
The RF Line **NPN Silicon RF Power Transistor**

The MRF247 is designed for 12.5 Volt VHF large-signal amplifier applications in industrial and commercial FM equipment operating to 175 MHz.

- Specified 12.5 Volt, 175 MHz Characteristics -Output Power = 75 Watts Power Gain = 7.0 dB Min Efficiency = 55% Min
- Characterized With Series Equivalent Large–Signal Impedance Parameters
- Internal Matching Network Optimized for Minimum Gain Frequency Slope Response Over the Range 136 to 175 MHz
- Load Mismatch Capability at Rated Pout and Supply Voltage

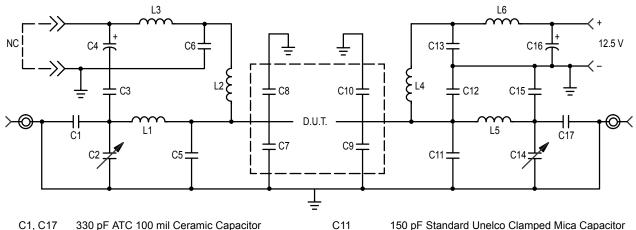
75 W, 175 MHz CONTROLLED Q **RF POWER** TRANSISTOR NPN SILICON

CASE 316-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	VCEO	18	Vdc
Collector–Base Voltage	V _{CBO}	36	Vdc
Emitter–Base Voltage	VEBO	4.0	Vdc
Collector Current — Peak	IC	20	Adc
Total Device Dissipation @ T _C = 25°C (1) Derate above 25°C	PD	250 1.43	Watts W/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C
HERMAL CHARACTERISTICS			
Characteristic	Symbol	Мах	Unit
Thermal Resistance, Junction to Case (2)	R _{θJC}	0.7	°C/W

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Breakdown Voltage (I _C = 100 mAdc, I _B = 0)	V _(BR) CEO	18	—	—	Vdc
Collector–Emitter Breakdown Voltage (I _C = 50 mAdc, V _{BE} = 0)	V _(BR) CES	36	—	—	Vdc
Emitter–Base Breakdown Voltage (I _E = 10 mAdc, I _C = 0)	V _{(BR)EBO}	4.0	—	—	Vdc


(1) This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier

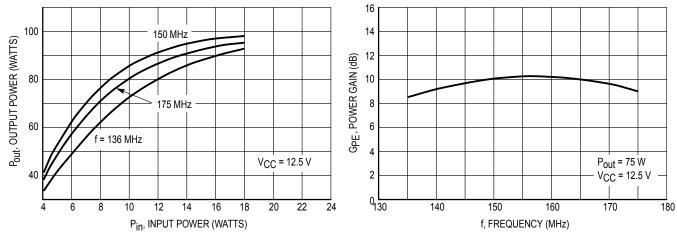
(2) Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.

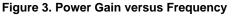
ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS			•	•	
DC Current Gain (I _C = 5.0 Adc, V _{CE} = 5.0 Vdc)	hFE	10	75	150	_
DYNAMIC CHARACTERISTICS			•		
Output Capacitance (V _{CB} = 15 Vdc, I _E = 0, f = 1.0 MHz)	C _{ob}	—	235	300	pF
FUNCTIONAL TESTS	-				
Common–Emitter Amplifier Power Gain (V _{CC} = 12.5 Vdc, P _{out} = 75 Watts, f = 175 MHz)	GPE	7.0	8.5	-	dB
Collector Efficiency (V _{CC} = 12.5 Vdc, P _{out} = 75 Watts, f = 175 MHz)	η	55	60	-	%
Load Mismatch (V _{CC} = 12.5 Vdc, P _{out} = 75 Watts, f = 175 MHz, VSWR = 30:1 All Phase Angles)	Ψ	No Degradation in Output Power			

C1, C17	330 pF ATC 100 mil Ceramic Capacitor
C2, C14	Johansen 1–20 pF Trimmer Capacitor
C3	40 pF Standard Unelco Clamped Mica Capacitor
C4, C16	Sprague 10 µF – 35 Vdc Electrolytic Capacitor
C5	80 pF Standard Unelco Clamped Mica Capacitor
C6, C13	91 pF Mini–Unelco Clamped Mica Capacitor
C7, C8	240 pF ATC 100 mil Ceramic Capacitor
C9, C10	180 pF ATC 100 mil Ceramic Capacitor

150 pF Standard Unelco Clamped Mica Capacitor


- 33 pF Mini–Unelco Clamped Mica Capacitor
- 27 pF Mini–Unelco Clamped Mica Capacitor
- 2 Turns, 16 AWG Enameled, IDIA 0.13"
- L2, L4 4 Turns, 18 AWG Enameled, IDIA 0.18"
- L3, L6 VK 200 with Ferrite Bead L5
 - 2 Turns, 16 AWG Enameled, IDIA 0.15"


C12

C15

L1

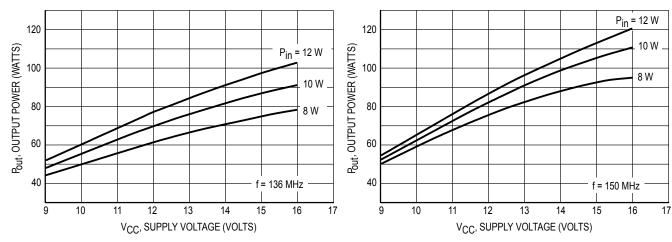


Figure 4. Output Power versus Supply Voltage

Figure 5. Output Power versus Supply Voltage

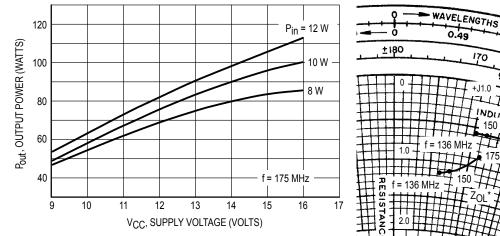


Figure 6. Output Power versus Supply Voltage

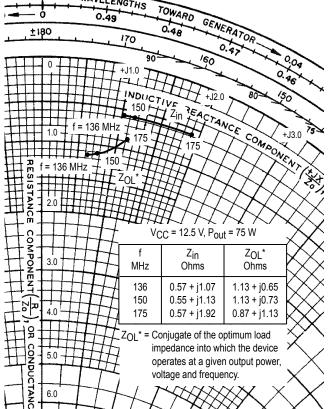
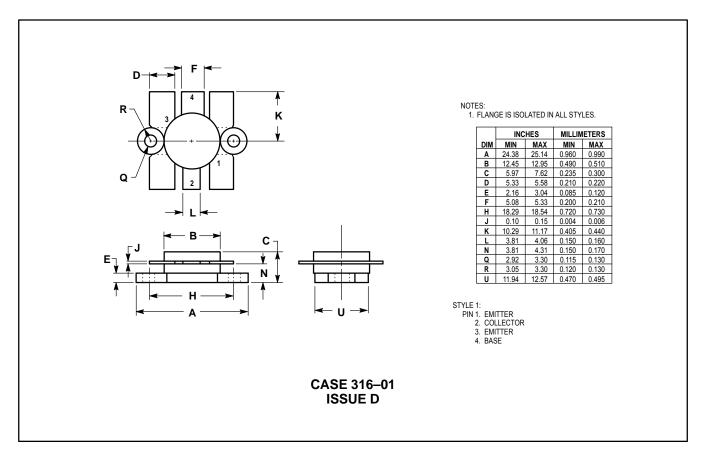



Figure 7. Series Equivalent Impedances

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warrantyrepresentation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Vicial" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in tiefent applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body , or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and with such unintended or unauthorized use, even if such claim alleges that Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 4-32-1,

Mfax is a trademark of Motorola. Inc.

Mfax™: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609

 \Diamond

- US & Canada ONLY 1-800-774-1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

INTERNET: http://motorola.com/sps

MOTOROLA

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,

Nishi-Gotanda, Shinaqawa-ku, Tokyo 141, Japan. 81-3-5487-8488

