
Electron and an attempt has been made to purge any of the
SOUND buffers.

Reason code &FE: Post initialisation Tube system call

The operating system makes this call during a reset after the 
OSHWM has been set. The Tube service ROM responds to this by
exploding the user defined character RAM allocation.

Reason code &FF: Tube system main initialisation

This call is issued only if the Tube hardware has been detected. 
This call is made prior to message generation and filing system 
initialisation.

The fact that these calls are shared by all the service ROMs can 
lead to wide spread consequences if a service call is misused by 
one of the ROMs. The programmer should consider the 
consequences of his ROM claiming calls (or not claiming calls) 
when present.

162



10.2 Service ROM example

The program below is a ROM based version of the enlarged 
printer buffer program originally described in chapter 6, and will 
only be of use to machines with the Plus 1 expansion. It is short 
by paged ROM standards but the assembler program is not a short
example.

This program should only be taken as an illustration of the use of 
some of the service calls described above : it does not conform to 
paged service ROM standards, as it uses Econet zero page 
workspace. This may be of little consequence to the vast majority 
of Electrons, but properly implemented service ROMs should 
never assume that they won’t be used with any particular system 
configuration.

10 REM Assembler program printer buffer ROM
20 DIM code% &400
30 INSV=&22A:nI=&2A/2
40 RMV=&22C:nR=&2C/2
50 CNPV=&22E:nC=&2E/2
60 ptrblk=&90
70 ip_ptr=ptrblk+2
80 op_ptr=ptrblk+4
90 old_bfr=&880
100 begin=old_bfr
110 end=old_bfr+2
120 wrkbt=old_bfr+4
130 size=old_bfr+5
140 vec_cpy=old_bfr+6
150 line=&F2
160 OSASCI=&FFE3
170 OSBYTE=&FFF4
180 FOR I=4 TO 7 STEP 3
190 P%~&8000:O%=code%
200 [
210 OPT 1
220 .romstrt EQUB 0 \ null language entry point
230 EQUB 0
240 EQUB 0
250 JMP service \ service entry point
260 EQUB &82 \ ROM type byte, service ROM
270 EQUB (copyr—romstrt)\ offset to copyright string

163



280 EQUB 0 \ null byte
290 .title EQUB &A \ title string
300 EQUS “BUFFER”
310 EQUB &0 \ null byte
320 EQUS “1.00” \ version string
330 EQUB &D \ carriage return
340 .copyr EQUB 0 \ terminator byte
350 EQUS “(C)1984 Mark Holmes”\ copyright message
360 EQUB 0 \ terminator byte

370 \ End of ROM header, start of code
380 .name EQUS “REFFUB” \ command name

390 \ Service handling code, A=reason code, X=ROM id & Y=data
400 .service CMP #4 \ is reason unknown command?
410 BEQ command \ if so goto ‘command’
420 CMP #9 \ is reason *HELP
430 BEQ help \ if so goto ‘help’
440 CMP #2 \ is reason private wrkspace
450 BEQ wkspclm \ if so goto ‘wkspclm’
460 CMP #3 \ is reason autoboot call
470 BNE notboot \ if NOT goto ‘notboot’
480 JMP autorun \ BEQ autorun, out of range
490 .notboot RTS \ other reason, pass on

500 \ Unknown command, is it *BUFFER ?
510 \ (command line address in &F2,&F3 (line) + offset Y)
520 .command TYA:PHA:TXA:PHA \ save registers
530 LDX #6 \ X=length of name
540 .loopl LDA (Line),Y \ A=next Letter of command
550 CMP name—1,X \ compare with my name
560 BNE notme \ not equal, goto ‘notme’
570 INY \ for next letter of command
580 DEX \ for next Letter of name
590 BNE loop1 \ if X<>0 round again
600 BEQ parmch \ 6 Letters matched, do jump
610 .notme PLA:TAX:PLA:TAY \ no match, restore registrs
620 LDA #4 \ restore reason code
630 RTS \ pass on call

640 \ *HELP response (parameters as for call above)
650 .he;p TYA:PHA:TXA:PHA \ save registers
660 LDX #0 \ use X as index counter
670 .loop2 LDA title,X \ A=next Letter from title $
680 BNE over1 \ if A<>0 jump next instrctn
690 LDA #&20 \ replace 0 by space char.
700 .overl JSR OSASCI \ write character

164



710 INX \ increment index counter
720 CPX #(copyr—titLe) \ end of title ?
730 BNE loop2 \ if not get another char.
740 PLA:TAX:PLA:TAY \ restore registers
750 LDA #9 \ restore A
760 RTS \ pass on *HELP call

770 \ Opportunity to claim private workspace
780 \ (Y=1st page free, call inc’s Y by no. pages claimed)
790 .wkspclm TYA \ copy page no. to A
800 STA &DF0,X \ table for ROMs’ workspace
810 PHA \ save page no. on stack
820 LDA #&FD
830 LDX #0
840 LDY #&FF \ OSBYTE call to read last
850 JSR OSBYTE \ BREAK type
860 CPX #0 \ X=0 after soft reset
870 BEQ softrst \ soft brk, dont reset size
880 LDA #8 \ 8 pages for printer buffr
890 STA size \ location for buffer size
900 .softrst CLC \ clear carry, for add
910 PLA \ original Y on stack
920 ADC size \ A=A+?size
930 TAY \ Y=A
940 LDX &F4 \ X=ROMid
950 LDA #2 \ restore A (reason code)
960 RTS \ pass on workspace call

970 \ *BUFFER command issued, reset buffer size
980 .parmch LDA (line),Y \ get char. from cmnd line
990 CMP #&D \ car.ret.? end of line ?
1000 BNE ok_init \ if not, cont. line input
1010 LDA #1 \ no parameters so set
1020 JMP defauLt \ default buffer size
1030 .ok_init INY \ increment index counter
1040 CMP #&20 \ was char. a space?
1050 BEQ parmch \ if so get next character
1060 SEC \ set carry for subrtact
1070 SBC #&30 \ A=A—ASC”0”
1080 CMP #0 \ was character zero
1090 BEQ deinit \ if so, switch off
1100 BMI rngerr \ char.<0, out of range
1110 CMP #6 \ compare char. to 6
1120 BPL rngerr \ A>=6, out of range
1130 .default CLC \ clear carry for ASL
1140 ASL A:ASL A:ASL A \ A=A*8
1150 STA size \ store for buffer size
1160 .prntmes LDA #&87 \ Use OSBYTE &87 to read
1170 JSR OSBYTE \ current screen MODE

165



1180 TYA \ A=Y
1190 TAX \ X=A
1200 LDY #&F8 \ Use OSBYTE &FF to write
1210 LDA #&FF \ MODE selected on reset
1220 JSR OSBYTE \ (i.e. MODE preserved)
1230 TAX \ X=&FF
1240 .loop6 INX \ increment index counter
1250 LDA message,X \ A=next byte of message
1260 JSR OSASCI \ print character
1270 CMP #&D \ was it carriage return
1280 BNE loop6 \ if not get next character
1290 PLA:TAX:PLA:TAY \ restore registers
1300 LDA #0 \ claim call, 0 reason code
1310 RTS \ return
1320 .message EQUB &A \ message string
1330 EQUS “Press BREAK to change buffer size”
1340 EQUB &D
1350 .rngerr LDX #&FF \ set index counter
1360 .loop7 INX \ increment index counter
1370 LDA errdata,X \ A=character from string
1380 STA &100,X \ copy to bottom of stack
1390 CMP #&FF \ was byte terminator
1400 BNE loop7 \ if not Loop again
1410 JMP &l00 \ goto &l00 CBRK)
1420 .errdata EQUB 0 \ BRK opcode
1430 EQUB 0 \ error number 0
1440 EQUS “Invalid buffer size” \error message
1450 EQUB 0 \ message string end
1460 EQUB &FF \ terminator byte
1470 \ Routine for deselecting buffer ROM routines
1480 .deinit LDA #3 \ VDU3, just in case
1490 JSR OSASCI
1500 SEI \ disable interrupts
1510 LDY #0
1520 STY size \ size=0
1530 .loop8 LDA vec_cpy,Y \ Load old vector contents
1540 STA INSV,Y \ store in vector
1550 INY \ increment index counter
1560 CPY #6 \ copied 6 bytes yet
1570 BNE loop8 \ if not Loop again
1580 CLI \ enable interrupts
1590 JMP prntmes \ print message + return

1600 \ Initialise buffer routines automaticalLy

1610 .autorun TYA:PHA:TXA:PHA \ preserve registers
1620 LDA size \ A=buffer size in pages
1630 BEQ no_init \ A=0, don’t initialise
1640 LDA #&84 \ HIMEM OSBYTE number

166



1650 JSR OSBYTE \ make call
1660 STY end \ store page address
1670 LDA #&83 \ OSHWM OSBYTE number
1680 JSR OSBYTE \ make call
1690 CPY end \ is OSHWM > HIMEM
1700 BCC room \ if so continue
1710 JMP no_room \ no room so cause error
1720 .room JSR init \ call initialise routine
1730 .no_init PLA:TAX:PLA:TAY \ restore registers
1740 LDA #3 \ restore A
1750 RTS \ return
1760 .init LDA #&A8
1770 LDX #0
1780 LDY #&FF \ OSBYTE to read address of
1790 JSR OSBYTE \ extended vector table
1800 STX ptrblk \ set up zero page Locations
1810 STY ptrblk+l \ for indirect indexed adr.
1820 LDY #3*nI \ offset into table CINSV)
1830 LDA #ins AND &FF \ address of new routine
1840 SEI \ disable interrupts
1850 STA (ptrblk),Y \ copy address to vector
1860 INY \ Y=Y+1
1870 LDA #ins DIV &l00 \ high byte of address
1880 STA (ptrblk),Y \ copy to extended vector
1890 INY \ Y=Y+1
1900 LDA &F4 \ A=ROMid
1910 STA (ptrblk),Y \ complete extended vector
1920 INY \ Y=Y+1
1930 LDA #rem AND &FF \ REMV new routine address
1940 STA (ptrblk),Y \ lo byte to extended vector
1950 INY \ YY+1
1960 LDA #rem DIV &l00 \ Hi byte of new routine
1970 STA (ptrblk),Y \ place in extended vector
1980 INY \ Y=Y+l
1990 LDA &F4 \ A=ROMid
2000 STA (ptrblk),Y \ complete REMV 3 byte vect.
2010 INY \ Y=Y+1
2020 LDA #cnp AND &FF \ repeat, store address of
2030 STA (ptrblk),Y \ new CNPV routine in the
2040 INY \ extended vector together
2050 LDA #cnp DIV &l00 \ with ROM number.
2060 STA (ptrblk),Y
2070 INY
2080 LDA &F4
2090 STA (ptrblk),Y
2100 TAX \ X=ROMid
2110 LDY #0 \ Y=0
2120 .loop3 LDA INSV,Y \ A=old vector contents
2130 STA vec_cpy,Y \ copy to workspace
2140 INY \ Y=Y+1
2150 CPY #6 \ copied 6 bytes yet ?

167



2160 BNE Loop3 \ if not loop again
2170 LDA &DF0,X \ A=workspace addr. hi byte
2180 STA begin+1 \ store in zero page
2190 CLC \ clear carry for add
2200 ADC size \ add begin+size
2210 STA end+1:DEC end+1 \ store in zero page, —1
2220 LDY #&10 \ lo byte of begin
2230 STY begin \(room for return vect’s)
2240 LDY #&FF \ lo byte of end
2250 STY end \ store in zero page
2260 JSR rstptrs \ reset ip+op ptrs
2270 LDA #nI*3 \ for the extended vector
2280 STA INSV \  system the vectors must
2290 LDA #nR*3 \  now point to &FF00 +
2300 STA RMV \  vector number*3
2310 LDA #nC*3
2320 STA CNPV
2330 LDA #&FF
2340 STA INSV+1
2350 STA RMV+1
2360 STA CNPV+1
2370 CLI \ enable interrupts
2380 RTS \ return
2390 .noroom CLI \ clear interrupts
2430 .loop9 LDA nrmerr,X  \ fetch next byte of data
2440 STA &100,X \ store at bottom of stack
2450 INX \ increment index counter
2460 CMP #&FF \ reached terminator ?
2470 BNE loop9 \ if not loop again
2480 JMP &l00 \ execute BRK (not in ROM)
2490 .nrmerr EQUB 0 \ BRK instruction opcode
2500 EQUB 0 \ error number 0
2510 EQUS “Not enough room for print buffer, Press BREAK”
2520 EQUB 0 \ string terminator
2530 EQUB &FF \ data end

2540 \ Purge buffer by setting i/p + o/p ptrs to buffer start

2550 .rstptrs LDA begin \ lo byte bufr start address
2560 STA ip_ptr \ store input pointer
2570 STA op_ptr \ store output pointer
2580 LDA begin+1 \ hi byte of buffer start
2590 STA ip_ptr+1 \ store input pointer
2600 STA op_ptr+1 \ store output pointer
2610 RTS \ return

2620 .wrngbfl PLA:PLP:JMP (vec_cpy)\ old INSV routine

2630 \ New insert char. into buffer routine
2640 .ins PHP:PHA \ save 5 and A on stack

168



2650 CPX #3 \ is buffer id 3 ?
2660 BNE wrngbfl \ if not pass to old routine
2670 PLA:PLP:PHA \ not passing on, tidy stack
2680 LDA ip_ptr \ Alo byte of input pointer
2690 PHA \ store on stack
2700 LDA ip_ptr+1 \ Ahi byte of input pointer
2710 PHA \ store on stack
2720 LDY #0 \ YO so ip_ptr incremented
2730 JSR inc_ptr \ by the inc_ptr routine
2740 JSR compare \ compare the two pointers
2750 BEQ insfail \ if ptrs equal, buffer full
2760 PLA:PLA:PLA \ don’t need ip_ptr copy now
2770 STA (ip_ptr),Y \ A off stack, insrt in bufr
2780 CLC \ insertion success, C=0
2790 RTS \ finished
2800 .insfail PLA \ buffer was full so must
2810 STA ip_ptr+1 \ restore ip_ptr which was
2820 PLA \ stored on the stack
2830 STA ip_ptr
2840 PLA
2850 SEC \ insertion failes so C=1
2860 RTS \ finished

2870 .wrngbf2 PLP:JMP (vec_cpy+2) \ old REMV routine

2880 \ New remove char. from buffer routine
2890 .rem PHP \ save status register
2900 CPX #3 \ is buffer id 3 ?
2910 BNE wrngbf2 \ if not use OS routine
2920 PLP \ restore status register
2930 BVS examine \ V1, examine not remove
2940 .remsr JSR compare \ compare i/p and o/p ptrs
2950 BEQ empty \ if the same, buffer empty
2960 LDY #2 \ Y2 so that increment ptr
2970 JSR inc_ptr \  routine inc’s op_ptr
2980 LDY #0 \ YO, for next instruction
2990 LDA (op_ptr),Y \ fetch character from bufr
3000 TAY \ return it in Y
3010 CLC \ buffer not empty, C=0
3020 RTS \ return
3030 .empty SEC \ buffer empty, C=1
3040 RTS \ return
3050 .examine LDA opptr \ examine only, so store a
3060 PHA \  copy of the o/p pointer
3070 LDA op_ptr+1 \  on the stack to restore
3080 PHA \  ptr after fetch
3090 JSR remsr \ fetch byte from buffer
3100 PLA \ restore ptr from stack
3110 STA op_ptr+1 \ (if buffer was empty
3120 PLA \ C1 from fetch call)

169



3130 STA op_ptr
3140 TYA \ examine requires ch, in A
3150 RTS \ finished
3160 .wrngbf3 PLP:JMP (vec_cpy+4) \ old CNPV routine
3170 \ New count/purge buffer routine
3180 .cnp PHP \ save status reg. on stack
3190 CPX #3 \ is buffer id 3 ?
3200 BNE wrngbf3 \ if not pass to old subr
3210 PLP \ restore status register
3220 PHP \ save again
3230 BVS purge \ if V=1, purge required
3240 BCC len \ if C=0, amount in buffer
3250 LDA ip_ptr \ o/w free space request
3260 PHA
3270 LDA ip_ptr+1 \ store ipptr on stack
3280 PHA
3290 LDX #0 \ X=0 for use as counter
3300 STX wrkbt \ wrkbt0 for hi counter
3310 LDY #0 \ Y=0, so ip_ptr incr’d
3320 .loopl JSR inc_ptr \ increment ipptr
3330 JSR compare \ does it equal op_ptr
3340 BEQ finshdl \ if so countfree space
3350 INX \ XX+1
3360 BNE noinc \ if X=0 don’t inc wrkbt
3370 INC wrkbt \ hi byte of count inc’d
3380 .no_inc JMP loop1 \ Loop round again
3390 .finshdl PLA \ restore ip_ptr off stack
3400 STA ip_ptr+1
3410 PLA
3420 STA ip_ptr
3430 LDY wrkbt \ Y=hi byte of free space
3440 PLP \ restore status register
3450 RTS \ finished
3460 .len LDA opptr \ store op_ptr on stack
3470 PHA
3480 LDA op_ptr+1
3490 PHA
3500 LDX #0 \ X=0 for use as counter
3510 STX wrkbt \ wrkbt0 hi byte of count
3520 LDY #2 \ Y=2 so op_ptr incremented
3530 .loop2 JSR compare \ are ptrs equal ?
3540 BEQ finshd2 \ if so buffer empty
3550 JSR inc_ptr \ increment op_ptr
3560 INX \ increment count
3570 BNE no_inc2 \ if X=0 then increment hi
3580 INC wrkbt \ byte of count
3590 .no_inc2 JMP Loop? \ loop round again
3600 .finshd2 PLA \ restore op_ptr off stack

170



3610 STA op_ptr+1
3620 PLA
3630 STA op_ptr
3640 LDY wrkbt \ Yhi byte of length
3650 PLP \ restore status register
3660 RTS \ finished
3670 .purge JSR rstptrs \ reset i/p & o/p pointers
3680 PLP \ restore status register
3690 RTS \ return

3700 \ Increment pointer routine. Y=0 op_ptr, Y=2 ipptr
3710 .inc_ptr CLC \ clear carry for add
3720 LDA ip_ptr,Y
3730 ADC #1
3740 STA ip_ptr,Y
3750 LDA ip_ptr+1,Y
3760 ADC #0
3770 STA ip_ptr+1,Y \ pointerpointer+1
3780 CMP end+1 \ hi byte reached buffr end?
3790 BNE home \ if not finish
3800 LDA ip_ptr,Y
3810 CMP end \ Lo byte reached end ?
3820 BNE home \ if not finish
3830 LDA begin \ reached end of buffer
3840 STA ip_ptr,Y \ so reset pointer to
3850 LDA begin+1 \ start address of buffer
3860 STA ip_ptr+1,Y
3870 .home RTS \ return

3880 \ Compare pointers, if equal Z=1 don’t care otherwise
3890 .compare LDA ip_ptr+l
3900 CMP opptr+1 \ compare ptr high bytes
3910 BNE return \ if not equal return
3920 LDA ipptr
3930 CMP op_ptr \ compare pointr low bytes
3940 .return RTS \ return
3950 ]

3960 NEXT

3970 OSCL1”*S.BRM “+STR$~code%+” “+STR$~O%

When this program is run, the ROM image blown into an EPROM
and then inserted in an Electron with a Plus 1 expansion an 
enlarged printer buffer of 2k is automatically initialised.

171



Typing ‘*BUFFERn’ with n from 1 to 5 selects a buffer size of 
n*2K at the next BREAK. ‘*BUFFERO’ deselects the enlarged 
buffer and re-initialises the normal OS routines. ‘*BUFFER’ (no 
parameters) reselects the default buffer size (2K).

10.3 Extended Vectors

In the example above the operating system buffer maintenance 
vectors had to be set to point to routines held within the service 
ROM. The operating system supports a system of extended 
vectors to enable each of the OS vectors to point to routines held 
in paged ROMs.

Each OS vector is identified by a number which may be calculated
by subtracting &200 (the vector space base address) from the 
vector address and dividing by two (each vector is two bytes).

The operating system vector should be pointed to a routine at 
&FF00 plus the vector number multiplied by 3. This routine will 
use a three byte vector stored in the extended vector space (this 
address returned by OSBYTE &A8) with an offset of the buffer 
number multiplied by 3. This vector should contain the address of 
the routine in the paged ROM followed by its ROM number.

The procedure for a paged ROM to intercept a vector is:

(a) Determine buffer number n
(b) Establish extended vector space, V using OSBYTE &A8
(c) Store new routine’s address in (V+3*n)
(d) Store ROM number following address
(e) Make copy of OS vectors contents if required for return
(f) Store address (&FF00+3*n) in OS vector (&200+2*n)

It is usually a good idea to disable interrupts during this change-
over so that an interrupt routine is not able to use the vector in the 
middle of the change.

172



11 Serially accessed 
ROMs and the *ROM 
filing system

The Electron has been designed to use software contained in 
ROM cartridge packs. The ROM packs which plug into the Plus 1 
expansion may contain up to two paged ROMs. The ROM pack 
paged ROMs may contain up to about 16K of data and/or 
programs which is paged into memory as required. On the BBC 
microcomputer the facility also extends to phrase ROMs 
(PHROMS) associated with the speech upgrade. When the 
programs or data stored in these ROM packs are required it may 
be loaded into user RAM in the same way as programs or data 
may be loaded off tape or disc.

These ROM packs are intended to provide a reliable and rapidly 
accessible medium for the distribution of programs. The market 
for such a product being amongst owners of tape based machines 
who would otherwise have to rely upon the much slower and 
inherently less reliable medium.

The advantage to the software producer is that there is no need for
a special version of the program to be written. A system is 
required for the formatting of the program for inclusion in a ROM
pack but no modification of the program itself is required.

The *ROM filing system is a subset of the tape filing system. 
Paged ROMs are interrogated to determine whether they contain 
information intended for this filing system and are then serially 
accessed by the *ROM filing system.

Paged ROMs containing information intended for access via the
*ROM filing system are no different from other paged ROMs. 
They are service type ROMs and as such have service entry 
points. They are distinguishable as *ROM filing system ROMs 
only by their response to paged ROM service calls issued by the 
*ROM filing system. When the user selects the *ROM filing 

173



system any further requests for files result in the *ROM filing 
system section of the operating system scanning the paged ROMs 
for these files. A paged ROM containing files intended for the
*ROM filing system should respond to one of two paged ROM 
service calls.

The two service calls and the responses expected from ROMs 
containing *ROM data are described in detail below. One call 
expects the ROM to prepare to yield any data it has and the 
second call is used to extract this data, one byte at a time. The data
should be formatted in a similar way to the data stored on tape but
is modified in such a way as to minimise the storage overheads 
involved in using such a format. The reason for adopting this 
format is to minimise the requirements for extra code in the 
operating system while utilising the exhaustive error checking 
already in existence. Accompanying these advantages there is a 
concurrent reduction in response time performance but this is of 
little importance to the users of tape based machines who are still 
able to appreciate a substantial improvement on their system’s 
existing performance.

11.1 Converting files to *ROM format

In order to produce a ROM containing files which will be 
recognised by the *ROM filing system it is necessary to fulfill two
criteria. The first requirement is for some header code which will 
recognise the *ROM filing system paged ROM service calls and 
respond accordingly. The second requirement is that the data 
which makes up the files is formatted in the manner in which the
*ROM filing system expects to find it.

11.2 The header code

As has been stated above a paged ROM which is to be recognised 
by the *ROM filing system is a perfectly standard paged ROM 
which responds to the appropriate service calls. As a result of this 
requirement the first part of each *ROM filing system ROM 
consists of a standard format paged ROM header followed by a 
small amount of code which responds to the necessary service 
calls. By convention *ROM paged ROMs do not respond to the

174



*HELP service call but should these ROMs announce their 
presence in this way it would obviously leave less space for 
programs and data.

The two paged ROM service calls which should elicit a response 
from *ROM paged ROMs are described in the next two 
paragraphs.

11.3 Paged ROM service call with A=&D

This call is the *ROM filing system initialise call. When the filing
system is active and wishes to scan the next ROM this call is 
issued.

The initialise service call is made with the ROM number of the 
next ROM to be scanned in the Y register. Having received this 
service call a filing system ROM should only respond if its own 
ROM ID (stored in location &F4) is greater than or equal to the 
ROM number passed in the Y register.

Having decided to claim this service call the ROM should place 
its own ROM number in location &F5 which marks it as the 
currently active *ROM filing system ROM. It should then write 
the address of the start of the data it contains in locations &F6 and
&F7. This provides a zero page pointer which is used by the filing
system code to extract bytes of data serially from the ROM.

Having performed these two operations the service routine should 
return with the accumulator containing zero to indicate that the 
call has been claimed, In the case of the paged ROM ID being less
than the ROM number in the Y register the service routine should 
exit with &D in the accumulator and the operating system will 
then offer the call to the next ROM.

The actual mode in which the *ROM filing system ROM numbers
are represented differs from the way in which the paged ROM IDs
are usually represented (i.e. as stored in &F4, a number 0 to 15). 
The filing system ROM numbers are represented by a value which
is 15 minus the physical paged ROM number. One way of 
converting numbers from one form to another is, given the 
number to be converted in the accumulator,

175



EOR #&FF
AND #&F

which returns the inverted number in the accumulator. These 
instructions will always convert a number into the other 
representation.

11.4 Paged ROM service call with A=&E

Having obtained a response from a paged ROM to service call &D
the *ROM filing system will use this service call to read bytes 
from the data contained in the ROM.

There is a difference in how the service routine can be 
implemented on the BBC Microcomputer OS 1.00 and later OS 
versions (including the Electron). The actual response required 
from the service call is essentially the same however.

When called by OS 1.00 a paged ROM should only respond to 
this call if its own ROM ID is the same as the current *ROM 
filing system ROM number. A comparison of the contents of 
memory location &F4 (current paged ROM) should be made with 
the inverted contents of &F5 (current *ROM) If these are not the 
same the call should be returned unclaimed.

The service routine for OS 1.00 should return the byte of data 
pointed to by the pointer in &F6 and &F7 in the Y register (e.g. 
LDA (&F6),Y:TAY) and increment this pointer so that it is ready 
for the next call.

Later operating system versions contain a routine (OSRDRM) 
which given the paged ROM ID of the current *ROM filing 
system ROM in the Y register will read a byte from this paged 
ROM using the pointer at &F6+&F7. Thus this paged ROM 
service call may be serviced by the highest priority *ROM filing 
system ROM and the operating system does not have to scan all 
the ROMs before getting a response. This leads to a significant 
improvement in performance of the *ROM filing system.

176



The service routines are able to determine which operating system
has called them by the value of the Y register passed with this 
service call. On operating systems supporting the OSRDRM call 
the Y register contains a negative value while other versions of the
operating system make this call with a positive value in the Y 
register.

The example given at the end of this section shows how the 
service routine at the head of a *ROM filing system ROM detects 
the operating system type and responds appropriately. This 
example will function on both types of operating system but will 
take advantage of OSRDRM routine if available. *ROM filing 
system ROMs designed for use on the earlier operating systems 
will still work with later versions.

11.5 *ROM data format

The format in which data should be stored in *ROM filing system 
ROMs is very similar to the tape data format. The data is divided 
into blocks which may be up to 255 bytes long. Each block of data
is preceded by a header which contains information about the 
block. Both the block of data itself and the header are followed by
a 16 bit cyclic redundancy check (CRC) value, The filing system 
calculates its own values for these CRCs during the loading 
process and compares them. If the filing system’s value differs 
from the stored value then the filing system flags an error and 
rejects the data. (A routine for calculating CRCs is included in the 
example at the end of this section.)

177



The *ROM filing system data format is as follows:

offset description length

Block Header

0 &2A, a synchronisation byte 1
1 a file name (1 to 10 chars.) n
1+n &00, a file name terminator 1
2+n load address (low byte first) 4
6+n execution address 4
10+n block number (low byte first) 2
12+n block length (in bytes) 2
14+n block flag (see below) 1
15+n address of next file 2
17+n header CRC(1 to n + l6 incl.) 2

Block Data

19+n data m
19+n+m data block CRC 2

(next blocks)

z &2B - end of ROM marker 1

The block flag:

bit 0 Protection bit (file only allowed to be *RUN)
bit 6 Set if block contains no data
bit 7 Set if this is the last block of the file

For the *ROM filing system the headers for all but the first and 
last blocks may be replaced by a single byte header of value &23 
(‘#‘) with no CRC. This is implemented to reduce the memory 
overheads inherent with the tape style data format.

178



By convention the first file in a *ROM filing system ROM should 
be a title file. This is a file of zero length which serves to identify 
the ROM. The name of this file will appear on catalogue listings 
of the ROM. The file name of this title file should consist of a 
name and a version number preceded and followed by an asterisk 
e.g. ‘*Mon00*’ or ‘*GAMES05*’.

11.6 An example of a *ROM filing system ROM

The program below is written in BASIC 2 to assemble a ROM 
image which can be ‘blown’ into an EPROM and placed in a BBC
microcomputer paged ROM socket or into a ROM cartridge slot 
on the Electron Plus 1 expansion.

Included in the program below is a routine for calculating CRC 
values (FNdocrc). The actual CRC values required for this ROM 
image are included in the comments so that the actual values may 
be inserted directly if someone wanted to reduce the typing load 
when trying out this example.

10 REM *************************************
20 REM *                                   *
30 REM *   *ROM filing system ROM example  *
40 REM *                                   *
50 REM *************************************

60 REM Assemble CRC calculating routine

70 DIM MC% &100:PROCassm

80 REM Set up constants required for ROM assembly

90 serROM=&F5
100 ROMid=&F4
110 ROMptr=&F6
120 OSRDRM=&FFB9
130 version=0

140 REM Reserve space for ROM image and prepare to assemble

150 DIM code% &4000
160 FOR I=4 TO 7 STEP3
170 P%=&8000:O%=code%
180 [

179



190 OPT I
200 .ROMstart EQUB 0 \ null language entry
210 EQUB 0
220 EQUB 0
230 JMP service \ service entry point
240 EQUB &82 \ ROM type, service ROM
250 EQUB copyr—ROMstart \ offset to copyrights
260 EQUB version \ binary version number
270 EQUS “Serial Rom” \ ROM title string
280 EQUB 0
290 EQUS “0” \ ROM version string
300 .copyr EQUB 0
310 EQUS “(C) 1982 Acorn Computers” \ copyright$
320 EQUB 0 \ end of paged ROM header
330 .service CMP #&D \ service routine
340 BEQ initsp \ initialise call?
350 CMP #&E
360 BEQ rdbyte \ read byte call?
370 RTS \ not my call

380 \ Routine for paged ROM service call &D
390 .initsp PHA \ save accumulator
400 JSR invsno \ invert *ROM number
410 CMP ROMid \ compare with ROM id
420 BCC exit \ if *ROM > me, not my call
430 LDA #data AND 255 \ low byte of data address
440 STA ROMptr \ store in pointer location
450 LDA #data DIV &100 \ high byte of data address
460 STA ROMptr+1 \ store in pointer location
470 LDA ROMid \ get my paged ROM number
480 JSR invert \ invert it
490 STA serROM \ make me current *ROM
500 .claim PLA \ restore accumulator/stack
510 LDA #0 \ service call claimed
520 RTS \ finished
530 .exit PLA \ call not claimed restore
540 RTS \ accumulator and return

550 \ Routine for paged ROM service call &E
560 .rdbyte PHA \ save accumulator
570 TYA \ copy Y to A
580 BMI os12O \ if Y —ye OS has OSRDRM
590 \ this part for OS with no OSRDRM
600 JSR invsno \ invert *ROM number
610 CMP ROMid \ is it my paged ROM no.
620 BNE exit \ if not do not claim call
630 LDY #0 \ Y=0

180



640 LDA (ROMptr),Y \ load A with byte
650 TAY \ copy A to Y
660 .claiml INC ROMptr \ increment ptr low byte
670 BNE claim \ no overflow
680 INC ROMptr+1 \ increment ptr high byte
690 JMP claim \ claim call and return
700 \ this part for OS with OSRDRM
710 .os120 JSR invsno \ A=current *ROM number
720 \ not necessarily me
730 TAY \ copy A to Y
740 JSR OSRDRM \ OS will select ROM
750 TAY \ byte returned in A
760 JMP claim1 \ incremnt ptr & claim call
770 \ Subroutine for inverting *ROM numbers
780 .invsno LDA serROM \ A=*ROM number
790 .invert EOR #&FF \ invert bits
800 AND #&F \ mask out unwanted bits
810 RTS \ finished
820 \ End of header code/beginning of data
830 .data EQUB &2A \ synchronisation byte
840 .hdstrt EQUS “*EXAMPLE*” \ *ROM title
850 EQUB 0 \ name terminator
860 EQUD 0 \ Load address0
870 EQUD 0 \ execution address=0
880 EQUW 0 \ block number0
890 EQUW 0 \ block length=0
900 EQUB &C0 \ block flag
910 EQUD eof \ pointer to next file
920 .hdcrc EQUW FNdocrc(hdstrt,hdcrc) \ CRC C&246F)
930 .eof
940 \ No data block for this file
950 EQUB &2A \ synchronisation byte
960 .filel EQUS “TEXT” \ file title
970 EQUB 0
980 EQUD 0 \ null load address
990 EQUD 0 \ null execution address
1000 EQUW 0 \ first block
1010 EQUW dat2—datl \ length of data
1020 EQUB &80 \ first & last block
1030 EQUD eof1 \ pointer to end of file
1040 .hdcrcl EQUW FNdo_crc(filel,hdcrcl) \ CRC (&E893)
1050 .datl EQUS “REM This is a very short text file.”

181



1060 EQUB &D \ The file contents
1070 .dat2 EQUW FNdocrc(datl,dat2)\ Block CRC (&655D)
1080 .eof1
1090 EQUB &2B \ end of ROM marker
1100 .eof
1110 ]
1120 NEXT
1130 PRINT”*S.ROM “;~code%;” “;~O%
1140 END

1150 REM Define function which calculates CRC
1160 REM Requires start and end of block up to 255 bytes
1170 DEF FNdocrc(start,end)
1180 ?&82=(start-&8000+code%) AND &FF
1190 ?&83=(start-&8000+code%.) DIV &100
1200 ?&84=end—start
1210 CALL crc
1220  =(!&80) AND &FFFF

1230 REM Define procedure which assembles CRC routine
1240 DEF PROCassm
1250 startaddr=&82
1260 Lo_crc=&81
1270 Hi_crc=&80
1280 len=&84
1290 FOR I=0 TO 3 STEP3
1300 P%=MC%
1310 [
1320 OPT I
1330 .crc LDA #0
1340 STA Hi_crc
1350 STA Lo_crc
1360 TAY
1370 .label1 LDA Hi_crc
1380 EOR (startaddr),Y
1390 STA Hi_crc
1400 LDX #8
1410 .label2 LDA Hi_crc
1420 ROL A
1430 BCC label3
1440 LDA Hi_crc
1450 EOR #8
1460 STA Hi_crc
1470 LDA Lo_crc
1480 EOR #&10
1490 STA Lo_crc
1500 .label3 ROL Lo_crc
1510 ROL Hi_crc
1520 DEX
1530 BNE label2

182



1540 INY
1550 CPY len
1560 BNE label1
1570 RTS
1580 ]
1590 NEXT
1600 CALL crc:ENDPROC

When the resultant ROM is installed in the machine the following 
dialogue may ensue.

>*ROM
>*CAT

*EXAMPLE*
TEXT

>*EXEC TEXT
>REM This is a very short text file.

183



12 Memory allocation 
and usage
Two fundamental points have been stressed in various parts of this
book.

The first is that programs should only use memory allocated for 
their general use or memory designated for specific functions 
when requiring or performing that function.

The second point is that software should not make assumptions 
about its environment. The amount of user RAM available 
depends on the screen MODE selected and the amount of 
workspace RAM claimed by paged ROMs.

The Electron microcomputer’s memory map:

&FFFF
&FF00 Operating system ROM

&FEFF
&FE00 Memory mapped I/O – “SHEILA” 

&FDFF
&FD00 Memory mapped I/O – “JIM”

&FCFF
&FC00 Memory mapped I/O – “FRED”

&FBFF
&C000 Operating system ROM

&BFFF
&8000 Paged ROM space

&7FFF
HIMEM Screen memory (variable)

Space for user programs (variable)
OSHWM

&E00 Paged ROM workspace/exploded font (variable)

&DFF
&D00 

NMI routine and paged ROM information
(WARNING, not for user programs)

&CFF
&A00 Operating system private workspace

184



&9FF
&800 Sound system workspace/OS workspace

&7FF
&400 Current language private workspace

&3FF
&236 Operating system private workspace

&235
&200 OS call indirection vectors

&1FF
&100 6502 stack

&FF
&00 Zero page

Zero page

The zero page on the 6502 is very valuable, as many instructions 
and addressing modes need to work through page zero. For this 
reason, areas of zero page are allocated to each of the main 
memory contenders.

Zero page is allocated thus:

&00-&8F are allocated to the current language. BASIC reserves 
locations &70-&8F for the user. 

&90-&9F are allocated to the Econet system.

&A0-&A7 are allocated to the current NMI owner (see section in 
paged ROMs number 15.3.2). This area is not used on basic 
cassette machines. It is used extensively by the disc and network 
filing systems.

&A8-&AF are allocated for use by operating system commands 
during execution.

&B0-&BF are allocated as filing system scratch space. but are not
exclusively used by the currently active filing system.

&C0-&CF are allocated to the currently active filing system. This 
area is nominally private, and will not be altered unless the filing 
system is changed, or the absolute workspace is claimed (see 
paged ROMs chapter 15).

185



&D0-&E1 are allocated to the VDU driver.

&D0 is the VDU status as returned by OSBYTE &75.

&D1 contains a byte mask for the current graphics point. This 
byte indicates which bits in the screen memory byte correspond to
the point. For example, for the rightmost pixel in a two colour 
mode, this byte would contain &01, and for a sixteen colour 
mode, &55.

&D2 and &D3 are the text colour bytes to be ORed and EORed 
into memory, respectively. When writing text to the screen in 
modes 0 to 6, the pattern byte to be written to the screen is first 
ORed with the contents of &D2, and then EORed with the 
contents of &D3. The pattern byte contains a bit set where the 
pixel is to be the foreground colour, and a bit clear where the pixel
is to be the background colour. In four and sixteen colour modes, 
the pattern byte is expanded before using these locations to take 
account of the extra bits per pixel.

&D4 and &D5 are similar in function to locations &D2 and &D3, 
only they are the graphics colour bytes. By performing an OR 
operation, and then an FOR operation, all the GCOL plotting 
operations can be taken into account by changing the data in these
two bytes. The graphics mask at location &D1 is used to mask out
the bits in these bytes when they are used.

&D6 and &D7 contain the address of the top line of the current 
graphics character cell (eight bytes long). (See location &31A)

&D8 and &D9 contain the address of the top scan line of the 
current text character.

&DA-F are used as temporary workspace.

&E0-&E1 unused on the Electron

&E2 is the cassette filing system status byte:

bit 0 Set if the input file is open. bit 1 Set if the output file is
open. bit 2 Not used.

186



bit 3 Set if currently CATaloguing. 
bit 4 Not used.
bit 5 Not used.
bit 6 Set if at end of file.
bit 7 Set if end of file warning given.

&E3 is the cassette filing system options byte, as set by the *OPT 
command. The byte is organised as two nibbles, the top four bits 
are used for load and save operations, and the bottom four bits are 
used for sequential access. The format of each nibble is:

Bits 0 and 1, the least significant bits of the nibble are used to 
control what happens after a tape error. When accessing the EXEC
file the 'retry' and 'ignore error' options are ignored, so the EXEC 
is always aborted. These bits have the following meanings (note 
the higher bit is mentioned first:

00 Ignore errors
10 Retry after an error
01 Abort after an error

Bits 2 and 3, the most significant bits of the nibble are used to 
control the printing of messages during access. These bits have the
following meanings (note the format given is high bit, low bit):

00 No messages
10 Short messages
11 Long messages

&E4-&E6 are used as general operating system workspace.
&E7 is the auto repeat countdown timer. This is decremented at 
100Hz to zero, at which point the key is re-entered into the buffer.
&E8 and &E9 are a pointer to the input buffer into which data is 
entered by OSWORD &01.

&EA is the RS423 timeout counter, which can take the following 
values:

=1 The cassette filing system is using 6850 =0 The 
RS423 system holds 6850, but has timed out.

<0 The RS423 system holds 6850, but has not yet timed 
out.

187



&EB is the 'cassette critical' flag. Bit 7 is set if the cassette filing 
system is called whilst doing a BGET for EXEC or a BPUT for 
SPOOL. It is used to ensure that no messages are printed during 
the access.

&EC contains the internal key number of the most recently 
pressed key, or zero if none is currently pressed. See the table of 
internal key numbers in Appendix D.

&ED contains the internal key number of the first key pressed of 
those still pressed, or zero if one or no keys are pressed. This is 
used to implement two key rollover.

&EE - 1MHz bus page number

&EF contains the accumulator value for the most recent 
OSBYTE/OSWORD.

&F0 contains the X register value for the most recent 
OSBYTE/OSWORD, or the stack pointer value at the last BRK 
instruction.

&F1 contains the Y register value for the most recent 
OSBYTE/OSWORD.

&F2 and &F3 are used as a text pointer for processing operating 
system commands and filenames.

&F4 - This location contains the ROM number of the currently
active paged ROM. (The operating system maintains this as a
RAM copy of the paged ROM selection latch.)

&F5 to &F7 - These locations are used for the *ROM filing 
system (see chapter 11).

&F8 and &F9 are not used.

&FA to &FC - These locations are available for use by routines 
which have set the interrupt flag. The operating system interrupt 
routines use these locations but do not expect the contents to 
remain unchanged between calls. &FC is used as an interrupt 
accumulator save register. This location is only used temporarily 

188



at the very beginning of an interrupt routine while it is setting up 
the stack.

&FD and &FE - These locations are written to after a BRK 
instruction has been executed. They contain the address of the 
next byte of memory following the BRK instruction. Thus these 
locations normally point to an error message (see section 6.2). 
Upon selection of a language these locations are set to point at the 
version string of the newly selected language ROM.

&FF - This location contains the ESCAPE flag. Bit 7 of this 
location is set to mark an ESCAPE condition. This flag is cleared 
when an ESCAPE is serviced.

Page 1

This page is used for the 6502 stack. The stack grows from the 
last byte in this page (&1FF) down towards the bottom of the 
page. Paged ROM service routines may use the bottom of this 
page to store error messages.

Page 2

Page two is the main work zone of the operating system. It 
contains all of the main vectors and user accessible operating 
system variables. Page two is laid out thus:

&200-&235 are the vectors. See the vectors chapter 6 and list in 
Appendix D.

&236-&28F are the main system variables, accessed by OSBYTE 
calls &A6 through &FF.

&290-&291 are unused on the Electron

&292-&296 and &297-&29B are the two stored values of the 
system clock, as read by ‘TIME’. Two values are kept, so one can 
be read while the other is being updated by the interrupt routines.

&29C-&2A0 are the countdown interval timer value. This is used 

189



to cause an event after a certain time has elapsed. See the chapters
on events, number 12, and on OSWORD, number 9, for more 
details of using the countdown timer.

&2A1-&2B0 form the paged ROM type table, as pointed to by 
value read by OSBYTEs &AA and &AB. Each byte contains the 
ROM type of the corresponding ROM, or zero if there is no ROM 
in that socket. For details of ROM types, see the Paged ROMs 
chapter number 15.

&2B1 and &2B2 are the INKEY countdown timer. This is used to 
time out an INKEY call.

&2B6-&2B9 are the low bytes of the most recent analogue 
converter values. These are in the order channel 1, 2, 3 and 4.

&2BA-&2BD are the high bytes of the most recent analogue 
converter values.

&2BE is the analogue system flag. This contains the number of 
the last channel to finish conversion, or zero if no channels have 
finished since this value was last read. This byte is read by 
OSBYTE &80.

&2BF-&2C8 are the event enable flags. If zero, the event is 
disabled, otherwise enabled. See the chapter on events, number 
12.

&2C9 is the soft key expansion pointer. The next byte to be 
expanded in a soft key is to be found at &B01+?&2C9

&2CA is the first auto repeat count. This is the next value to go 
into the auto repeat counter at &E7. This location can be 
considered a one byte queue for the counter.

&2CB-&2CD are used as workspace for two key rollover 
processing.

&2CE is the sound semaphore. If it is zero it means that an 
envelope interrupt is being processed, so another must be ignored.
If it is &FF it means that the envelope software is free.

190



&2CF-&2D7 are buffer busy flags. Bit 7 of these bytes is set if the
matching buffer is empty. For a list of buffer numbers see 
OSBYTE &15 (21).

&2D8-&2E0 are the buffer start indices. They contain the offset of
the next byte to be removed from each buffer. The offsets are 
adjusted so that the highest location in the buffer has the offset 
&FF for all buffers irrespective of size.

&2E1-&2E9 are the buffer end indices. They contain the offset of 
the last byte to be entered into each buffer. If this value is the 
same as the start offset, the buffer is empty. If this value is less 
than the start offset, it means the buffer has wrapped around to the
start.

&2EA and &2EB contain the block size of currently resident 
block of the open cassette input file.

&2EC contains the block flag of the currently resident block of 
the open cassette input file. (see section 16.10 for the cassette 
format and details of the flag byte).

&2ED contains the last character in currently resident block of the
open cassette input file.

&2EE-&2FF are used as an area to build OSFILE control blocks 
for *LOAD and *SAVE

Page 3

Page three is used for the VDU workspace, the cassette system 
workspace and the keyboard buffer.

Locations &300-&37F provide the VDU workspace. In examining
these locations, it should be noted that there are two forms of 
graphic co-ordinate, internal and external. The external graphics 
co-ordinate is exactly that used by the PLOT command in BASIC.
The internal graphics co-ordinate is derived from the external by 
taking into account the graphics origin and scaling so that it is 
measured in pixels horizontally and vertically. Graphics co-
ordinates are stored in four bytes, with the low byte of the X co-
ordinate first.

191



VDU workspace is laid out thus:

&300-&307 contain the current graphics window in internal co-
ordinates.

&300,1 Left hand column in pixels. 
&302,3 Bottom row in pixels. 
&304,5 Right hand column in pixels. 
&306,7 Top row in pixels.

&308-&30B contain the current text window in absolute 
characters offset from the top left of the screen.

&308 Left hand column.
&309 Bottom row.
&30A Right hand column.
&30B Top row.

&30C-&30F contain the current graphics origin in external co-
ordinates.

&310-&313 contain the current graphics cursor in external co-
ordinates. This is used for calculating relative PLOTs.

&314-&317 contain the old graphics cursor in internal co-
ordinates. This is used for the generation of triangles.

&318 contains the current text cursor X co-ordinate. 

&319 contains the current text cursor Y co-ordinate.

&3lA contains the line within current graphics character of the 
current graphics point. Because the BBC microcomputer has a 
non linear address space for the graphics screen, it is simpler to 
calculate the address of the byte at the top of the character cell that
contains a point, and then calculate the row within the character. 
Thus the location of the byte containing the current graphics point 
is ?&D6 + 256*?&D7 + &31A.

&31B-&31E is used either as graphics workspace or as the first 
part of the VDU queue.

192



&31F-&323 is the VDU queue. The queue is organised so that 
whatever the number of characters queued, the last byte queued is 
always at &323.

&324-&327 contain the current graphics cursor in internal co-
ordinates.

&328-&349 is used as general graphics co-ordinate workspace.

&34A and &34B contain the text cursor position as an address.

&34C and &34D contain the text window width in bytes, ie. the 
number of characters wide*the number of horizontal bytes per 
character*8 for graphics modes. This is used to control the 
number of bytes which are soft scrolled for each line of scrolling.

&34E contains the high byte of the address of the bottom of 
screen memory.

&34F contains the number of bytes of memory taken up by a 
single character. This is 8 for 2 colour modes, 16 for 4 colour 
modes, 32 for 16 colour modes.

&350 and &351 contain the address of the top left hand corner of 
the displayed screen.

&352 and &353 contain the number of bytes taken per character 
row of the screen. This is 320 for 8K and 10K modes and 640 for 
16K and 20K modes.

&354 contains the high byte of the size of the screen memory in 
bytes.

&355 contains the current screen mode.

&356 contains the memory map type. The contents indicate the 
size of the screen memory. It has the value 0 for 20K modes, 1 for 
the 16K mode, 2 for 10K modes, and 3 for the 8K mode. 

&357-&35A contain the current colours. These are stored as the 
value that would be stored in a byte in screen memory to 

193



completely colour that byte to the colour required. The locations 
are:

&357 Foreground text colour.
&358 Background text colour.
&359 Foreground graphics colour.
&35A Background graphics colour.

&35B and &35C contain the graphics plot mode for the 
foreground and background plotting respectively. These are set by 
the GCOL first parameter.

&35D and &35E are used as a general jump vector. The vector is 
used for decoding VDU control codes and PLOT numbers.

&35F contains a record of the last setting of the cursor start 
register.

&360 contains the number of logical colours in the current mode 
minus one.

&361 contains the number of pixels per byte minus one for the 
current mode, or zero if text only mode.

&362 and &363 contain the left and right colour masks, 
respectively. These bytes contain a bit set in each bit position 
corresponding to the leftmost or rightmost pixel. For example in a 
two colour mode, these bytes would contain &80 and &01, and in 
a sixteen colour mode &AA and &55.

&364 and &365 contain the X and Y co-ordinates of the text input
cursor. The input cursor is the position from which characters are 
COPYed.

&366 not used on the Electron; normally set to 127.

&367 contains the font flag. This byte marks whether or not 
a particular font zone is being taken from ROM or RAM. If 
a bit is set it indicates that that zone is in RAM. See 
OSBYTE &14 (20) for more information on fonts.

bit 7 characters 32-63 (&20-&3F)

194



bit 6 characters 64-95 (&40-&5F)
bit 5 characters 96-127 (&60-&7F)
bit 4 characters 128-159 (&80-&9F)
bit 3 characters 160-191 (&A0-&BF)
bit 2 characters 192-223 (&C0-&DF)
bit 1 characters 224-255 (&E0-&FF)

&368-&36E are the font location bytes. These contain the upper 
bytes of the addresses of the fonts for each of the 7 zones 
mentioned above.

&36F-&37E form the colour palette. One byte is used for each 
logical colour. That byte contains the physical colour 
corresponding to the logical colour. The bytes are stored in 
numerical order of logical colour.

The area of page three from &380 to &3DF is used by the cassette
filing system as working storage.

&380-&39C is used to store the header block for the BPUT file. 
See the section on the cassette filing system, number 16.10 for 
details of header block layout.

&39D contains the offset of the next byte to be output into the 
BPUT buffer.

&39E contains the offset of the next byte to be read from the 
BGET buffer.

&39F-&3A6 are not used by the Electron OS.

&3A7-&3B1 contain the filename of the file being BGETed.

&3B2-&3D0 contains the block header of the most recent block 
read:

&3B2-&3BD Filename terminated by zero.
&3BE-&3C1 Load address of the file.
&3C2-&3C5 Execution address of the file.
&3C6-&3C7 Block number of the block.
&3C8-&3C9 Length of the block.
&3CA Block flag byte.
&3CB-&3CE Four spare bytes.

195



&3CF-&3D0 Checksum bytes.

&3D1 contains the sequential block gap as set by *OPT 3,n.

&3D2-&3DC contain the filename of the file being searched for. 
Terminated by zero.

&3DD-&3DE contain the number of the next block expected for 
BGET.

&3DF contains a copy of the block flags of the last block read. 
This is used to control newlines whilst printing file information 
during file searches.

&3E0-&3FF are used as the keyboard input buffer.

It should be noted that although OSBYTE &A0 is officially for 
reading VDU variables, it may be used to read any of the values in
page three.

Pages 4, 5, 6 and 7

These four pages are allocated for the exclusive use of the 
currently selected language. Should a user be executing code 
independently of a language this memory may be used by that 
code. The user’s code should not re-enter a language without 
ensuring that the language has had an opportunity to reset its 
workspace.

Page 8

This page is allocated for the sound system and for buffers:

&800 to &83F general sound workspace, used as follows:

&800-&803 not used
&804-&807 sound queue occupancy flag
&808-&80B current amplitude
&80C-&80F number of amplitude phases processed
&810-&813 absolute pitch value
&814-&817 number of pitch phases processed
&818-&81B number of steps to process

196



&81C-&81F duration
&820-&823 interval multiplier
&824-&827 envelope number/auto repeat parameter
&828-&82B length of remaining note interval
&82C-&82F sync hold parameter
&830-&833 current pitch setting
&834-&837 pitch deviation
&838 number of channels required for sync
&839 current amplitude step – not used on 

Electron
&83A target amplitude – not used on Electron
&83B number of channels on hold for sync
&83C-&83F workspace
&83D-&83E frequency parameter as sent to sound 

generator
&83F not used

&840 to &84F sound channel 0 buffer
&850 to &85F sound channel 1 buffer
&860 to &86F sound channel 2 buffer
&870 to &87F sound channel 3 buffer
&880 to &8BF printer buffer
&8C0 to &8FF envelope storage area (env. no’s 1-4)

On the Electron this area is available for the implementation of 
external sound and the printer buffer area is used by the Plus 1 
expansion software. Locations in this page should only be used by
system software performing the appropriate task e.g. user printer 
routines, sound expansion routines.

Page 9

This page can be used in one of three basic ways:

a) As an extended envelope storage area:

&900-&9BF Envelope storage area, envelopes 5-16. 
&9C0-&9FF Speech buffer.

b) As an RS423 output buffer:

&900-&9BF RS423 output buffer.

197



&9C0-&9FF Speech buffer.

c) As a cassette output buffer:

&900-&9FF Cassette output buffer.

Uses (b) and (c) are largely compatible apart from speech, as the 
6850 can only be used by either the cassette or the RS423 system 
at any one time, and the cassette system waits until the RS423 
output has timed out before taking control of the 6850. At time 
out, the RS423 output buffer is usually clear.

Page &A

This page is used for either the cassette input buffer, or for the 
RS423 input buffer.

Page &B

This page is the soft key buffer. The first seventeen bytes define 
the start and end locations of the sixteen soft keys. The rest of the 
page is allocated to the keys themselves. The start offset of soft 
key string n is held at location &B00+n. The address of the first 
character of the string is &B0l+?(&B00+n). The address of the 
last character of the string is &B00+?(&B01+n).

Page &C

This page contains the font for characters 224—255. Each 
character requires eight sequential bytes. The first byte 
corresponds to the top line of the character, the second for the line 
below, etc.

Page &D

This page is allocated in the following way:

&D00 to &D5F NMI routine
&D60 to &D9E reserved
&D9F to &DEF paged ROM extended vectors
&DF0 to &DFF paged ROM workspace table

198



The NMI routine is the code which is executed when a non-
maskable interrupt is generated. This is entered at &D00 and 
should service the interrupt.

The paged ROM extended vectors provide an entry into paged 
ROM code regardless of which ROM is active as the call is made. 
See section 10.3 for a description of extended vectors.

The paged ROM workspace table contains a single byte page 
address indicating the start of each ROM’s private workspace (see
section 10.3 for further details).

WARNING

Many games programmers have used page &D. These games will 
not work when a Plus 1 is fitted because it uses this space. DO 
NOT continually disconnect and re-connect the Plus 1 because 
this will damage both the Plus 1 and the Electron. Refer to section
15.7 for a method which will disable the Plus 1.

Page &E00 to the OSHWM

This memory is available for paged ROM workspace and for 
character definitions as part of a user defined font.

Each ROM is interrogated during a reset to determine its 
workspace requirements (see paged ROM service calls, section 
10.1). This workspace extends from &E00 in page sized units 
until all the paged ROMs have made their claims.

The Acorn BBC range of machines allow the user to define the 
character patterns that are printed on the screen. The number of 
user defined characters which may be used depends on the 
explosion state of the font (see OSBYTE &14). On the Electron 
and BBC microcomputer the memory required when exploding 
the font is allocated above the paged ROM workspace.

The user (or language) memory starts from the top of this 
workspace memory and the start address of this memory is called 
the operating system high water mark (OSHWM).

199



OSHWM to HIMEM

This is where a user might expect his program to live. 
Theoretically this memory has no fixed start address and no fixed 
end address which taken to extremes means that it may 
theoretically have no size. In practice, on the BBC microcomputer
and the Electron, the region from &2800 to &3000 can be 
assumed to be within the OSHWM/HIMEM bounds. The 
language environment may also place constraints on the amount 
of RAM available for a user’s program and/or data.

No RAM should be accessed above HIMEM. This includes the 
screen memory and, on a second processor, the memory in which 
the language is stored.

Screen memory

This memory is not guaranteed to exist at any given place on 
Acorn BBC range machines, For example when a Tube is active a 
program may find itself on the second processor and thus any 
attempts to access what was the screen memory will have no 
effects on the screen image.

For more information about programming practices read chapter 1
on the Acorn design philosophy and programming rules.

Paged ROM memory: &8000 to &BFFF

This region in the memory map of non-Tube machines or I/O 
processors contains the currently ‘paged’ paged ROM. When the 
current filing system is in paged ROM and a filing system 
function used then the appropriate paged ROM is selected.

Operating system ROM memory: &C000 to &FFFF

The contents of the OS ROM are undefined except for the OS call 
entry points described in chapter 2 and the default vector table 
described in section 6.11.

200



Memory mapped I/O: &FC00 to &FEFF

Hardware devices are addressed via these memory locations. Once
again extreme care should be taken to address them in the correct 
manner using OSBYTEs &92 to &97 for reading and writing 
these addresses. See chapter 14 for more information about the 
memory mapped I/O.

(The OS ROM contains a list of credits in this region made 
inaccessible by the switch to memory mapped I/O.)

The following list shows how Page &FC addresses are allocated 
for external hardware devices.

&FC18 to &FC1F Reserved for use by Acorn
&FC28 to &FC2F Reserved for Econet use
&FC30 to &FC3F Reserved for use by Acorn
&FC60 to &FC6F ACIA
&FC70 Analogue to digital converter
&FC71 Parallel printer port
&FC72 Status register
&FC73 ROM scrolling register
&FC78 to &FC7F Laser Disc
&FC80 to &FC8F Test Hardware
&FC90 to &FC9F Sound/Speech
&FCB0 to &FCBF VIA
&FCC0 to &FCCF Floppy Disc Controller
&FCE0 to &FCEF Tube
&FCFF Paged RAM register

201



13 An Introduction to 
Hardware
BASIC is a very useful programming tool. It allows users to take 
advantage of the Electron’s facilities without bothering about the 
details of how it is performed in hardware. Commands are 
provided to deal with output to the screen, input from the 
keyboard and cassette, plus all of the other hardware. The same 
applies to machine code to a large extent through the use of 
OSBYTES, OSWORDS and other operating system commands.
However, a much more detailed understanding of the hardware 
and how it can be controlled from machine code programs is very 
useful and allows certain features to be implemented which would
have been impossible in BASIC.

The hardware section of this book satisfies the requirements of 
two types of people. Those who wish to use the hardware features 
already present on the computer, and those who wish to add their 
own hardware to the computer. All of the standard hardware 
features available on the Electron are therefore outlined in detail 
from a programmer’s point of view. Wherever possible, it is better
to use operating system routes for controlling the hardware. These
are very powerful and will be referred to whenever relevant. In 
certain specialised cases, it is necessary to directly access 
hardware, but even in such cases, OSBYTES &92-&97 should be 
used. This will ensure that the software will still operate on 
machines fitted with a Tube processor. For those who wish to add 
their own hardware, full details on connecting circuits to the 
Electron’s expansion port are provided.

The hardware on the Electron consists of a large quantity of 
integrated circuits, resistors, capacitors, transistors and various 
other electronic components. All of these are shown on the full 
circuit diagram in Appendix F. In order to help those who are not 
familiar with the general layout of a computer circuit and the 
devices attached to it, the rest of this introduction is devoted to 
analysing the hardware as a series of discrete blocks 
interconnected by a series of system buses.

202



Refer to figure 13.1 whilst reading the following outline of the 
hardware. There are two major blocks inside the Electron.

The first is the uncommitted logic array (usually referred to as the 
ULA). This is a very large chip which does most of the boring 
system tasks. It’s life is devoted to copying data from the video 
memory to the video circuit, driving the cassette, producing 
sounds, keeping an eye on the keyboard plus other minor tasks.

The other major component is the computing centre of the system,
called the 6502A central processing unit (CPU). This is the chip 
which executes all of the programs including BASIC. It is 
connected to the ULA, ROM and expansion bus. For clarity on the
diagram, the connecting buses are all compressed into one which 
is represented by the double lines terminated with arrows at each 
major block.

A bus is simply a number of electrical links connected in parallel 
to several devices. Normally one of these devices is talking to 
another device on the bus. The communication protocols which 
enable this transfer of data to take place are set up by the control, 
address and data buses. In the case of the address bus, there are 16
separate lines which allow 65536 (216) different combinations of 
l’s and 0’s. The maximum amount of directly addressable memory
on a 6502 is therefore 65536 bytes. The data bus consists of 8 
lines, one for each bit of a byte. Any number between 0 and &FF 
(255) can be transferred across the data bus. Communication 
between the ULA, peripherals on the expansion bus, memory and 
the CPU occurs over the data bus. The CPU can either send out a 
byte or receive a byte. The data bus is therefore called a 
bidirectional bus because data flows in any one of two directions. 
The 6502 address bus is unidirectional because addresses can be 
provided but not received. The ULA sits back looking at the 
addresses from the 6502.

In order to control the direction of data flow on the data bus, a 
read or write signal is provided by the control bus. Hardware 
connected to the system can thereby determine whether it is being 
sent data or is meant to send data back to the CPU. The other 
major control bus functions are those of providing a clock, 
interrupts and resets. The clock signal keeps all of the chips

203



204



Figure 13.1 - The system block diagram

205



running together at the same rate. The RESET line allows all 
hardware to be initialised to some predefined state after a reset. 
An interrupt is a signal sent from a peripheral to the 6502 
requesting the 6502 to look at that peripheral. Two forms of 
interrupt are provided. One of these is the interrupt request (IRQ) 
which the 6502 can ignore under software control. The other in 
the non-maskable interrupt (NMI) which can never be ignored. 
Refer to chapter 7 on interrupts for more information.

When power is first applied to the system, a reset is generated by 
the ULA to ensure that all devices start up in their reset states. The
6502 then starts to get instructions from the ROM. These 
instructions tell the 6502 what it should do next. A variety of 
different instructions exist on the 6502. The basic functions 
available are reading or writing data to memory or an input! 
output device and performing arithmetic and logical operations on
the data. Once the MOS (machine operating system) program is 
entered, this piece of software gains full control of the system.

On an unexpanded Electron, the computer will continue
operating under the MOS until it is switched off. Programs are 
entered into the memory from the keyboard or cassette port, then 
run. There is some scope for clever programming techniques 
using the standard hardware - they all involve some tampering 
with the various registers in the ULA. However, a lot more 
facilities can be provided by adding extra hardware onto the back 
of the Electron.

Since the Electron is the little brother of the BBC Micro, two 
forms of expansion are provided for. The first of these covers the 
addition of hardware which is supplied as standard on a BBC 
Micro. Within this category are included items like a printer port, 
analogue to digital converter (for joysticks) and paged ROMs. The
second category includes items which would have to be added 
onto a BBC Micro. Products like the second processors and units 
which plug onto the One Megahertz Bus are in this category.

206



SHEILA and the ULA

On the BBC Micro, all of the resident hardware is mapped into 
page &FE of memory. This page is called Sheila. The Electron 
also has all of its internal hardware memory mapped into Sheila, 
but with one major difference to the BBC Micro. All memory 
mapped functions are contained within the ULA. These can be 
summarised as:

SHEILA Address Description

&FEX0 Interrupt status and control register
&FEX2 Video display start address (low byte)
&FEX3 Video display start address (high byte)
&FEX4 Cassette data register
&FEX5 Paged ROM control and interrupt control
&FEX6 Counter plus cassette control
&FEX7 Controls screen, sound, cassette and CAPS LED
&FEX8-XF Palette registers

Note that the ULA appears in every 16 byte block of page &FE. 
Writing to &FE02 is therefore exactly the same as writing to 
&FEA2 or &FE32 etc.

207



14 Inside the Electron
The only hardware inside the Electron which can be accessed 
directly by the 6502 is the MOS ROM and the ULA, The RAM is 
read via the ULA, and all internal control functions are performed
by the ULA.

As has already been mentioned in chapter 13, the ULA is 
addressed in page &FE (called Sheila). The rest of this chapter 
explains exactly what all of the registers within the ULA will do, 
and how they can be of use. Note that there are two ways of 
communicating with Sheila. OSBYTEs 150 and 151 will read and 
write to Sheila respectively. Alternatively, the memory mapped 
addresses can be POKEd directly from programs.

14.1 The ULA and its registers

SHEILA &FE00 - Interrupt status and control

Figure 14.1 – IRQ status and control register

This register is concerned with the interrupts on the Electron. 
Interrupts are generated by pieces of hardware which require the 
6502 to look at them urgently. A detailed discussion of interrupts 
can be found in chapter 7.

7 6 5 4 3 2 1 0

M A S T E R I R Q 

P O W E R O N R E S E T 

DISPLAY END INTERRUPT (AT BOTTOM OF 
DISPLAYED SCREEN) 

REAL TIME CLOCK (50Hzl 

TRANSMIT DATA EMPTY 

RECEIVE DATA FULL 

HIGH TONE DETECT 

NOT USED 

208



By writing a ‘1’ into the corresponding bits of this register, 
particular interrupts can be enabled. Writing ‘0’ into a particular 
bit will disable the related interrupt. Enabled interrupts can get the
6502 to look at them if they generate a suitable signal. Disabled 
devices will not be looked at even if they generate an interrupt.

Note that after an interrupt has occurred, it will be necessary to 
clear the source of the interrupt, This can be done by writing to 
address &FE05.

SHEILA &FE02 and &FE03 - Screen start address control

Figure 14.2 – The screen start address registers

These two registers together form the screen start address. This is 
the address in memory which will be mapped to the top left-hand 
corner of the displayed screen. Whenever a line is to be scrolled 
up or down, this register is incremented or decremented by the 
number of bytes in a line. As well as allowing vertical scrolling, a 
limited amount of horizontal scrolling is also possible. The start 
address can be changed in increments of 64 bytes of memory. In 
mode 0, 8 bytes are used per character. This means that a scroll in 
the minimum increment will move the whole screen 8 characters 
(64/8) left or right.

X X 5 4 3 2 1 0 7 6 5 X X X X X

0 A 1 4A 1 3A 1 1A 9A 8A 7A 6X X X X X X

209



The following example demonstrates this feature. Once it has 
been typed in, the cursor keys can be used to move a block of text 
about over the mode 0 screen. Note that the actual screen start 
address has to be shifted right by one bit before it is POKEd into 
the ULA registers.

10 REM HARDWARE SCROLL EXAMPLE IN MODE 0
20 MODE 0
30 OSBYTE=&FFF4
40 START=&3000
50 PRINT”THIS TEXT CAN SCROLL IN ANY DIRECTION USING CURSOR—KEYS”
60 REM SET KEYS AUTO REPEAT RATE
70 *FX12,3
80 REM SET CURSOR KEYS TO GIVE 136 etc.
90 *FX4,1
100 REPEAT
110 A=INKEY(0)
120 IF A=136 THEN PROCMOVE(64)
130 IF A=137 THEN PROCMOVE(—64)
140 IF A=138 THEN PROCMOVE(—640)
150 IF A=139 THEN PROCMOVE(640)
160 UNTIL FALSE
170 DEF PROCMOVE(offset)
180 START=START+offset
190 REM IF ABOVE SCREEN TOP, SUBTRACT SCREEN LENGTH
200 IF START>=&8000 THEN START=START—&5000
210 REM IF BELOW SCREEN BASE, ADD SCREEN LENGTH
220 IF START<=&3000 THEN START=START+&5000
230 REM CALCULATE HIGH BYTE FOR ULA
240 REM SHIFTED RIGHT BY ONE BIT
250 H% = START DIV 512
260 REM LOW BYTE SHIFTED RIGHT BY ONE BIT
270 L% = (START MOD 512) DIV 2
280 REM NOW PUT INTO ULA REGISTERS
290 REM LOW BYTE TO &FE02
300 A%=151:X%=2:Y%=L%
310 CALL OSBYTE
320 REM HIGH BYTE TO &FE03
330 A%=151:X%=3:Y%=H%
340 CALL OSBYTE
350 ENDPROC

210



SHEILA &FE04 - Cassette data shift register

Figure 14.3a - Reading from the shift register

Data is input to the Electron from a cassette recorder, This data 
shifts into bit 0 of the serial shift register, then into bit 1 and so on 
until the whole 8 bits of a byte are in the ULA’s receive data 
register. At this point, data can be read out and stored in memory 
somewhere.

There are several points which are worth remembering when the 
cassette is used. First of all, a high tone must have been recorded 
on the tape before any data is read into the Electron. This allows 
the circuitry to detect that data is about to be sent. The screen 
mode should have been set to between 4 and 6. If it is not, bits are 
sometimes lost because the 6502 cannot be interrupted whilst high
resolution graphics are being displayed. Finally, the receive data 
full interrupt should be enabled. This will ensure that the 6S02 
knows when a byte can be read. If the byte is not read within 
about 2ms, the data will be lost forever as bit 7 falls off the end of 
the register when the next bit comes in!

Figure 14.3b - Writing to the shift register

7 6 5 4 3 2 1 0 D A T A I N 
S E R I A L L Y

READ FROM CASSETTE

B Y T E R E A D O U T I N P A R A L L E L

7 6 5 4 3 2 1 0D A T A O U T 
SERIALLY

WRITE TO CASSETTE

BYTE WRITTEN IN PARALLEL

211



Writing to this register causes data to be output to the cassette 
(assuming that the cassette output mode has been set by writing to
&FE07). Bit 7 is written out first (so that it is the first in when the 
tape is played back). When the last bit has been written out, a 
transmit data empty interrupt is generated. This tells the 6502 that 
it can put the next byte to be sent into the register.

SHEILA &FE05 - Interrupt clear and paging register

Figure 14.4 - The clear interrupt and paging register This register 
has two purposes, namely the clearing of interrupts and the 
selection of paged ROMs.

Interrupt clearing

Putting a ‘1’ into any of the bits 4-7 will cause the associated 
interrupt to be cleared. Interrupts should be cleared after they have
been serviced, but before returning from the interrupt service 
routine.

Bits 4, 5 and 6 are associated with maskable interrupts. Bit 7 is 
associated with the Non-maskable interrupt, This type of interrupt 
is generated by very high priority devices like discs. An NMI 
automatically gives the 6502 precedence over the ULA, even if it 
is in the middle of displaying a screen. White snow may

N M I
HIGH

TONE RTC F R A M E
END PE P2 P1 P0

R O M P A G I N G B I T S

R O M P A G E E N A B L E

CLEAR SCREEN INTERRUPT

CLEAR RTC INTERRUPT

CLEAR HIGH TONE INTERRUPT

NMI CLEAR=1
GIVE 6502 PRIORITY OVER 
ULA - FOR DISCS ETC. 

212



therefore occur on the screen when discs are being accessed. Once
the 6502 has dealt with the source of interrupt, it should clear it by
writing a ‘1’ to bit 7. This gives the screen memory back to the 
ULA.

Paging ROMs

The detailed mechanisms for decoding paged ROMs are covered 
in the next chapter, however, a simple summary is in order here.

There is the potential within the operating system to directly 
address up to 16 paged ROMs of 16K bytes each. However, four 
of the slots are effectively occupied by the keyboard and the 
BASIC ROM. The keyboard occupies positions 8 and 9 (both are 
equivalent). To read from the keyboard, the 14 address lines AO 
-A13 are used. Each of these is connected to one of the columns 
of the keyboard. If a particular address line is low, that line of the 
keyboard is selected on a read. The row data from the keyboard is 
then returned in the lower 4 bits read from the data bus. The 
BASIC ROM is selected by paging ROM number 10 or 11.

In order to select any of the other ROMs, a particular sequence 
must be followed, First of all, the ULA must be told that BASIC 
should be dc-selected. This is done with the page enable bit. One 
of the ROMs 12-15 will be selected in this way. Now that BASIC 
has gone, it is (if so desired) possible to page in one of the ROMs 
0 to 7. This is simply performed by setting the page enable bit to 0
and selecting the required ROM with bits 0 to 2. You should refer 
to section 15.4 for a more detailed discussion.

SHEILA &FE06 - The counter

This write only register has several different functions, depending 
upon the particular mode of operation.

213



Reading from cassettes

X 0 0 0 0 0 0 0

Figure 14.5a - Cassette receive mode

When data is being read from a cassette, this timer is used to 
count from zero crossings. It therefore effectively determines the 
cassette baud rate. All bits should be set to 0 (except for bit 7 
which doesn’t matter). Cassette receive mode is set by bits 1 and 2
in &FE07.

Making sounds

S7 S6 S5 S4 S3 S2 S1 S0

Figure 14.5b - Sound generation mode

Sound can only be generated when the cassette is not being used. 
The 8 bit integer written into this register determines the 
frequency of all generated sounds. If the value is ‘S’ where ‘S’ is 
between 0 and 255 in value, the generated sound frequency is 
given as:

Sound frequency = 1 MHz / [16 * (S + 1)]

To select sound mode, bits 1 and 2 of &FE07 are used. 
Frequencies from 244Hz up to 62.5kHz can be generated, but you 
won’t be able to hear the really high frequencies!

214



Writing to cassettes

X X X X X X X X

Figure 14.5c - Writing to cassette

The states of the bits written to this register are ignored in this 
mode. The counter is used to control the received data baud rate, 
but cannot be changed. Bits 1 and 2 of &FE07 should be used to 
select the cassette output mode.

SHEILA &FE07 - Miscellaneous control

Figure 14.6 - control register

This general purpose control register provides a selection of 
different functions.

2 1 X

D2D1MODE

00CASSETTE INPUT
01SOUND

GENERATION
1 1 C A S S E T T E O U T P U T
11NOT USED

ROM PAGE ENABLE

CLEAR SCREEN INTERRUPT

CLEAR RTC INTERRUPT

CLEAR HIGH TONE INTERRUPT

NMI CLEAR=1
GIVE 6502 PRIORITY OVER 
ULA - FOR DISCS ETC. 

34567

215



Communications mode, bit 1 and 2

Bits 1 and 2 control whether data is being written to a cassette 
recorder, read from a cassette recorder, or generating sounds. 
These three functions are mutually exclusive, so it is not possible 
to play cheery tunes whilst waiting for a long program to load.

Display mode selection, bits 3, 4 and 5

There are seven display modes available on the Electron. These 
can be selected by writing a number between 0 and 6 into bits 5, 
4, 3. Note that the other possible mode (7) is only available on the 
BBC Micro.

Cassette motor control, bit 6

Setting this bit to ‘1’ will turn the cassette motor on. Setting it to 
‘0’ will turn the motor off. Motor control is effected by a small 
relay contact inside the Electron. It is possible to use this to switch
small battery operated equipment on and off (for example a 
transistor radio).

CAPS LOCK LED control, bit 7

Setting this bit to a ‘1’ turns on the CAPS LOCK LED on the side 
of the keyboard. A ‘0’ turns it off again.

SHEILA &FE08 to &FE0F - the colour palette

These addresses in the ULA define the mapping between the
logical colours which are provided by programs and the physical 
colours which are displayed on the screen.

For example, in the two colour mode, logical colour 1 will 
actually produce a colour defined by &FE08 bit 6 (blue), &FE08 
bit 2 (green) and &FE09 bit 2 (red). The bits are negative logic, 
which means that a ‘1’ in bit 6 of &FE08 will ensure that blue is 
turned off for colour 1.

The cursor and flashing colours are entirely generated in software:
This means that all of the logical to physical colour map must be 
changed to cause colours to flash.

216



D7 D6 D5 D4 D3 D2 D1 D0
&FE08 X B1 X B0 X G1 X X

&FE09 X X X G0 X R1 X R0

Figure 14.7a – 2 colour mode palette

Figure 14.7b - 4 colour mode palette

}Colours 0,2,8,10

}Colours 4,6,12,14

}Colours 5,7,13,15

}Colours 1,3,9,11

Figure 14.7c - 16 colour mode palette

D7 D6 D5 D4 D3 D2 D1 D0
&FE08 B3 B2 B1 B0 G3 G2 X X

&FE09 X X G1 G0 R3 R2 R1 R0

D7 D6 D5 D4 D3 D2 D1 D0

&FE08 B10 B8 B2 B0 G10 G8 X X

&FE09 X X G2 G0 R10 R8 R2 R0

D7 D6 D5 D4 D3 D2 D1 D0

&FE08 B14 B12 B6 B4 G14 G12 X X

&FE09 X X G6 G4 R14 R12 R6 R4

D7 D6 D5 D4 D3 D2 D1 D0

&FE08 B15 B13 B7 B5 G15 G13 X X

&FE09 X X G7 G5 R15 R13 R7 R5

D7 D6 D5 D4 D3 D2 D1 D0

&FE08 B11 B9 B3 B1 G11 G9 X X

&FE09 X X G3 G1 R11 R9 R3 R1

217



14.2 The keyboard

The keyboard is mapped to ROM numbers 8 or 9, and may be 
read directly by accessing memory locations within either ROM 
corresponding to particular keys. This is useful as a technique for 
speeding up the machine, as it allows normal keyboard scanning 
by the OS to be disabled using OSBYTE &B2 (178).

See section 15.4 on how to select paged ROMs.

The following table lists the relevant memory locations and the 
bits within each location which represent the keys.

Column Address Bit 0 Bit 1 Bit 2 Bit 3
0 &BFFE Right Copy NC Space
1 &BFFD Left Down Return Delete
2 &BFFB - Up : NC
3 &BFF7 0 P ; /
4 &BFEF 9 O L .
5 &BFDF 8 I K ,
6 &BFBF 7 U J M
7 &BF7F 6 Y H N
8 &BEFF 5 T G B
9 &BDFF 4 R F V
A &BBFF 3 E D C
B &B7FF 2 W S X
C &AFFF 1 Q A Z
D &9FFF Escape Caps Lk Ctrl Shift

NC=No Connection

218



15 Outside the Electron
15.1 Introduction to expanding the Electron

This chapter is intended for those who want to add their own bits 
of hardware onto the Electron. There are several reasons for doing
this. The most common one is to allow the Electron to access 
facilities provided for the BBC Micro. All of the common 
interfaces such as discs, printer port, analogue to digital converter,
speech chip, paged ROMs etc. can easily be added onto the 
Electron. If care is taken with the design, these products will 
operate in an almost identical manner to those on the BBC Micro. 
Several interface add-ons can already be purchased from Acorn.

If the only point in adding hardware onto the Electron were to 
make it totally BBC Micro compatible, there would have been 
little point in buying the Electron in the first place. In fact, the 
Electron has more potential for expansion than a BBC Micro. 
Why? Because all necessary system buses come out on the 
expansion connector. This ability to access all of the buses means 
that the devices which can be added onto the Electron are limited 
only by the imagination (and maximum allowable loading of the 
buses).

Appendix G provides a summary of the expansion devices 
available for the Electron, grouped by generic type.

15.2 The Expansion Connector

All required signals from the Electron are present on this 
connector. In order to make use of them, a basic knowledge of 
interfacing to the 6502 will be required. Such a knowledge can be 
acquired by reading some of the popular electronics magazines 
and specialised books on interfacing. The aim in this book is to 
explain all of the details to those who have already read enough 
about microcomputer hardware in general, and now want to know 
about the Electron in particular.

219



Bottom Top

18V AC 2 1 18V AC
AC RETURN 4 3 AC RETURN

-5V 6 5 -5V
0V 8 7 0V

+5V 10 9 +5V
16MHz 12 11 SOUND O/P

PHI OUT 14 13 ÷ 13 IN
NMI 16 15 RST

R/W 18 17 IRQ
D6 20 19 D7
D4 22 21 D5
D2 24 23 D3

DO 26 25 D1
NC 28 27 RDY

SLOT 30 29 SLOT
A14 32 31 A15
A12 34 33 A13
A10 36 35 A11
A0 38 37 A9
A2 40 39 A1
A4 42 41 A3
A6 44 43 A5
A8 46 45 A7
0V 48 47 0V

+5V 50 49 +5V

Figure 15.1 - Expansion connector layout

18V AC (pins 1,2)

These lines are connected directly to the output
from the Electron mains power adaptor.

AC return (pins 3,4)

Up to 6 watts of power may be drawn from this 
source (provided that none is drawn from the +5V 
line). Bear in mind that the AC will have to be 
rectified and smoothed before it can be used to 
drive any computer chips.

220



-5V pins (5,6)

This is a -5 volt supply from the Electron, from 
which a maximum of 20mA can be drawn. It would
often be used to power RS423 expansions.

0V (pins 7, 8, 47, 48)

This is the signal and power ground on the 
Electron. All external circuits must have their 0 volt
lines connected to this point.

+5V (pins 9,10,49,50)

This is a +5 volt power supply from the Electron. A
maximum of 500mA can be drawn from it, but note
that no power can be taken from the 18V AC line if
this is done.

Sound o/p (pin 11)

Sound output from the Electron ULA. This signal is
3 volts peak to peak fed via a 1K series resistor.

16MHz (pin 12)

This is the master 16MHz clock from the Electron 
main oscillator. It can be used for clock generation 
on expansion modules, but see section 15.3.3 for a 
description of clock synchronisation.

16/13 MHz (pin 13)

This is 16MHz divided by 13. It is normally used 
for baud rate generation, and will give 
approximately 1200Hz if divided by 1024.

221



PHI out (pin 14)

This is a nominally 2 MHz clock as connected to 
the 6502A. The low time is some 250ns. The high 
time varies depending upon the operation being 
performed. It is 250ns when reading ROMs, 750ns 
or 1250ns when accessing the 1MHz bus 
(depending upon the relative phase of the 2MHz 
clock) and can be up to 40µs due to screen access 
in modes 0 to 3. The clock timing is covered in 
greater depth in section 15.3. Note that the NMI 
must be synchronised with PHI out. This is because
the NMIs give the 6502 precedence over the ULA 
for the RAM. Incorrect data may be read from the 
RAM if the NMI is not latched on a negative going
edge of PHI out.

RST (pin 15)

Active low reset signal. This is an OUTPUT ONLY
for resetting expansion modules on power up, or 
when the BREAK key is pressed.

NMI (pin 16)

Non-maskable Interrupt (negative edge triggered). 
This open collector (wire-OR) line is the system 
NMI and can be asserted by an expansion module 
pulling it low. There is a 3K3 pull-up resistor 
inside the ULA. You must be very careful to avoid 
holding this line low after the interrupt has been 
serviced, because it will mask other interrupts 
whilst asserted. For more details about NMIs, you 
should refer to chapter 7.

IRQ (pin 17)

This is the active-low IRQ (interrupt request). It is 
an open collector (wire-OR) line, so it can be 
asserted by any expansion module pulling it low. 
There is a 3K3 pull-up resistor within the ULA. 
Note that interrupts MUST NOT occur until the

222



software in the machine has initialised to a state at 
which it can deal with them. Power up and reset 
conditions should therefore disable all IRQs, It is 
important to ensure that not too much of the 
interrupt service time is used up, otherwise some 
operations like the system clock may cease to 
function correctly.

R/W (pin 18)

This is the system read/write line from the 6502. It 
tells peripheral devices whether the 6502 is sending
data to them, or is expecting data from them.

D0-D7 (pins 19 to 26)

This is the 8 bit wide bi-directional data bus. All 
data is transferred over this bus, the direction of 
data transfer being determined by the state of the 
read/write line.

RDY (pin 27)

This is the active low ready line from the 6502. It 
can be asserted by an expansion to slow down the 
processor when it is reading slow memory. This 
line is only operational on reads.

(pin 28)

No connection.

(pins 29,30)

Polarising key connector to ensure that boards 
cannot be plugged in the wrong way round.

A0-A15 (pins 31 to 46)

This is the system address bus. There are 16 lines 
in this bus which allow 216 (65536) different 
locations to be addressed.

223



15.3 Designing Circuits

It might at first appear to be very easy to add anything onto the 
Electron Expansion Bus. There is however one fairly major 
problem. The 6502A often changes speed to cope with the 
accessing of different devices. These fall into two main categories.

15.3.1 Accessing the ROM

When the ROM is being accessed, the 6502 runs at the maximum 
possible speed of 2MHz; PHI OUT is low for 250ns and then high
for 250ns.

15.3.2 Accessing the RAM and peripherals

When RAM or peripheral devices are accessed, the timing will be 
highly dependent on the display mode. This is because twice as 
much data has to be removed from the RAM to produce the 
display in modes 0-3 as in modes 4-6.

Modes 4-6

The processor will normally be running at 2MHz when it first 
needs to access RAM or peripherals like the 6522. It has to slow 
down to 1MHz first. This slow down either consists of a PHI OUT
low time of 250ns followed by a high time of 750ns, or a low of 
250ns followed by a high of 1250ns. The particular type of 
transition which occurs will depend upon the relative phases of 
the 2MHz and 1MHz clocks, This is illustrated in figure 15.1. 
Both the 1MHz and 2MHz clocks are internal to the ULA, and are
not available outside. They must be generated separately (see later
in this section).

Modes 0-3

In these modes, the ULA must have access to the RAM for all the 
displayed part of a line (40us out of 64µs in 256 lines out of 312). 
This doesn’t matter provided that the CPU only wants to access 
peripherals and the ROM, which it is free to do in the normal way.
However, if it tries to access RAM the ULA will hold it’s clock 
high for up to 40µs. The overall effect is that the

224



processor can be effectively disabled for up to 40s. The only way
for the processor to obtain priority over the ULA is by an NMI 
being generated. This will automatically cause the ULA to release 
the 6502 (and the RAM), but inevitably creates snow on the 
screen.

15.3.3 Generating the 1MHz clock

Since the 1MHz and 2MHz signals only exist inside the ULA, it is
necessary to regenerate them outside. Two clocks are provided on 
the expansion connector. A 16MHz one and a 16/13MHz one for 
baud rate generation. The former of these can be used to generate 
a 1MHz clock, This has to be synchronised to the processor clock 
if it is to be used with peripherals like the 6522 VIA. A simple 
division by 16 will not produce a suitable clock signal. The circuit
in figure 15.2a will produce a suitable in phase signal. The timing 
for this is shown in figure 15.2b.

15.3.4 Long delays for interrupts

It is important to bear in mind how long the delays might be 
before a particular requested interrupt is serviced, This is 
determined by the longest period for which interrupts can be 
disabled.

In modes 0-3, this delay can be up to 100ns in the very worst case.
Such a long delay can cause problems with unbuffered circuits 
like the cassette serialiser/deserialiser. The only solution is to 
ensure that such devices are only used from modes 4-6 (even if it 
means forcing a particular mode before executing a routine).

The interrupt delay is only 4ms at worst in modes 4-6, so most 
actions which require a fast response can be executed in one of 
these modes. Note that NMIs can always be used as a last resort 
where necessary, but are normally reserved for disc and Econet 
accesses.

225



Figure 15.2a - A 16MHz to 1MHz synchronisation circuit

Figure 15.2b - the timing applied to figure 15.2a

226



15.4 Sideways ROMs

Sideways ROMs can be selected in place of BASIC. Languages 
like LISP, disc filing systems, utilities etc can all be plugged in. 
These sideways ROMs are covered from a software point of view 
in chapters 8 to 11.

From a hardware point of view, up to 16 sideways ROMs are
allowed. However, four of these are already allocated on the
standard Electron. BASIC occupies two slots (ROMs 10 and 11 it 
appears the same in each). The keyboard occupies slots 8 and
9. The remaining 12 ROM slots are all available for expansion.

The ROM paging register is located in the ULA, and can be 
accessed by writing to location &FE05 (see section 14).

There are two distinct ways of accessing ROMs via this register. 
The first method accesses ROMs 12 to 15. This operation is very 
simply performed by writing the required ROM number into the 
low nibble of &FE05. Hence:

D7 D6 D5 D4 D3 D2 D1 D0
Write at &FE05 0 0 0 0 1 1 R1 R0

where R1 and R0 control which ROM is selected.

Suitable hardware must be included in the expansion unit to cope 
with this method of selecting ROMs. Selection of one of the 
ROMs 12 to 15 can be carried out by the following code. Be 
careful to ensure that the write to &F4 always occurs before the 
write to &FE05, just in case an interrupt occurs in between.

LDA #ROMnumber
STA &F4
STA &FE05

The second method for accessing ROMs will allow those 
numbered 0 to 7 to be selected. It is not possible to select these 
ROMs directly, because BASIC will still be paged in. The only 
way of paging BASIC and the keyboard out is to select one of the 
ROMs 12 to 15 first. This access causes the internal ROMs to 
page out. The correct ROM selection code can then be sent to the 
lower three bits of &FE05.

227



D7 D6 D5 D4 D3 D2 D1 D0
Write at &FE05 0 0 0 0 0 R2 R1 R0

where R2, R1 and R0 select the required ROM.

As with the other ROM slots, new hardware must be provided at 
address &FE05 to select the relevant ROMs.

Code to select a ROM numbered 0 to 7 could be:

LDA #&0C \to deselect BASIC
STA &F4 \one of ROM 12 to 15
STA &FE05 \must be selected
LDA #ROMnumber\Now select desired
STA &F4 \Low order ROM
STA &FE05

It is essential that the A register is stored to &F4 before &FE05 in 
case an interrupt occurs in between.

When the machine is powered up, the sideways ROMs are polled 
in order from 15 down too. The first one which is found to be a 
language ROM (see the Paged ROM firmware section for 
specification) will start executing. Since BASIC is in slot 10/11, a 
ROM which is required to power-up before BASIC must be in one
of the sockets 12 to 15.

The ROMs 12 to 15 are allocated to high priority NMI devices or 
languages which are expected to power up before BASIC. The 
reason for putting high priority NMI servicing ROMs in these 
sockets is that a smaller delay is required to page them in than for 
ROMs 0 to 7.

The lower priority ROMs are all selected by performing two 
writes to the paging register. The first is to deselect BASIC, the 
second is to select the required ROM.

228



The Acorn Plus 1 expansion unit forces the priority of ROMs to 
be (from highest down):

ROMs 15 to 12
ROMs 7 to 0
BASIC

This implies that any language which is fitted to the Plus 1 will 
automatically power up ahead of BASIC. ROM allocation has 
been defined by Acorn as follows:

ROM USE

0,1 Second external socket on expansion module (SK2)
2,3 First external socket on the expansion module (SK1)
4 Disc
5,6 USER applications
7 Modem interface ROM
8,9 Keyboard
10,11 BASIC
12 Expansion module operating system
13 High priority slot in expansion module
14 ECONET
15 Reserved

15.5 The One Megahertz Bus

Most 6502 compatible peripherals will generally be connected 
onto the 1MHz regenerated bus. This allows relatively slow 
devices to be accessed. On the BBC Micro, page &FC has been 
allocated especially for 1MHz devices, This page is called FRED. 
Generally, devices resident within FRED have relatively small 
memory requirements (mainly control and data registers).

Since Electron expansion should be compatible with BBC Micro 
expansion (so they can use the same expansion peripherals), the 
allocation of devices in FRED has been very well defined. The 
following list includes items which would normally be resident in 
Sheila on the BBC Micro, but which have to go on the 1MHz bus 
on an Electron.

229



&FC00 to &FC0F Test hardware
&FC10 to &FC13 TELETEXT
&FC14 to &FC1F PRESTEL
&FC20 to &FC27 IEEE 488 interface
&FC28 to &FC2F ECONET
&FC30 to &FC3F CAMBRIDGE RING interface
&FC40 to &FC47 WINCHESTER DISC interface
&FC48 to &FC5F Reserved for Acorn expansions
&FC60 to &FC6F 6850 ACIA
&FC70 A to D converter
&FC71 CENTRONICS parallel interface
&FC72 Status register

BSY ADC FB2 FB1 X X X X
Where BSY = printer busy

ADC = A to D conversion end
FB1 = Fire button 1
FB2 = Fire button 2
X= undefined

&FC73 to &FC7F Reserved for Acorn expansions
&FC80 to &FC8F Test hardware
&FC90 to &FC9F Sound and speech
&FCA0 to &FCAF Reserved for Acorn expansions
&FCB0 to &FCBF 6522 VIA/Real time clock
&FCC0 to &FCCF Floppy disc controller
&FCD0 to &FCDF USER applications
&FCE0 to &FCEF The TUBE
&FCF0 to &FCFE USER applications
&FCFF Paging register for JIM

Note that page &FD in the Electron address space is used in 
conjunction with the paging register in FRED to provide an extra 
64K of memory. This memory is accessed one page at a time. The 
particular page being accessed is selected by the value in FRED’s 
paging register, and is referred to as the extended page number. 
Accessing memory via the 1MHz bus in this way will generally be
about 20 times slower than accessing memory directly.

230



15.6 The Analogue to Digital converter

The A to D converter is present at location &FC70 with some 
status bits in &FC72.

To obtain a value from the converter, it is first necessary to poke a 
number representing a channel number into &FC70, according to 
the following table:

Channel Value
1 4
2 5
3 6
4 7

The result will then appear in &FC70 when bit 6 of &FC72 goes 
low.

&FC72 also contains the status of the two fire buttons in bits 4 
and 5.

15.7 Disabling the Plus 1

To completely disable the Plus 1, the following calls are required:

*FX163,128,1
?&212=&D6 
?&213=&F1
?&2AC=0

The first call disables ADC conversion. The second and third calls
redirect FILEV to its default location and the fourth call disables 
the Expansion ROM by clearing the associated byte in the ROM 
table.

231



Appendix A - VDU Code Summary

This Appendix describes the functions performed by the whole of 
the character set when printed using VDU or PRINT CHR$. Note 
that several ones are labelled expansion. This means that they will
only be effective if the associated expansion modules are 
connected.

Dec hex CTRL + bytes function
0 0 @ 0 Does nothing
1 1 A 1 Send character to printer (expansion)
2 2 B 0 Enable printer (expansion)
3 3 C 0 Disable printer (expansion)
4 4 D 0 Write text at text cursor
5 5 E 0 Write text at graphics cursor
6 6 F 0 Enable VDU drivers
7 7 G 0 Make a short bleep (BEL)
8 8 H 0 Move cursor back one character
9 9 1 0 Move cursor forward one character
10 A J 0 Move cursor down one line
11 B K 0 Move cursor up one line
12 C L 0 Clear text area
13 D M 0 Carriage return
14 E N 0 Paged mode on
15 F O 0 Paged mode off
16 10 P 0 Clear graphics area
17 11 Q 1 Define text colour
18 12 R 2 Define graphics colour
19 13 S 5 Define logical colour
20 14 T 0 Restore default logical colours
21 15 U 0 Disable VDU drivers/delete current line
22 16 V 1 Select screen MODE
23 17 W 9 Re-program display character
24 18 X 8 Define graphics window
25 19 Y 5 PLOT K,X,Y
26 1A Z 0 Restore default windows
27 1B [ 0 Reserved
28 1C \ 4 Define text window

232



29 1D ] 4 Define graphics origin
30 1E ^ 0 Home text cursor to top left of window
31 1F _ 2 Move text cursor to X, Y
32-126 Complete set of ASCII characters
127 7F DEL 0 Backspace and delete
128-223 Normally undefined (define using *FX20)
224-255 User defined characters

233



Appendix B PLOT numbers

0 Move relative to last point
1 Draw relative to last point in current foreground colour
2 Draw relative to last point in logical inverse colour
3 Draw relative to last point in current background colour
4 Move absolute
5 Draw absolute in current foreground colour
6 Draw absolute in logical inverse colour
7 Draw absolute in current background colour

Higher PLOT numbers have other effects which are related to the 
effects given by the values above.

8-15 Last point in line omitted when ‘inverted’ plotting used

16-23 Using a dotted line

24-31 Dotted line, omitting last point

32-63 Reserved for Graphics Extension ROM

64-71 Single point plotting

72-79 Horizontal line filling

80-87 Plot and fill triangle

88-95 Horizontal line blanking (right only)

96-255 Reserved for future expansions

234



Horizontal line filling

These PLOT numbers start from the specified X,Y co-ordinates. 
The graphics cursor is then moved left until the first non-
background pixel is encountered. The graphics cursor is then 
moved right until the first non-background coloured pixel is 
encountered on the right hand side. If the PLOT number is 73 or 
77 then a line will be drawn between these two points in the 
current foreground colour. If the PLOT number is 72 or 76 then no
line is drawn but the cursor movements are made (these may be 
read using OSWORD call with A=&D/13, see chapter 4).

Horizontal line blanking right

These PLOT numbers can be used to undraw an object on the 
screen. They have an the opposite effect to those of the horizontal 
line filling functions except that the graphics cursor is moved right
only. PLOT numbers 91 and 95 will cause a line to be drawn from
the specified co-ordinates to the nearest background coloured 
pixel to the right in the background colour. PLOT numbers 89 and
93 move the graphics cursor but do not cause the line to be 
blanked.

235



Appendix C — Screen mode layouts 
MODE 0 Screen layout
Graphics 640x256
Colours 2
Text 80x32

&3000 &3008 &3278
&3001 &3009 &3279
&3002 &300A &327A
&3003 &300B &327B
&3004 &300C &327C
&3005 &300D &327D
&3006 &300E &327E
&3007 &300F &327F
&3280
&3281

&7B06
&7B07
&7D80 &7D88 &7FF8
&7D81 &7D89 &7FF9
&7D82 &7D8A &7FFA
&7D83 &7D8B &7FFB
&7D84 &7D8C &7FFC
&7D85 &7D8D &7FFD
&7D86 &7D8E &7FFE
&7D87 &7D8F &7FFF

8 PIXELS
1BIT/PIXEL

Note that the screen layout is only as shown after a CLS and will 
change as the screen is scrolled.

7 6 5 4 3 2 1 0

236



MODE 1 Screen layout
Graphics 320x256
Colours 4
Text 40x32

&3000 &3008 &3278
&3001 &3009 &3279
&3002 &300A &327A
&3003 &300B &327B
&3004 &300C &327C
&3005 &300D &327D
&3006 &300E &327E
&3007 &300F &327F
&3280
&3281

&7B06
&7B07
&7D80 &7D88 &7FF8
&7D81 &7D89 &7FF9
&7D82 &7D8A &7FFA
&7D83 &7D8B &7FFB
&7D84 &7D8C &7FFC
&7D85 &7D8D &7FFD
&7D86 &7D8E &7FFE
&7D87 &7D8F &7FFF

4 PIXELS
2BITS/PIXEL

Note that the screen layout is only as shown after a CLS and will 
change as the screen is scrolled.

7 6 5 4 3 2 1 0

237



MODE 2 Screen layout
Graphics 160x256
Colours 16
Text 20x32

&3000 &3008 &3278
&3001 &3009 &3279
&3002 &300A &327A
&3003 &300B &327B
&3004 &300C &327C
&3005 &300D &327D
&3006 &300E &327E
&3007 &300F &327F
&3280
&3281

&7B06
&7B07
&7D80 &7D88 &7FF8
&7D81 &7D89 &7FF9
&7D82 &7D8A &7FFA
&7D83 &7D8B &7FFB
&7D84 &7D8C &7FFC
&7D85 &7D8D &7FFD
&7D86 &7D8E &7FFE
&7D87 &7D8F &7FFF

2 PIXELS
4BITS/PIXEL

Note that the screen layout is only as shown after a CLS and will 
change as the screen is scrolled.

7 6 5 4 3 2 1 0

238



MODE 3 Screen layout
Graphics Not available
Colours 2
Text 80x25

&4000 &4008 &4278
&4001 &4009 &4279
&4002 &400A &427A
&4003 &400B &427B
&4004 &400C &427C
&4005 &400D &427D
&4006 &400E &427E
&4007 &400F &427F
BLANK BLANK BLANK
BLANK BLANK BLANK
&4280
&4281

&7980
BLANK
BLANK
&7C00 &7C08 &7E38
&7C01 &7C09 &7E39
&7C02 &7C0A &7E3A
&7C03 &7C0B &7E3B
&7C04 &7C0C &7E3C
&7C05 &7C0D &7E3D
&7C06 &7C0E &7E3E
&7C07 &7C0F &7E3F
BLANK BLANK BLANK
BLANK BLANK BLANK

8 PIXELS
1BIT/PIXEL

Note that the screen layout is only as shown after a CLS and will 
change as the screen is scrolled.

7 6 5 4 3 2 1 0

239



MODE 4 Screen layout
Graphics 320x256
Colours 2
Text 40x32

&5800 &5808 &5938
&5801 &5809 &5939
&5802 &580A &593A
&5803 &580B &593B
&5804 &580C &593C
&5805 &580D &593D
&5806 &580E &593E
&5807 &580F &593F
&5940
&5941

&7D86
&7D87
&7EC0 &7EC8 &7FF8
&7EC1 &7EC9 &7FF9
&7EC2 &7ECA &7FFA
&7EC3 &7ECB &7FFB
&7EC4 &7ECC &7FFC
&7EC5 &7ECD &7FFD
&7EC6 &7ECE &7FFE
&7EC7 &7ECF &7FFF

8 PIXELS
2BITS/PIXEL

Note that the screen layout is only as shown after a CLS and will 
change as the screen is scrolled.

7 6 5 4 3 2 1 0

240



MODE 5 Screen layout
Graphics 160x256
Colours 4
Text 20x32

&5800 &5808 &5938
&5801 &5809 &5939
&5802 &580A &593A
&5803 &580B &593B
&5804 &580C &593C
&5805 &580D &593D
&5806 &580E &593E
&5807 &580F &593F
&5940
&5941

&7D86
&7D87
&7EC0 &7EC8 &7FF8
&7EC1 &7EC9 &7FF9
&7EC2 &7ECA &7FFA
&7EC3 &7ECB &7FFB
&7EC4 &7ECC &7FFC
&7EC5 &7ECD &7FFD
&7EC6 &7ECE &7FFE
&7EC7 &7ECF &7FFF

4 PIXELS
2BITS/PIXEL

Note that the screen layout is only a s shown after a CLS and will 
change as the screen is scrolled.

7 6 5 4 3 2 1 0

241



MODE 6 Screen layout
Graphics Not available
Colours 2
Text 40x25

&6000 &6008 &6138
&6001 &6009 &6139
&6002 &600A &613A
&6003 &600B &613B
&6004 &600C &613C
&6005 &600D &613D
&6006 &600E &613E
&6007 &600F &613F
BLANK BLANK BLANK
BLANK BLANK BLANK
&6140

&7CC7
BLANK
BLANK
&7F00 &7F08 &7F38
&7F01 &7F09 &7F39
&7F02 &7F0A &7F3A
&7F03 &7F0B &7F3B
&7F04 &7F0C &7F3C
&7F05 &7F0D &7F3D
&7F06 &7F0E &7F3E
&7F07 &7F0F &7F3F
BLANK BLANK BLANK
BLANK BLANK BLANK

8 PIXELS
1BIT/PIXEL

Note that the screen layout is only as shown after a CLS and will 
change as the screen is scrolled.

7 6 5 4 3 2 1 0

242



Appendix D - Operating System Calls
and Vectors

Routine Vector Function
Addr Name Addr Name

USERV 200 The user vector
BRKV 202 The BRK vector
IRO1V 204 Primary interrupt 

vector
IRQ2V 206 Unrecognised IRQ 

vector
OSCLI FFF7 CLIV 208 Command line 

interpreter
OSBYTE FFF4 BYTEV 20A *FX/OSBYTE call
OSWORD FFF1 WORDV 20C OSWORD call
OSWRCH FFEE WRCHV 20E Write character
OSNEWL FFE7 - - Write LF, CR to 

screen
OSASCI FFE3 - - Write character,
OSRDCH FFE0 &0D=LF, CR
OSFILE FFDD RDCHV 210 Read character
OSARGS FFDA FILEV 212 Load/save file
OSBGET FFD7 ARGSV 214 Load/save file data
OSBPUT FFD4 BGETV 216 Get byte from file
OSGBPB FFD1 BPUTV 218 Put byte in file
OSFIND FFCE GBPBV 21A Multiple 

BPUT/BGET
EVNTV 220 Event vector
UPTV 222 User print routine
NETV 224 Econet vector
VDUV 226 Unrecognised VDU 

commands
KEYV 228 Keyboard vector
INSV 22A Insert into buffer 

vector
REMV 22C Remove from buffer 

vector
CNPV 22E Count/purge buffer 

vector
243



IND1V 230 Spare vector
IND2V 232
IND3V 234

NVRDCH FFCB Non-vectored read 
char.

NVWRCH FFC8 Non-vectored write 
char.

GSREAD FFC5 Read char. from 
string

GSINIT FFC2 String input initialize
OSEVEN FFBF Generate an event
OSRDRM FFB9 Read byte in paged 

ROM

244



Appendix E - Plus 1 ROM slot

Figure E.1 - The Plus 1 ROM slot connector

The cartridge interface is an earlier and simpler version of that
later used on the BBC Master. Signals which differ between the
two machines are shown with an asterisk in the diagram. The
description below explains the function of all the signals and the
differences between machines.

Note that most of the standard BBC Micro 1MHz bus signals are
available from this slot. However, some of the uses are marginally
different to the BBC 1MHz bus. A full specification for producing
suitable add-ons is available from Acorn Computers Limited.

SIDE 'A'

1 +5V - Power supply
This is the system logic supply rail. No more than 150mA should 
be drawn by a cartridge in a fully configured Master 128 
computer, ie with internal co-processor fitted. No more than 
50mA should be drawn by a cartridge fitted to the Electron.

2 n0E - Output Enable : Input with CMOS levels
This is an active low signal during the PH12 period of the system 
clock. It is intended to switch on the output buffers of memory 
devices in cartridges. It is not guaranteed to be high at other times.

245



3 nRST - System Reset : Input with CMOS levels
This signal is active low during system reset. It is not 
synchronised to any internal clock.

4 CSRW - Chip Select / Read/Write : Input with CMOS levels

On the Electron:
This pin is the CPU read/write line.

On the Master 128:
This pin changes function according to the memory region that the
CPU is addressing. During accesses to devices in the region 
&FC00 to &FEFF it is equivalent to the CPU read/write line 
during nPH12. For all other accesses it is an active high chip 
select for memory devices. It is not guaranteed to be low at other 
times. This approach is necessary for compatibility with the 
Electron.

5 A8 - Address line 8 : Input with TTL levels

6 A13 - Address line 13 : Input with TTL levels

7 A12 - Address line 12 : Input with TTL levels

8 PH12 - CPU clock : Input with CMOS levels
This input is the host computer PH12out.

9 -5V - The negative supply voltage
No more than 20mA per cartridge should be drawn from this 
supply.

10 CSYNC/MADET

On the Electron:
This is a "no connect" on the Electron.

On the Master 128:
This pin has two functions dependant on the position of a link in 
the host computer:
E/nB: this is the default function. It allows hardware in cartridges 
to "know" which into which type of computer it is plugged. It is a 

246



direct connection to +0V in the Master 128 and a floating node in 
the Electron.
CSYNC - Composite Synchronisation: Input with TTL levels
The system composite vertical and horizontal synchronisation is 
made available. It is intended to be used in genlock applications.
11 RNW/READY
This has different functions on the Electron and the Master 128.

On the Electron:
READY - CPU wait state control : Open collector output
When driven low, this line will cause the CPU to extend its cycle 
until READY is released. This will only work on Electrons with 
CMOS CPUs. With NMOS CPUs it will only work on read 
cycles.

On the Master 128:
R/W - Data Direction Control : Input with TTL levels
This is the system data buffer direction control. If low, cartridges 
are being written to; if high and selected they may drive the bus 
during PH12.

12 nNMI - Non maskable interrupt : Open collector output
This signal is connected to the system NMI line. It is active low.

13 nIRQ - Interrupt request : Open collector output
This signal is connected to the system IRQ line. It is active low.

14 nINFC - Internal Page &FC : Memory active decode 
input : TTL active low
When bit IFJ is set in the Master 128 ACCCON register, all 
accesses to the address range &FC00 to &FCFF will cause this 
select to become active. The ACCCON access is not applicable to 
the Electron.

15 nINFD - Internal page &FD : Memory active decode 
input : TTL active low
When bit IFJ is set in the Master 128 ACCCON register, all 
accesses to the address range &FD00 to &FDFF will cause this 
select to become active. The ACCCON access is not applicable to 
the Electron.

16 ROMQA - Memory paging select : Input with TTL levels

247



This is the least significant bit of the ROM select latch located at 
&FE30 in the Master 128 and at &FE05 in the Electron.

17 Clock
This connection has different uses in the Electron and Master 128:

In the Electron:
Clock is a 16MHz input with TTL levels.

In the Master 128:
Clock is a strap selectable function:
a) 16MHz input with TTL levels.
b) 8 MHz input with TTL levels.
The functions are selected by links on the host computer. The user
should ensure that the links are correct for a given application and 
that proper termination is provided.

18 nROMSTB/nCRTCRST
This has different functions on the Electron and Master 128:

On the Electron:
nROMSTB is an active low input using TTL levels which selects 
the location &FC73. This is intended to be used as a paging 
register.

On the Master 128:
nCRTCRST is an active low output signal meeting TTL levels of 
the system CRTC reset input. It is provided for use in genlock 
applications.

19 ADOUT - System audio output
This is the filtered output of the sum of all audio inputs to the host
computer. No significant load should be taken from this node.

20 AGND - Audio Ground
This is the zero volt return for ADOUT. It should be used instead 
of the system zero volt connection to reduce audio noise.

21 ADIN - Cartridge audio output

In the Electron:
This is merely a connection from one cartridge to the other.

248



In the Master 128:
This is an output to the host computer audio circuitry. It 'sees' an 
impedance of at least 1.0kOhms. Two
cartridges with audio output should not be inserted into the host 
computer at the same time.

22 0V - Zero volts
This is the system earth return for digital signals.

249



SIDE 'B'

1 +5V - Power supply
This is the system logic supply rail. No more than 150mA should 
be drawn by a cartridge in a fully configured Master 128 
computer, ie with internal Second Processor fitted. No more than 
10mA should be drawn by a cartridge fitted to the Electron.

2 A10 - Address line 10 : Input with TTL levels

3 D3 - Data bus line 3 : Input/Output with TTL levels

4 A11 - Address line 11 : Input with TTL levels

5 A9 - Address line 9 : Input with TTL levels

6 D7 - Most significant data bus line : Input/Output with TTL 
levels

7 D6 - Data bus line 6 : Input/Output with TTL levels

8 D5 - Data bus line 5 : Input/Output with TTL levels

9 D4 - Data bus line 4 : Input/Output with TTL levels

10 nOE2 - Output Enable : Input with TTL levels
This line provides an additional active low output enable for 
ROMs in the Electron. This corresponds to ROM position 13 and 
consequently responds quickly to service calls. it is low during the
active low portion of PH12. It is not guaranteed to be high at other
times.

LPSTB - Light pen strobe
A connection with a pull up to +5V is provided to the CRTC light 
pen strobe and system interrupt structure. When an on-board link 
is removed, this connection is merely a link from one cartridge to 
the other.

11 BA7 - Buffered address line 7 : Input with TTL levels
The buffered address lines hold addresses valid for 125ns after 
PH12 goes low. They are not buffered or held valid for an 
extended period in the Electron.

250



12 BA6 - Buffered address line 6 : Input with TTL levels

13 BA5 - Buffered address line 5 : Input with TTL levels

14 BA4 - Buffered address line 4 : Input with TTL levels

15 BA3 - Buffered address line 3 : Input with TTL levels

16 BA2 - Buffered address line 2 : Input with TTL levels

17 BA1 - Buffered address line 1 : Input with TTL levels

18 BA0 - Buffered address line 0 : Input with TTL levels

19 D0 - Data bus line 0 : Input/Output with TTL levels

20 D2 - Data bus line 2 : Input/Output with TTL levels

21 D1 - Data bus line 1 : Input/Output with TTL levels

22 0V - Zero volts
This is the earth return for digital signals.

Where two or more cartridges are fitted, any host computer links 
affect ALL cartridges.

251



Appendix F – Complete circuit diagram

252



253



Appendix G – Hardware expansions

It is beyond the scope of this manual to provide technical details 
on all of the available add-on hardware for the Electron, except 
for certain aspects of the official Plus 1 and Plus 3 units. To obtain
this information, reference must be made to the relevant manuals 
supplied with the hardware. 

The following tables provide a summary of the main hardware 
expansions available for the Electron.

General interface units

Manufacturer Name Facilities Type
Acorn Plus 1 2x cartridge 

slots
Printer port
Joystick port

Module

Andyk RS423 RS423 Cartridge
Bud Commander 3 Joystick port Module
First Byte Printer 

interface
Printer port Module

First Byte Joystick 
Interface

Joystick port Module

Jafa RS423 RS423 Cartridge
Lindy Expansion unit 2x cartridge 

slots
Printer port

Module

Mushroom Printer 
interface and 
user port

User port
Printer port

Module

Pace Comms unit RS423
Serial printer 
port

Cartridge

Power Joystick 
interface

Joystick port Module

254



Manufacturer Name Facilities Type
PRES AP1 2x cartridge 

slots
Printer port
Joystick port

Module

PRES 1Mhz bus 1Mhz bus Cartridge
PRES AP5 Tube, 1Mhz 

bus, User 
Port

Cartridge

PRES AP6 6x ROM 
slots

Internal 
upgrade to 
Plus 1/AP1

PRES User Port User port Cartridge
Project 
Expansions

User Port User port Cartridge

Ram 
electronics

Joystick 
interface

Joystick port Module

Slogger Plus 2 3x ROM 
sockets and 
2x cartridge 
slots

Module

Slogger Rombox 8x ROM 
sockets

Module

Slogger Rombox+ 4x ROM 
sockets, 2x 
cartridge 
slots

Module

Slogger Joystick 
interface

Joystick port Cartridge

255



Disc interfaces

Manufacturer Name Facilities Type
Acorn Plus 3 ADFS 1D00 Module
Cumana Disc interface CDFS E00 Cartridge
John Kortink GOMMC MMC 

interface
Module

PRES AP3 ADFS 1D00 Cartridge
PRES AP4 DFS E00 Cartridge
Slogger Pegasus 400 DFS E00 Cartridge
Solidisk Disc Interface DFS E00

ADFS 1D00
Cartridge

RAM expansion units / Second Processors

Manufacturer Name Facilities Type
Jafa Shadow RAM 

board
32k shadow 
RAM /
Turbo mode

Internal

PMS E2P 6502 second 
processor inc 
64k RAM

Cartridge

PRES Advanced 
Battery 
Backed RAM

32k Cartridge

PRES Advanced s/w 
RAM

16k SWR Cartridge

PRES Advanced 
Quarter Meg 
RAM

256k Cartridge

PRES AP7 32k Cartridge
Slogger 32k s/w RAM 32k SWR Cartridge
Slogger Master RAM 

board
32k shadow 
RAM / Turbo
mode

Internal

256



Sound expansions

Manufacturer Name Facilities Type
Complex 
sound systems

Sound 
expansion

4 channel 
sounds

Cartridge

Project 
expansions

Sound 
expansion

4 channel 
sounds

Cartridge

Database 
electronics

Sound Master Volume 
control

Connects 
internally

Millsgrade Voxbox Speech unit Module

Display/Other

Manufacturer Name Facilities Type
Jafa Mode 7 

adaptor
Provides 
Mode 7

Module

Nidd Valley Slomo Slows down 
machine

Module

257



Bibliography

Acorn User Magazine, published monthly, Addison Wesley

6502 Assembly Language Programming, L.A. Leventhal,
OSBORNE/Mc Graw Hill, Berkeley, California

Acorn Electron Expansion Application Note, Acorn Computers 
Limited, 1984

Acorn Electron User Guide, Acorn Computers Limited, 
Cambridge, 1983

Beebug Magazine, published every five weeks, BEEBUG, P0 Box
109, High Wycombe, Bucks.

Programming the 6502, Rodnay Zaks, Sybex, 1980

R6522 Versatile Interface Adapter Data Sheet, Rockwell 
International, 1981

TTL Data Book, Texas Instruments Inc., 1980

The BASIC ROM User Guide for the BBC Micro and Acorn 
Electron, Mark Plumbley, Adder Publishing/Acornsoft Limited, 
Cambridge, 1984

The Advanced User Guide for the BBC Microcomputer, Bray, 
Dickens and Holmes, Cambridge Micro Centre, 1983

Electron User, Database Publications

Acorn Electron World, Dave Edwards, (Website)

258



Glossary

Address Bus — a set of 16 connections, each one of which can be
set to logic 0 or logic 1. This allows the CPU to address &FFFF 
(65536) different memory locations.

Active low — signals which are active low are said to be valid 
when they are at logic level 0.

Analogue to digital converter (ADC) — this is a chip which can 
accept an analogue voltage at one of its inputs and provide a 
digital output of that voltage.

Asynchronous — two devices which are operating independently
of one another are said to be operating asynchronously.

Baud Rate — used to define the speed at which a serial data link 
transfers data. One baud is equal to 1 bit of data transferred per 
second. The standard cassette baud rate of 1200 baud is therefore 
equal to 1200 bits per second.

Bidirectional — a communication line is bidirectional if data can 
be sent and received over it. The data bus lines are bidirectional.

Bit of memory — this is the fundamental unit of a computer’s 
memory. It may only be in one of two possible states, usually 
represented by a 0 or 1.

Buffer — a software buffer is an area of memory set aside for 
data in the process of being transferred from one device or piece 
of software to another.

Byte of memory — 8 bits of memory. Data is normally 
transferred between devices one byte at a time over the data bus.

Chip — derived from the small piece of silicon wafer or chip 
which has all of the computer logic circuits etched into it. A chip 
is normally packaged in a black plastic case with small metal 
leads to connect it to the outside world.

259



Clock — it is necessary to provide some master timing reference 
to which all data transfers are tied. The clock provides this 
synchronisation. A 16MHz clock is applied to the ULA. From this,
the clock timing for the 6502 CPU is derived. See chapter 15 for a
discussion of the clock timing requirements.

CPU (Central processing unit) — the 6502A in the Electron, It 
is this chip which does all of the computing work associated with 
running programs.

Cycle — this is usually applied to the 6502 clock. A complete 
clock cycle is the period between a clock going high, low, then 
high again. See clock.

Data bus — a set of eight connections over which all data 
transactions between devices in the BBC microcomputer take 
place.

Field — a space allocated for some data in a register, or in a 
program listing, For example, in an Assembly language program, 
the first few spaces are allocated to the line number field, the next 
few spaces are allocated to the label field, and so on.

Handshaking — this type of communications protocol is used 
when data is being transferred between two asynchronous devices.
Two handshaking lines are normally required. One of these is a 
data ready signal from the originating device to the receiving 
device, When the receiving device has accepted the data, it sends 
a data taken signal back to the originating device, which then 
knows that it can send the second lot of data and so on. This type 
of handshaking is used with the RS423 serial interface option.

High — sometimes used to designate logic ‘1’

Interrupt — this signal is produced by peripheral devices and is 
always directed to the 6502A CPU. Upon receiving an interrupt, 
the 6502 will normally run a special interrupt routine program 
before continuing with the task in hand before it was interrupted.

260



Latch — a latch is used to retain information applied to it after 
the data has been removed, It is rather like a memory location 
except that the outputs from the bits within the latch are connected
to some hardware.

LED (Light emitting diode) — acts like a diode by only allowing
current to pass in one direction. Light is emitted whilst current is 
passed.

Low — sometimes used to designate logic ‘0’.

Machine code — the programs produced by the 6502 BASIC 
Assembler are machine code. A machine code program consists of
a series of bytes in memory which the 6502 can execute directly.

Mnemonic — the name given to the text string which defines a
particular 6502 operation in the BASIC assembler. LDA is a
mnemonic which means load accumulator.

Opcode — the name given to the binary code of a 6502 
instrucction, For example, &AD is the opcode which means load 
accumulator.

Open Collector — this is a characteristic of a transistor output 
line, It simply means that the collector pin of the transistor is not 
driving a resistor load, ie it is open.

Operand — a piece of data on which some operation is 
performed. Usually the operand will be a byte in the accumulator 
of the 6502, or a byte in some memory location.

Page — a page of memory in the 6502 memory map is & 100 
(256) bytes long. There are therefore 256 pages in the entire 
address space. 256 pages of 256 bytes each account for the 65536 
bytes of addressable memory.

Parallel — parallel data transfers occur when data is sent along 
two or more lines at once. The system data bus for example has 
eight lines operating in parallel.

261



Peripheral — any device connected to the 6502 central processor
unit, such as the Plus 1, Plus 3 interface etc., but not including the 
memory.

Poll — most of the hardware devices on the Electron expansion 
modules will generate interrupts to the 6502 CPU. If interrupts 
have been enabled, the CPU has to find out which device 
generated the interrupt. It does this by successively reading status 
bytes from each of the hardware devices which could have caused 
an interrupt. This successive reading of devices is called polling.

RAM (Random Access Memory) — the main memory in the 
Electron is RAM because it can be both written to and read from.

Refresh — all of the RAM in the Electron is dynamic memory.
This means that it has to be refreshed every few milliseconds so
that data is not lost. The refreshing function is performed by the
ULA as it accesses memory regularly for video output.

Register — the 6502 and the Electron ULA contain registers. 
These are effectively one byte memory locations which do not 
necessarily reside in the main memory map. All software on the 
6502 makes extensive use of the internal registers for 
programming. The bits in most peripheral registers define the 
operation of a particular piece of hardware, or tell the processor 
something about that peripheral’s state.

Rollover — this is a function provided on the keyboard to cope 
with fast typists. Two keys can be pressed at once. The previous 
key with a finger being removed, and the next key with the finger 
hitting the key. The software in the operating system ensures that 
rollover normally operates correctly.

ROM (Read Only Memory) — as the name implies, ROM can 
only be read from and cannot be modified by being written to. The
MOS and BASIC are contained in one large 32K byte ROM chip.

Serial — data transmitted along only one line is transmitted 
serially. Serial data transmission is normally slower than parallel 
data transmission, because only one bit instead of several bits are 
transferred at a time. Communication with the cassette interface is
carried out serially.

262



Stack — a page of memory in the 6502 used for temporary 
storage of data. Data is pushed onto a stack in sequence, then 
removed by pulling the data off the stack. The last byte to be 
pushed is the first byte to be pulled off again. The stack is used to 
store return addresses from subroutines, Page &01 is used for the 
stack in the Electron.

ULA (Uncommitted Logic Array) — this large chip is 
responsible for most of the system control on the Electron. It 
contains a large number of logic gates. The connection between 
the gates is defined when the chip is manufactured.

263



Index

264



!BOOT status
*.
*/
 filing system call 106
*BASIC
*CAT
 filing system call 108
*CODE 14,49,113
*EXEC
 close files
  file handle
*FX
*HELP
*KEY
*LINE 15,113
*LOAD
*MOTOR 15,50
*OPT 15,50
  filing system call 106
*ROM 15,51
  data format 176
  example ROM 178
  get byte call 175
  initialise ROM call 158,174
*ROM filing system 172
*RUN
  filing system call 108
*SAVE
*SPOOL
  close files
  file handle
*TAPE 15,51
*TV 15,52
1MHz bus 227
1MHz clock generation 223
6502
  stack area 188
6502 clock speed 222

A
ADC
 channel read
 conversion complete event 120
 conversion type
 current channel
 maximum channel number
Arguments (files)
Auto-boot
 ROM call 154
Auto-repeat
 delay 28,66
 period 29,66

B
BASIC
 paged ROM socket
BEL
 channel
 duration
 frequency
  SOUND information
Blank/restore palette
BPUT
  fast tube
BREAK
  effect
  interception
  last type
Break-points 117
BRK
  paged ROM active
  Service ROM call 155
  vector 116
BRKV 116
Buffers

character entry event 120

265



count/purge 128
examine status
flushing 30,34
get character
Input full 120
input interpretation
insert character
insert value 50,127
maintenance vectors 126
output empty event 120
printer character ROM call 160
remove value 127
RS423 character ROM call 160
sound purged 161
status

C
Cassette
  filing system select
  reading register 212
  switch relay
  timeout counter
  ULA shift register 209
  writing register 213
Cassette/ROM flag
Character
  read definition
Character entering buffer event 120
Character interpretation
Circuit diagram 250
Clock
  1MHz generation 223
  read
  write
Close SPOOL/EXEC files
CNPV 128
Command line interpreter
Connectors
  expansion 217
  Plus 1 ROM 243
Count/purge buffer 128
Counter
  CFS timeout
  flash
  ULA register 211
Country code
Cursor
  editing status

enable/disable editing

graphics position
position
read character

D
Default vector table 134
Delays to interrupts 223
Deselect filing system 108

E
Econet
 error event 121
  keyboard disable
 OS call interception
 read character interception
 vector 123
  write character interception
  zero page workspace 184
Editing using cursor 25,81
End-of-file check 44,106
ENVELOPE
 OSWORD command
Error handling 116
ESCAPE
  character
  effect 68,79
  event 121
  key status
  terminating input
Escape character
ESCAPE condition
  clear 42,43
  set
Event
  vector 119
Events
  disabling
  enabling
  generation using OSEVEN
EVNTV 119
Examine buffer status
Expansion connector 217
Explode soft character RAM
Extended vectors 171,189
External clock generation 223
External hardware 217

266



F
Fast tube BPUT
File options select
Files
  attributes 96,98
  close SPOOL/EXEC
  EOF check 106
  EXEC handle
  open/close 105
  read byte 100
  read/write
  read/write group of bytes 102
  SPOOL handle
  system calls
  write byte 101
Filing system
  deselect 108
  handle range 108
  initialise 160
  *ROM 172
  workspace claim 153
  zero page workspace 185
Filing system calls
Firm keys
  language call 149
  pointer
  status
  string
Flag
  *ROM/*TAPE
  printer destination
  RS423 control
  RS423 use
  Tube presence
  user 23,82
Flashing colours
  counter
  mark duration 27,66
  reset cycle
  space duration 28,65
Flushing buffers 30,34
FRED 53,227

G
Get byte (OSBGET) 100
Get character

at cursor
from buffer

from input stream
GSINIT
GSREAD

H
Handle

filing system 108
Hardware

external 216
internal 206
introduction 201

Hardware scroll example 208
High-order address
HIMEM 199

read

I
I/O read/write
I/O processor

read memory
write memory

INKEY
Input buffer full event 120
Input character interpretation
Input line
Input source flags
Input stream

selection
Insert value into buffer 127
INSV 127
Internal hardware 206
Interrupts 135

delays 222
example 141
interception 139
ROM call if unknown 155
ULA mask
vectors 119

Interval timer
Interval timer event 121
IRQ

 input pin 220
ULA register 206

IRQ1V 119,139
IRQ2V 119.139

267



J
JIM

K
Key number table
Keyboard
auto-repeat delay 28,66

auto-repeat period 29,66
disable
reading direct from ROM 216
scan 40,46
soft key status
status byte
status LEDs
translation table address
vector 125

Keys pressed information
KEYV 125

L
Language

exclusive workspace 188
zero page workspace 195

Language entry
Language ROMs 148
Line filling 232
Line input OS WORD

M
Memory clear on BREAK
Memory usage 183
MODE

read

N
NETV 123
NMI 136

blank/restore palette
claim service ROM call 158
input pin 220
release service ROM call 158
routine area 197
zero page workspace 184

O
One megahertz bus 227
One megahertz clock generation 223
Operating system

calls
commands
high water mark (OSHWM)
variables
vectors 110
workspace 81,85
zero page workspace 186

Operating system call summary 241
OS commands
OS version 22,46
OSARGS
OSASCI
OSBGET 100
OSBPUT 101
OSBYTE

summary
OSCLI
OSEVEN
OSFILE
OSFIND 105
OSFSC 106
OSGBPB 102
OSHWM 190

primary
read 47,60
soft character explosion

OSNEWL
OSRDCH
OSRDRM
OSWORD

summary
OSWRCH
Output buffer empty event 120
Output stream

read/write
selection

268



P
PAGE
Paged mode lines
Paged ROMs 143

active at BRK
allocation 227
BASIC socket
copyright string 147
current language number
enter language
extended vectors 171,197
firm keys 149
header format 144
info table address
issue service call
language entry 144
language ROMs 148
OS commands
paging register 225
pointer table address
polling semaphore 35,62
priority (Plus 1) 226
read byte from
selection 225
selection register 211
service entry 145
service ROMs 152
title string 146
Tube relocation address 147
type byte 145
version number 146
version string 147
workspace table 189

Paged ROMs connector (Plus 1) 243
Palette

blank/restore
read
ULA register 54,214
write

Pixel value
PLOT numbers 232
Plus 1

disabling 229
page &D usage 199
printer buffer example 162
ROM connector 243
ROM priority 227

Polling
semaphore 35,62

service ROM call 160
POS
Printer

buffer example 130
character in buffer ROM call 160
destination flag
driver going dormant
ignore character 26,84
output destination selection
user vector 121

R
Read byte from ROM
Read character (OSRDCH)
Read character definition
Read input line
Remove value from buffer 127
REMV 127
Reset output pin 220
ROM accessing 222
ROM connector (Plus 1) 243
ROM filing system

select
ROM/Cassette flag
RS423

baud rate
control flag
error event 121
mode
use flag
workspace 188

S
Screen memory 191
Screen

blank/restore palette
pixel value

Screen mode dependent clock 222
Screen mode layouts 234
Select input stream
Select output stream
Serial ROMs 172
Service call semaphore 35,62
Service ROM call
Service ROM calls

*HELP 156

269



*ROM get byte 159,175
*ROM initialise 158,174
absolute workspace claim 153,157
auto-boot 154
BEL request 161
BRK executed 155
character in printer buffer 160
character in RS423 buffer 160
font expl./impl. warning 159
initialise filing system 160
NMI claim 158
NMI released 158
no operation 153
poll (100Hz) 160
relative space claim 153
SOUND buffer purged 161
SPOOL/EXEC closure warning 159
Tube main initialisation 161
Tube post-initialisation 161
unknown interrupt 155
unrecognised *command 154
unrecognised OSBYTE 156
unrecognised OS WORD 156
vectors claimed 159

Service ROM example 162
Service ROMs 152
SHEILA

addresses 205
Soft characters

explode RAM
explosion state

Soft keys
*KEY
consistency
cursor keys
length
pointer
reset
status

Sound
BEL
OSWORD command
output pin 219
semaphore
suppression

Sound system
external BEL request 161
external buffer purge 161
external flag
reset internal
select external

using ULA register 213
workspace 195

Speech
processor presence
suppression

Speech processor
Stack

memory usage 188
Start up options
String input

T
Timer

interval event 121
Timer switch state
Tube

fast BPUT
main initialisation call 161
post-initialisation call 161
presence flag
read I/O processor memory
write I/O processor memory

U
ULA

addresses 205
interrupt mask
RAM copy

ULA registers
cassette shift register 209
counter 211
interrupt clear and paging 210
IRQ status/control 206
misc. control 213
palette 214
screen start address 207

Unrecognised * command 106
Unused vectors 134
UPTV 121
User

event 121
flag 23,82
vector 113

User print vector 121

270



USERV 113
execute code

Utility zero page workspace 184

V
VDU

abandon queue
extension vector 124
paged mode lines
queue items
read graphics cursor positions
read palette
read status
read variable
variables origin
write palette

VDU code summary 230
VDUV 124
Vectors 110

BRK 116
buffer maintenance 126
default table 134
Econet 121
event 119
extended 171

interrupt 119
interrupt 139
keyboard 125
summary 241
unused 134
user 113
user print 121
VDU extension 124

Version
operating system
operating system

Vertical sync
event 120
wait

VPOS

W
Wait for vertical sync
Write a new line (OSNEWL)
Write character (OSASCI)
Write character (OSWRCH)

Z
Zero page usage 184

271



E



lectron Advanced User Guide - Changes

Second edition Draft 1 May 2008

Chapter Changes Source
3 Added detail for *FX16 and *FX17

when Plus 1 fitted
Added *FX163.
Changed definition of *FX225,226 
and 227.
Updated definition of *FX128

Plus 1 manual

3 Added *FX178 Michael Jakobsen,
Electron User 
August 1986

14 New section 14.2 on keyboard 
mapping to ROM

Michael Jakobsen,
Electron User 
August 1986

15 New section 15.6 on use of A to D 
converter.

Michael Jakobsen,
Electron User 
August 1986

15 New section 15.7 on disabling the 
Plus 1

Electron User 
October 1984

Second edition (final) June 2008

Chapter Changes Source
12 Corrected references to “Chapter 

X”
NA

12 Reference added to section 15.7 for
switching off Plus 1

NA

12 Memory map diagram improved NA

12 Memory usage explained in more 
detail pages 2-&D

BBC micro AUG



All Formatting improved to match 
original

NA

App F Circuit diagram changed to match 
original book

Electron AUG

Osbyte 
&FF

Added Plus 3 status bit information. Acorn Plus 3 guide

App G New appendix of expansion units Acorn Electron 
World

Misc Format improved and many typos 
fixed

NA

- Covers included NA

- Contents page expanded to show 
section numbers and titles

NA

App E New diagram and details added of 
pins.

Acorn App Note 14
(1992)


	Introduction
	Operating system routines and vectors
	Paged ROM firmware
	Memory usage
	Appendices

	Enable/disable cursor editing
	Select printer destination
	Set character ignored by printer
	Set RS423 baud rate for receiving data
	Set RS423 baud rate for data transmission
	Set duration of the mark state of flashing colours
	Set duration of the space state of flashing colours
	Set keyboard auto-repeat delay
	Set keyboard auto-repeat period
	Enable events
	Flush selected buffer class
	Select ADC channels which are to be sampled
	Force an ADC conversion
	Reset soft keys
	Wait for vertical sync
	Explode soft character RAM allocation
	Flush specific buffer

	Increment paged ROM polling semaphore
	Decrement paged ROM polling semaphore
	Select external sound system
	Blank/restore palette
	Reset internal sound system
	Read VDU status
	Reflect keyboard status in keyboard LEDs

	Close any SPOOL or EXEC files
	Write current keys pressed information
	Keyboard scan
	Keyboard scan from 16 decimal

	Inform operating system of printer driver going dormant
	Clear ESCAPE condition
	Clear ESCAPE condition with side effects

	Check for end-of-file on an opened file
	Read ADC channel (ADVAL) or get buffer status

	Read machine high order address
	Return current OSHWM
	Return HIMEM
	Read character at text cursor position and screen MODE
	Insert value into buffer
	Enter language ROM
	Issue paged ROM service call
	Get character from buffer
	Read or Write to mapped I/O
	Examine Buffer status
	Insert character into input buffer, checking for ESCAPE
	Reset flash cycle
	Fast Tube BPUT
	Read from speech processor
	Write to speech processor
	Read VDU variable value
	Disable/Enable printer and ADC
	Read start address of OS variables
	Read address of ROM pointer table
	Read address of ROM information table
	Read address of keyboard translation table
	Read VDU variables origin
	Read/write CFS timeout counter
	Read input source flags
	Read/write RS423 mode
	Read character definition explosion state
	Read cassette/ROM filing system flag
	Read/write timer paged ROM service call semaphore
	Read number of ROM socket containing BASIC
	OSWORD call with A=&0 Read line from input
	OSWORD call with A=&5 Read I/O processor memory
	OSWORD call with A=&6 Write I/O processor memory
	OSWORD call with A=&7 SOUND command
	OSWORD call with A=&8 Define an ENVELOPE
	OSWORD call with A=&A Read character definition
	OSWORD call with A=&C Write palette
	X+Y contain the address of a parameter block

	Bit Meaning if set
	Reason code &05: Unknown interrupt
	Reason code &0D: ROM filing system initialise
	Reason code &15: 100 Hz poll

	SHEILA &FE04 - Cassette data shift register
	SHEILA &FE05 - Interrupt clear and paging register
	Interrupt clearing
	Paging ROMs
	Cassette motor control, bit 6
	CAPS LOCK LED control, bit 7


