ICOM IC-201 Allmode Transceiver

Alignment Procedure

Please note: This procedure is reengineered by myself and may be not in accordance with the original procedure from the manufacturer!

So I can’t accept any claims from anybody in case of injuries, problems, damages and losses.

Usage of this procedure is at own risk!

Of course you may ask me or give hints for improvement.
AF

1) Mode „USB“
2) No microphone connected; „MIC GAIN“ control to CCW
3) „VOX“ On
4) Adjust R50 that VOX doesn’t trip (search for the point where VOX trips without Modulation and set R50 shortly before this point.
5) Check that for all modes (FM, USB, LSB, CW) VOX doesn’t trip without modulation
6) “CAL” switched on, connect counter to CP1. Best use analog scope with Y-output
7) Wait 1 minute
8) Adjust frequency to 2,500000 MHz
GIF

1) Receive “R”
2) Connect Counter (AC-coupled) to Emitter of Q14. Best use analog scope with Y-output
3) Mode “USB” adjust C61 to 10,69850 MHz (X1)
4) Mode “LSB” adjust C66 to 10,70150 MHz (X2)
5) There may be some interaction so repeat 3 and 4 if necessary
6) Mode “CW” frequency should remain at 10,70150 MHz (“RX”)
7) Transmit “T”
8) Mode “CW” frequency should move to nearly 10,70000 MHz (not more than +/-500Hz)
9) Mode “FM” frequency should move to nearly 10,70000 MHz (not more than +/-500Hz)
10) Note: At “FM” and receive “R” there is no output of BFO
11) Mode USB: Set R41 for just a little bit above S=0 (S-Meter just moves) on S-Meter
12) Tune in weak signal at 145,000MHz just enough to move S-Meter to S=5
13) Tune L1, L6, L8, L9, L10 for maximum
14) Tune in signal 50Mikrovolt 145,000MHz: Set R40 for S=9
15) Remove steps 11 and 14 if necessary
16) Mode “FM”
17) Adjust R1 on Main board near FM-Unit to S=9
18) Mode “USB”
19) Transmit “T”
20) Mode “USB” with PA operating (jumper P11/J11); adjust R66 for best carrier suppression
21) Receive “R”
22) Connect AF signal (2kHz, 10mVpp) to MIC-Input
23) Set “MIC GAIN” to center position
24) Mode “USB”
25) Transmit “T”
26) Adjust output power with R69 to app.8 to 10W
27) Receive “R”
RF

1) weak signal at 145,000MHz just enough to move S-Meter to S=5
2) Tune L1 Set “RF GAIN” to “H”; mac CW
3) Unmount RF-Module (two clamps at each end)
4) Tune in to L7 for maximum; L2 to L5 are only accessible from bottom
5) Mount RF-Module
6) If a big increase of sensitivity has been achieved, then repeat adjustment of S-Meter
 (Look for GIF, step 14)

Note:
The resistor at the drain of Q1 (18Ohm) is a modification for damping oscillations in case of badly matches antennas!
Premix

1) “CAL” (Calibrator) switched off
2) Receive “R”, mode USB
3) Connect Counter (AC-coupled) to Collector of Q3. Best use analog scope with Y-output
4) Connect DC-Voltmeter or Scope with 10:1 probe to common cathodes of D4 and D5.
5) “RIT” centered: Trim R8 for app. 0,3VDC
6) Set “Coarse” to 144 MHZ (simplex).
7) Measure frequency; should be app. 15,239 MHz.
8) Check: Tuning “RIT” should change frequency app. +/- 400 Hz – symmetrically to both sides
9) If not readjust R8 and check again – back to 7)
10) “RIT” centered again.
11) Measure frequency; should be app. 15,239 MHz.
12) Switch to transmit “T”.
13) Adjust R9 for exactly same frequency as 10)
14) Switch to “R”, “RIT” centered
15) “Coarse” 144 MHZ: Adjust C6 to exactly 15,239375 MHz (X2)
16) “Coarse” 145 MHZ: Adjust C5 to exactly 15,364375 MHz (X1)
17) “Coarse” 145 MHZ DUPLX: Switch to “T” and adjust C70 to exactly 15,289375 MHz (X3)
18) Check: 145 MHz in DUPLEX is on “RX” same as in 15 (15,364375 MHz)
19) Recheck 15, 16 and 17 in “R” and “T”
20) Connect AF signal (2kHZ, 10mVpp) to MIC-Input
21) Connect Scope to Pin 9 of IC1 (MC3301P)
22) Mode “FM”, Transmit “T”
23) Adjust R52 for symmetrical clipping at Pin 9 of IC1;
 adjust amplitude with “MIC GAIN” and R53 if necessary
24) DC-Level at Pin 9 of IC1 should be app. 4,5 to 5,0VDC without AF-Input
25) Check that AF at Pin 9 of IC1 is just clipped
26) Connect Jumper P1 to J3 and adjust FM-Deviation with R61 to 5.0kHz
27) Connect Jumper P1 to J4 and adjust FM-Deviation with R62 to 2.5KHz (for narrow band FM)
28) Switch back to receive “R”
29) Note: Maximum deviation with constant AF input will be at 2.4kHz due to phase modulation and frequency response of IC1 (R57/R59/R60/C59/C60)
FM-IF

Alignment of FM-Unit can only be done outside the transceiver.

Use pins to connect supply (9V), Gnd, signals and meters acc. to the picture.

IMPORTANT:
An external trimmer R1 (10kOhm) has also to be connected, otherwise Q1 wouldn´t operate.

1) Connect counter to TP2 (high impedance); frequency should be 10,245MHz +/-1kHz
 Use analog scope, probe 10:1, with Y-output to connect the counter if available
2) Connect IF-Signal 10,700MHz, 1mV, unmodulated to pin 3 and 4(Gnd)
3) Connect DC-voltmeter to pin 10
4) Adjust L1 and L2 for max. negative AGC-voltage at pin 10; reduce amplitude of IF-
 signalgenerator as far as possible to find the point of best sensitivity; try variation of
 R1
5) FM-modulate IF-signal with sinus 1kHz and 5kHz deviation
6) Connect scope to pin 9, AF audio
7) Connect DC-voltmeter to pin 6, center meter
8) Adjust L3 and L4 for best demodulation (scope) and 0V at center meter
9) Reinstall FM-Unit into the transceiver
10) Mode “FM”, “RX”
11) Tune in signal 50Mikrovolt 145,000MHz: Set R1 (mainboard nearby the FM-Unit) for
 S=9
1: R1 (ext.) GAIN
2: R+9V
3: IF-IN 10,7MHz
4: GND
5: SQ-IN (AF)
6: Center Meter
7: SQ-OUT (AF)
8: SQ-On/Off
9: Demod Audio
10: Neg. AGC Out
T-MIX

1) Alignment requires an sweeper
2) Coarse “145MHz” *)
3) Connect sweeper to the external VFO input: J2 pins 8 (Gnd) and 9
4) Set sweep to 10,000 to 13,000MHz, app. 0dBm (700mVpp) *)
5) Mode “FM”
6) 50Ω Demodulator (10W) and viewer (scope) at Antenna output
7) Sweeper output to zero
8) “TX”
9) Set sweeper output to app. 1W at antenna output
10) Tune L1 to maximum
11) Tune L3 to L9 to maximum and flat response in the range of 10,385 to 12,385MHz *)
12) Reduce sweeper output when 1W at antenna output is exceeded
13) Tune C32, C35, C43 and C44 to maximum and flat response in the range of 10,385 to 12,385MHz
14) Go back to 10 until result is satisfying: Flat response (+/- 3dB in the range of 10,385 to 12,385MHz

*) With “Coarse” 145MHz and sweeper from 10,385 to 13,385MHz the output is 144 to 146MHz
Final/PA

1) “Coarse” to 145MHz, VFO to 000 (equals 145,000MHz)
2) Remove heatsink from rear of PA-unit (from now on observe it’s temperature)
3) Connect Dummyload 50W and Powermeter to antenna output
4) Remove jumper P11 from J11
5) “CW”, unkeyed
6) Connect A-meter between pin 2 & 3 of J11 (measures current of Q1)
7) “TX”
8) Adjust R3 for app. 30 to 40mA
9) “RX”
10) Connect A-meter between pin 1 & 4 of J11 (measures current of Q2)
11) “TX”
12) Adjust R8 for app. 80 to 90mA
13) “RX”
14) Mode “FM” and “TX”
15) Adjust C11, C12, C22, C23 for maximum output; should be 10W
16) Maybe TX-limiter R13 limits the output; then adjust R13 for 10W and go back to 15)
17) Adjust R12 for SWR=0
18) Connect resistor 25Ω/20W to antenna output (2 x 50Ω/10Ω parallel)
19) Adjust R17 for reducing TX-output: SWR protection at SWR = 2
Remove plug, connect A-meter
VFO

1) Let the VFO warm up for app. 10 Minutes
2) Adjust tuning range of VFO with L1 to exactly 1000kHz (use internal calibrator as reference)
3) If you adjust L1, a realignment of the mechanical scale is necessary.
4) Repeat 3) and 3) if necessary

Be very careful! Use plastic trimmers only – otherwise destruction of L1 will result!

(And you are a fool for the rest of you life....)
(De-) Installation of the VFO, Sequence
If you want to contact the author:
Stefan Steger, DL7MAJ, eMail: dl7maj@darc.de

Homepage: www.dl7maj.de