4-Bit, Single-Chip CMOS Microcomputers With LCD Controller/Driver

T-49-19-40

Description

The μ PD7502 and μ PD7503 4-bit, single-chip CMOS microcomputers have advanced fourth-generation architecture with the functional blocks necessary for a single-chip controller, including an 8-bit timer/event counter, an 8-bit serial I/O, and an LCD controller/driver.

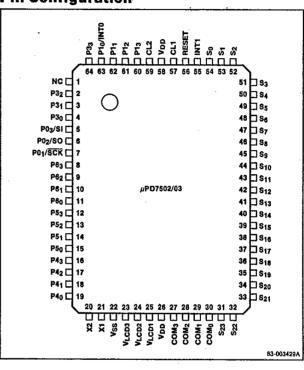
The instruction set includes the following types of instructions: addressing, table look-up, bit manipulation, vectored jump, auto increment or decrement data pointer, and conditional skip. These instructions maximize use of fixed program memory space.

Both devices are manufactured with the CMOS process and have a maximum power consumption of 900 μ A at 5 V and 300 μ A at 3 V. Halt and stop modes further reduce power consumption.

These devices are ideal for a wide range of solar- and battery-powered applications.

Features

- ☐ 92 powerful instructions
- □ Program ROM
 - μPD7502; 2048 x 8-bit
 - μPD7503: 4096 x 8-bit
- ☐ Data RAM
 - --- μPD7502: 128 x 4-bit
 - -- μPD5703: 224 x 4-bit
- □ Interrupts
 - External: INT0, INT1
 - Internal: INTT (timer/event counter)
 INTS (serial interface)
- □ 8-bit timer/event counter
 - Based on crystal oscillation
 - External event counter (prescale option by 64)
- ☐ Serial interface
- ☐ LCD controller/driver
 - Programmable multiplexing mode: triplex, quadruplex, or pseudo-static
 - 4 common lines (COM₀-COM₃)
- 24 segment lines (S₀-S₂₃)
- ☐ Standby modes: stop, half
- ☐ Data retention mode
- □ I/O ports
 - 3-bit input port
 - 4-bit input port
 - 4-bit output port
 - Two 4-bit I/O ports with 8-bit capability
 - 4-bit I/O port with each bit configurable as an input or output

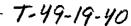

☐ RC oscillation clock

- ☐ Crystal oscillation clock
- ☐ 2.5 to 6.0 V operating voltage
- □ CMOS technology

Ordering Information

Part No.	Part No. Package Type	
μPD7502GF-12	64-pin plastic QFP	410 kHz
μPD7503GF-12	64-pin plastic QFP	410 kHz

Pin Configuration


- T-49-19-40

Pin Identification

No.	Symbol	Function
1	NC	No connection
2-4, 64	P3 ₃ -P3 ₀	4-bit output port 3
5-7	P0 ₃ /SI P0 ₂ /S0 P0 ₁ /SCK	3-bit input port 0, or serial I/O interface
8-11	P6 ₃ -P6 ₀	4-bit I/O port 6
12-15	P53-P50	4-bit I/O port 5
16-19	P43-P40	4-bit 1/0 port 4
20, 21	X2, X1	Crystal clock/external event input port X
22	Vss	Ground
23-25	V _{LCD3} -V _{LCD1}	LCD blas supply inputs
26, 58	V _{DD}	Positive power supply
27-30	COM ₃ -COM ₀	LCD backplane driver outputs
31-54	S ₂₃ -S ₀	LCD segment driver outputs
55	INT1	External interrupt
56	RESET	RESET input
57, 59	CL1, CL2	System clock input
60-63	P1 ₃ -P1 ₁ , P1 ₀ /INT0	4-bit input port 1, or external interrupt INTO

Status of Unused Pins

Name	Pin Connection
CL2	Open
X1	V _{SS}
X2	Open .
P0 ₁ /SCK P0 ₂ /S0 P0 ₃ /SI	V _{SS} or V _{DD}
P1 ₀ /INT0	V _{SS}
P1 ₁ -P1 ₃	V _{SS} or V _{DD}
P3 ₀ -P3 ₃	Open
P4 ₀ -P4 ₃ P5 ₀ -P5 ₃ P6 ₀ -P6 ₃	Input mode: V _{SS} or V _{DD} Output mode: Open
INT1	V _{SS}
S ₀ -S ₂₃ COM ₀ -COM ₃ V _{LCD1} -V _{LCD3}	Open

Pin Functions

P0₃/SI, P0₂/SO, P0₁/SCK [Port 0 or Serial Interface]

This port can be configured as a 4-bit parallel input port 0 or as the 8-bit serial I/O interface under control of the serial mode select register. The serial interface consists of the serial input (SI), the serial output (SO), and the serial clock (SCK), which synchronizes data transfer.

P1₃-P1₁, P1₀/INT0 [Port 1 or Interrupt]

4-bit input port 1. Line P1₀ is shared with external interrupt INT0, which is a rising edge-triggered interrupt.

P3₃-P3₀ [Port 3]

4-bit, latched three-state output port 3.

P43-P40 [Port 4]

4-bit input or latched three-state output port 4. Can perform 8-bit I/O in conjunction with port 5.

P53-P50 [Port 5]

4-bit input or latched three-state output port 5. Can perform 8-bit I/O in conjunction with port 4.

P63-P60 [Port 6]

4-bit input or latched three-state output port 6. The port 6 mode select register configures individual lines as inputs or outputs.

COM₃-COM₀ [LCD Backplane Driver Outputs]

LCD backplane driver outputs.

\$23-S0 [LCD Segment Driver Outputs]

LCD segment driver outputs.

INT1 [Interrupt]

This external interrupt is a rising edge-triggered interrupt latched by CL.

RESET

A high-level input to this pin initializes the μ PD7502/7503.

X2, X1 [Crystal Clock/External Event Input Port X]

For crystal clock operation, connect a crystal oscillator circuit to input X1 and output X2. For external event counting, input external event pulses to X1 and leave X2 open.

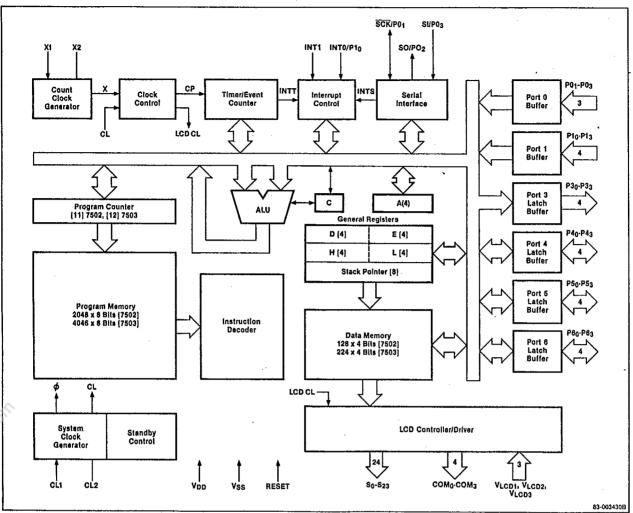
CL1, CL2 [System Clock Input]

Connect an 82-k Ω resistor across CL1 and CL2, and a 33-pF capacitor from CL1 to V_{SS}. Or, connect an external clock source to CL1 and leave CL2 open.

V_{LCD3}-V_{LCD1} [LCD Bias Voltage Inputs]

LCD bias voltage supply inputs to the LCD voltage controller. Apply appropriate voltages from a voltage ladder connected across V_{DD}.

V_{DD}


Positive power supply. For proper operation, apply a single voltage from 2.5 to 6.0 V.

Vss

Ground.

Block Diagram

See figures 1 through 8 for additional block diagram details.

Figure	Title
1	Data Memory Map
2	Program Memory Map
3	Interface at Input/Output Ports
4	Clock Control
5	Timer/Event Counter
6	Interrupt Control
7	Serial Interface
8	LCD Controller/Driver

Figure 1. Data Memory Map

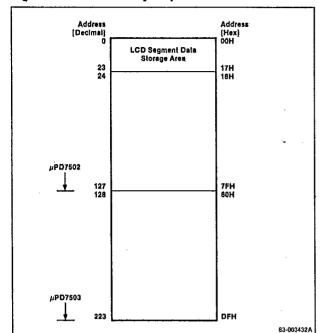
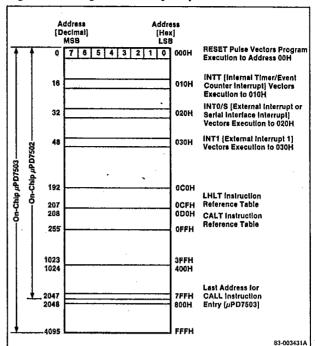



Figure 2. Program Memory Map

NES

Figure 3. Interface at Input/Output Ports

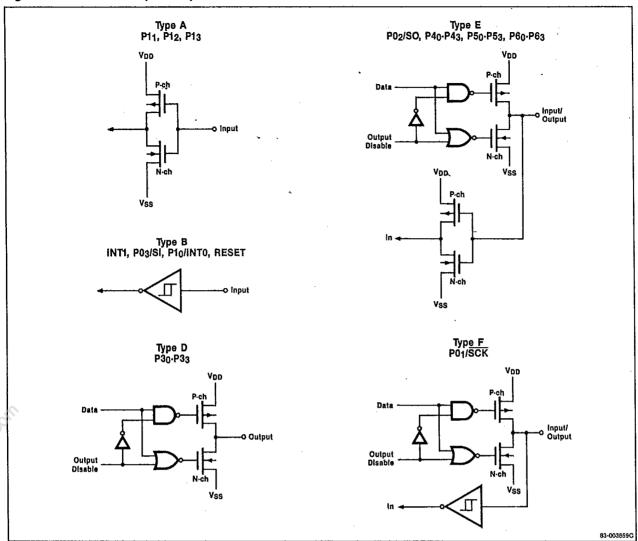


Figure 4. Clock Control

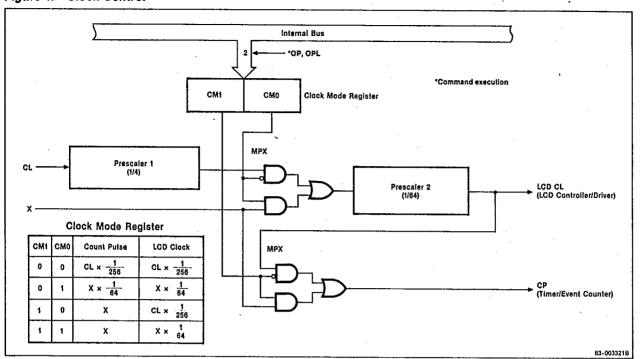


Figure 5. Timer/Event Counter

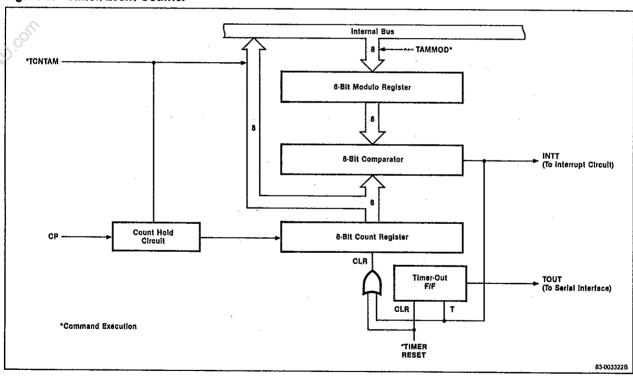
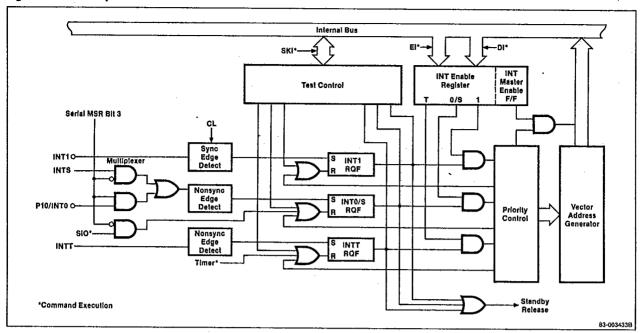
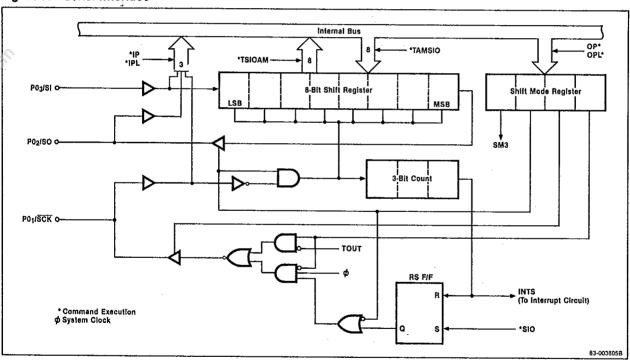
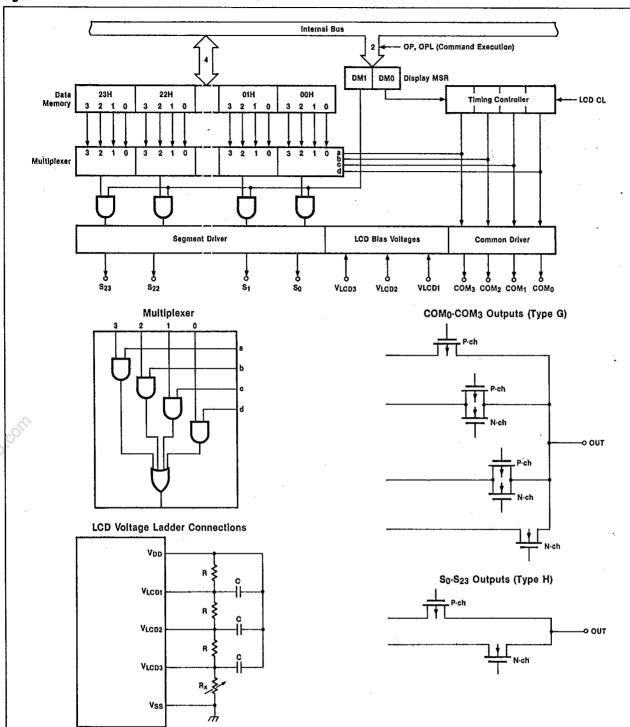


Figure 6. Interrupt Control


Figure 7. Serial Interface

NEC

T-49-19-40

Figure 8. LCD Controller/Driver

83-003325C

NEC

T-49-19-40

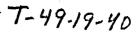
Absolute Maximum Ratings

 $T_A = 25$ °C

Power supply voltage, V _{DD}	-0.3 to +7.0 V
All input and output voltages	-0.3 V to V _{DD} + 0.3 V
Output current high, l _{OH} Per pin Total, output ports	—17 mA —20 mA
Output current low, I _{OL} Per pin Total, output ports	17 mA 55 mA
Operating temperature, T _{OPT}	−10 to +70°C
Storage temperature, T _{STG}	−65 to +150°C

Comment: Exposing the device to stresses above those listed in Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification, Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance


 $T_A = 25 \,^{\circ}C; V_{DD} = 0 \,^{\circ}V$

			Limits			Test
Parameter	Symbol	Min	Тур	Max		Conditions
Input capacitance	Cį			15	pF.	f _C = 1 MHz Unmeasured
Output capacitance	C ₀			15	pF	pins returned to V _{SS}
I/O capacitance	C _{IO}			15	pF	

DC Characteristics 1

For $V_{DD} = 2.5$ to 3.3 Volts $T_A = -10$ to +70 °C

			Limits		T	
Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
input voltage, high	V _{IH1}	0.8 V _{DD}		V _{DD}	٧	Except CL1, X1
	V _{IH2}	$V_{DD}-0.3$		V _{DD}	٧	CL1, X1
	V _{IHDR}	0.9 V _{DDDR}		$V_{DDDR} + 0.2$	٧	RESET, data retention mode
nput voltage, low	V _{IL1}	0		0.2 V _{DD}	٧	Except CL1, X1
	V _{IL2}	0		0.3	٧	CL1, X1
Output voltage, high	V _{OH}	$V_{DD} - 0.5$			٧	$I_{OH} = -80 \mu\text{A}$
Output voltage, low	V _{OL}			0.5	V	$I_{0L} = 350 \mu A$
nput leakage current, high	lLIH1			3	μA	Except CL1, X1; V _{IN} = V _{DD}
	ILIH2			10	μΑ	CL1, X1; V _{IN} = V _{DD}
nput leakage current, low	I _{LIL1}			-3	μA	Except CL1, X1; V _{IN} = 0 V
	I _{LIL2}			10	μA	CL1, X1; V _{IN} = 0 V
Output leakage current, high	ILOH	-		3	μΑ	$V_0 = V_{DD}$
lutput leakage current, low	ILOL			-3	μA	V ₀ = 0 V
Supply voltage	V _{DDDR}	2.0			٧	Data retention mode
Supply current	l _{DD1}		50	250	μA	Normal operation, $V_{DD}=3~V\pm10\%$; R = 240 k $\Omega\pm2\%$, C = 33 pF $\pm5\%$
			35	230	μΑ	Normal operation, V_{DD} = 2.5 V; R = 240 k Ω ±2%, C = 33 pF ±5%
	I _{DD2}		0.3	10	μΑ	Stop mode, X1 = 0 V; $V_{DD} = 3 \text{ V} \pm 10^{\circ}$
			0.2	10	μΑ	Stop mode, $X1 = 0 \text{ V}$; $V_{DD} = 2.5 \text{ V}$
	loddr		0.2	10	μΑ	Data retention mode, V _{DDDR} = 2.0 V

DC Characteristics 2

For V_{DD} = 2.7 to 6.0 Volts T_A = -10 to +70 °C

			Limits	-		Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input voltage, high	V _{IH1}	0.7 V _{DD}		V _{DD}	٧	Except CL1, X1
	V _{IH2}	V _{DD} 0.5		V _{DD}	٧	CL1, X1
·	V _{IHDR}	0.9 V _{DDDR}		V _{DDDR} + 0.2		RESET, data retention mode
Input voltage, low	V _{IL1}	0	-	0.3 V _{DD}	V	Except CL1, X1
	V _{IL2}	0		0.5	٧	CL1, X1
Output voltage, high	V _{OH}	$V_{DD} - 1.0$			٧	$I_{OH} = -1.0 \text{ mA}, V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$
		V _{DD} — 0.5			٧	$I_{OL} = -100 \mu\text{A}$
Output voltage, low	V _{OL}			0.4	٧	$I_{OL} = 1.6 \text{ mA}, V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$
				0.5	٧	$I_{OL} = 400 \mu\text{A}$
Input leakage current, high	l _{LIH1}			3	μΑ	Except CL1, X1; V _I = V _{DD}
	ILIH2		:	10	μΑ	CL1, X1
Input leakage current, low	I _{LIL1}			-3	μΑ	Except CL1, X1; V _I = 0 V
	I _{LIL2}			−10	μA	CL1, X1
Output leakage current, high	I _{LOH}			3	μΑ	$V_0 = V_{DD}$
Output leakage current, low	I _{LOL}			-3	μΑ	$V_0 = 0 \text{ V}$
Output impedance (1)	R _{COM}	_	3 -	5	kΩ	COM ₀ -COM ₃ ; V _{DD} = 4.5 to 6.0 V
			5	15	kΩ	COM ₀ -COM ₃
	RS		15	20	kΩ	S ₀ -S ₂₃ ; V _{DD} = 4.5 to 6.0 V
			20	60	kΩ	S ₀ -S ₂₃
Supply voltage	V _{DDDR}	2.0		6.0	٧	Data retention mode
Supply current	l _{DD1}		300	900	μΑ	Normal operation, $V_{DD}=5$ V \pm 10%; R = 82 k Ω \pm 2%, C = 33 pF \pm 5%
			70	300	μΑ	Normal operation, $V_{DD}=3~V\pm10\%$; R = 160 k Ω ± 2%, C = 33 pF ± 5%
	J ₀₀₂		1.0	20	μΑ	Stop mode, $X1 = 0 \text{ V}$; $V_{DD} = 5 \text{ V} \pm 10\%$
·	•		0.3	10	μА	Stop mode, $X1 = 0 \text{ V}$; $V_{DD} = 3 \text{ V} \pm 10\%$
	†DDDR		0.2	10	μА	Data retention mode, V _{DDDR} = 2.0 V

⁽¹⁾ $V_{LCD} = 2.7 \text{ V to } V_{DD}$ $V_{LCD1} = V_{DD} - (1/3) V_{LCD}$ $V_{LCD2} = V_{DD} - (2/3) V_{LCD}$ $V_{LCD3} = V_{DD} - V_{LCD}$

AC Characteristics 1


For $V_{DD} = 2.7$ to 6.0 Volts $T_A = -10$ to +70 °C

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
System clock frequency	fcc	150	200	240	kHz	$V_{DD} = 5 \text{ V} \pm 10\%; R = 82 \text{ k}\Omega \pm 2\% \text{ (Note 1)}$
		75	100	120	kHz	$V_{DD} = 3 \text{ V} \pm 10\%; R = 160 \text{ k}\Omega \pm 2\% \text{ (Note 1)}$
		75		135	kHz	R = 160 kΩ ±2% (Note 1)
	f _C	10		410	kHz	CL1, external clock, 50% duty; $V_{DD} = 4.5 \text{ to}$ 6.0 V
		10		125	kHz	CL1, external clock, 50% duty; V _{DD} = 2.7 V
System clock rise and fall ime	t _{CR} , t _{CF}			0.2	μ\$	CL1, external clock
System clock pulse width	t _{CH} , t _{CL}	1.2		50	μS	CL1, external clock; V _{DD} = 4.5 to 6.0 V
		4.0		50	μS	CL1, external clock; V _{DD} = 2.7 V
Counter clock frequency	fxx	25	32	50	kHz	X1, X2, crystal oscillator
	fX	0		410	kHz	X1, external pulse input, 50% duty; V _{DD} = 4.5 to 6.0 V
		0		125	kHz	X1, external pulse input, 50% duty; V _{DD} = 2.7 V
Counter clock rise and fall ime	txn, txf			0.2	μS	X1, external pulse input
Counter clock pulse width	t _{XH} , t _{XL}	1.2			μS	X1, external pulse input; $V_{DD} = 4.5$ to 6.0 \
		4.0			μS	X1, external pulse input; $V_{DD} = 2.7 \text{ V}$
CK cycle time	^t KCY	3.0			μs	SCK as input; V _{DD} = 4.5 to 6.0 V
		8.0			μS	SCK as input
		4.9			μs	SCK as output; V _{DD} = 4.5 to 6.0 V
		16.0			μs	SCK as output
BCK pulse width	t _{KH} , t _{KL}	1.3			μ\$	$\overline{\text{SCK}}$ as input; $V_{DD} = 4.5 \text{ to } 6.0 \text{ V}$
		4.0			μ\$	SCK as input
		2.2			μS	SCK as output; V _{DD} = 4.5 to 6.0 V
		8.0			μS	SCK as output
SI setup time to SCK 1	tsik	300			ns	
SI hold time after SCK 1	t _{KSI}	450			กร	
30 delay time after SCK ↓	t _{KSO} -			850	ns	V _{DD} = 4.5 V to 6.0 V
				1200	ns	
NTO pulse width	t _{IOH} , t _{IOL}	10			μS	
NT1 pulse width	t ₁₁₁₁ , t _{111.}	(Note 2)			μS	
RESET pulse width	trsh, trsl	10			μS	
RESET setup time	tsas	0			ns	

Notes:

⁽¹⁾ RC network at CL1 and CL2; C = 33 pF $\pm 5\%$, $\Delta C/^{\circ}C \leq 60$ ppm.

⁽²⁾ $2 \times 10^3 \div f_{CC}$ or f_C in kHz.

For $V_{DD} = 2.5$ to 3.3 Volts $T_A = -10$ to +70 °C

		Limits				Test
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
System clock frequency	fcc	50		80	kHz	R = 240 kΩ ±2% (Note 1)
		50	64	77	kHz	$V_{DD} = 2.5 \text{ V; R} = 240 \text{ k}\Omega \pm 2\% \text{ (Note 1)}$
	fc	. 10		80	kHz	CL1, external clock, 50% duty
System clock rise and fall time	t _{CR} , t _{CF}		-	0.2	μ5	CL1, external clock
System clock pulse width	t _{CH} , t _{CL}	6.25	-	50	<i>μ</i> \$	CL1, external clock
Counter clock frequency	f _{XX} .	25	32	50	kHz	X1, X2, crystal oscillator
	f _X	0		80	kHz	X1, external pulse input, 50% duty
Counter clock rise and fall time	t _{XR} , t _{XF}			0.2	μS	X1, external pulse input
Counter clock pulse width	t _{XH} , t _{XL}	6.25			μS	X1, external pulse input
SCK cycle time	tKCY	12.5			μs	SCK as input
		25			μS	SCK as output
SCK pulse width	t _{KH} , t _{KL}	6.25			μS	SCK as input
		11.5			μS	SCK as output
SI setup time to SCK 1	tsik	1			μS	
SI hold time after SCK †	t _{KSI}	1			μS	-
SO delay time after SCK ‡	tkso			2	μS	
INTO pulse width	t _{IOH} , t _{IOL}	30			μS	
NT1 pulse width	411Н. 411 L	(Note 2)			μS	
RESET pulse width	t _{RSH} , t _{RSL}	30			μ\$	

(1) RC network at CL1 and CL2; $C = 33 \text{ pF} \pm 5\%$, $\triangle C/^{\circ}C \le 60 \text{ ppm}$.

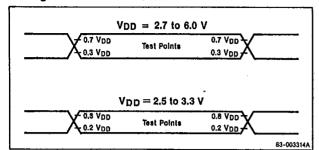
(2) $2 \times 10^3 \div f_{CO}$ or f_C in kHz.

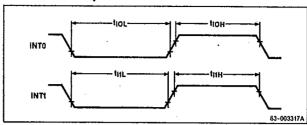
Recommended R and C Values for System Clock Oscillation Circuit

 $T_A = -10 \text{ to } +70 \,^{\circ}\text{C}$

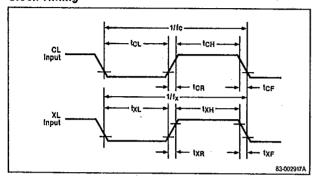
Supply Voltage Range	Recommended Values (Note 1)	Frequency Range		
4.5 to 6.0 V	$R=82 \text{ k}\Omega \pm 2\%$	150 to 250 kHz, 200 kHz typical		
2.7 to 3.3 V	R =160 kΩ ±2%	75 to 120 kHz, 100 kHz typical		
2.7 to 6.0 V	R =160 kΩ± 2%	75 to 135 kHz		
2.5 to 3.3 V	R = 240 kΩ ±2%	50 to 80 kHz		
2.5 to 6.0 V	$R = 240 \text{ k}\Omega \pm 2 \%$	50 to 85 kHz		

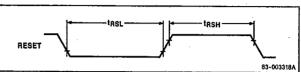
Note:

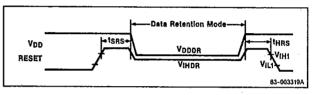

(1) $C = 33 \text{ pF } \pm 5\%$, $|\Delta C/^{\circ}C| \leq 60 \text{ ppm}$.

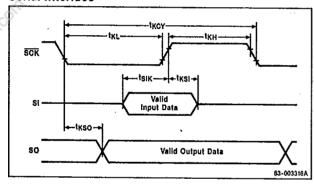


Timing Waveforms


Timing Measurement Points

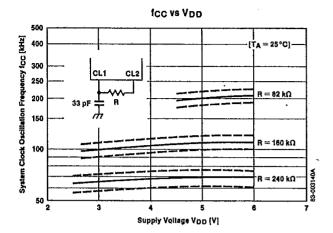

External Interrupts

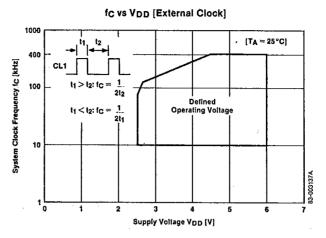

Clock Timing


Reset

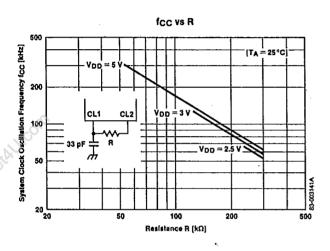
Data Retention Mode

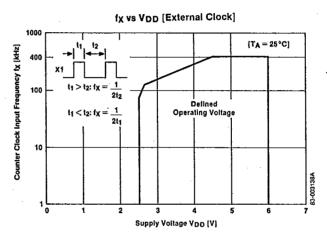
Serial Interface

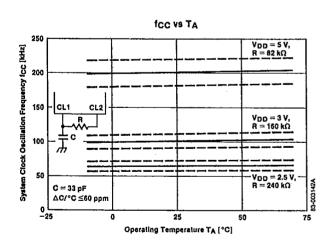


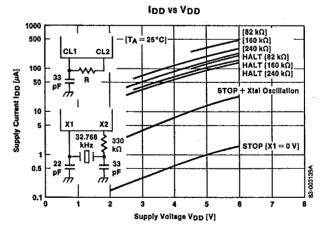


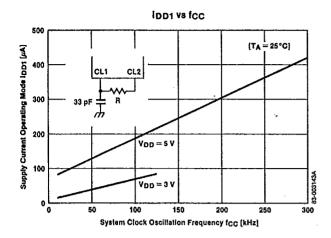
Operating Characteristics

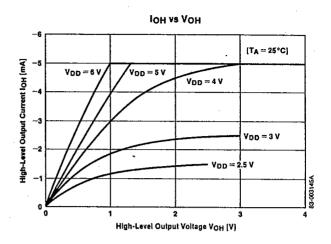

 $T_A = 25$ °C

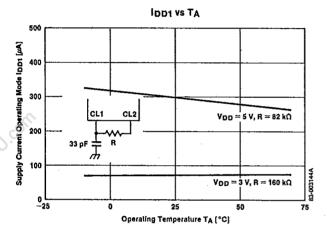

NEC











Operating Characteristics (cont)

