

VIKING 352

CITIZENS RADIO TRANSCEIVER PART NO. 242-0352-002

First Printing Covers: Viking 352 "A" Model June, 1975

THE JOHNSON ONE YEAR GUARANTEE

WITHIN ONE YEAR OF PURCHASE THE E. F. JOHNSON COMPANY WILL PRO-VIDE THE PARTS AND LABOR TO REPAIR YOUR JOHNSON EQUIPMENT IF IT IS DEFECTIVE IN MATERIAL OR WORKMANSHIP. JUST RETURN THE UNIT TO ANY AUTHORIZED JOHNSON SERVICE CENTER IN THE UNITED STATES.

E. F. JOHNSON COMPANY 299 10th Avenue S. W. Waseca, Minnesota 56093

The E. F. Johnson Company and its subsidiary, Comco, manufacture communications equipment to serve more markets than any other firm in America. In addition to two-way radio equipment for business and industrial users and for government, aeronautical, marine, public safety and personal communications, Johnson produces FM radio paging systems and electronic components.

TABLE OF CONTENTS

SECTION	PAGE	SECTION	P A G E
SPECIFICATIONS	4	Frequency Synthesizer Synthesizer Output	9 9
OPERATING INSTRUCTIONS	5	Receiver Transmitter	10 11
General Information	5	Meter Circuitry	12
Warranty Registration	5	Public Address	13
Operating Summary	5		
GENERAL OPERATION	6	ALIGNMENT INSTRUCTIONS	13
Channel Selection	6	Carrier Oscillator	13
Transmitter Power Check	7	Frequency Synthesizer	13
Transmitter Modulation Check	7	Receiver Alignment	13
Antenna	7	Transmitter Tuneup	14
OPERATING PROCEDURE FULL 23 CHANNEL OPERATION RADIO FREQUENCY INTERFERENCE TEN SIGNALS	7 7 7	PARTS LIST	17
	8		0.0
INSTALLATION INSTRUCTIONS	8	COMPONENTS LAYOUTS	22
CIRCUIT DESCRIPTION	8	SCHEMATIC	22
General	8	Southering	
Carrier Frequency Oscillator	8		

SPECIFICATIONS

(Measurements are made per EIA Standard RS-382 and are nominal unless otherwise stated.)

and are nominal unles	ss otherwise stated.)	Tight Squelch AM	50 (30) μV minimum and 2000 μV
GENERAL	99	SSB	maximum (NB on) 25 (15)*μV minimum and 1000μV maximum (NB on)
Channels	23		
Frequency Range	26.965 to 27.255 MHz	Squelch Sensitivity	3 dB or less signal change for 40 dB quieting at 1μV
Frequency Control Overall Dimensions	±0.005% crystal, -30°C to +60°C transmit and receive 6.1 cm H x 19 cm W x 27.2 cm D (2.4 in H x 7.5 in W x 10.7 in D)	AGC Characteristics AM SSB	Flat within ±6 dB from 250,000 to $5\mu V$ with 15 dB ±4 rolloff from 5 to $0.5\mu V$ Flat within +2/-8 dB from 250,000 to $5\mu V$ with 15 dB ±4 rolloff from 5 to
Weight -			$0.5\mu V$
Unit Shipping	2.75 kg (6 lbs) 3.20 kg (7 lbs)	Speaker Impedance	8 ohms
Microphone	Ceramic microphone with neoprene cord	Receiver Incre- mental Tune	±1350 maximum ±600 Hz minimum
Antenna Impedance	50 ohms	TRANSMITTER	
Circuitry	32 transistors, 54 diodes, 2 integrated circuits	Emission AM SSB	6A3 3A3J
Intermediate		RE Downer Outwat	
Frequency	7.8 MHz	RF Power Output AM	3 watts minimum/4 watts maximum at 13.8 VDC
Metering	Received signal strength/relative power output	SSB	8 watts PEP minimum/12 watts PEP maximum at 13.8 VDC
Power Require- ments	13.8 VDC positive or negative ground0.4A squelched receive1.8A fully modulated transmit	RF Spurious and Harmonic Attenua- tion	50 dB
Circuit Protection	4 ampere fuse	Audio Frequency Response	
Compliance	FCC Type Accepted Rule 95 (D)	AM SSB	+2/-16 dB from 300 to 3000 Hz +2/-20 dB from 300 to 3000 Hz
RECEIVER		Modulation	80 (70%)* minimum positive and negative
Sensitivity AM SSB	10 dB (S+N)/N at 0.5 (1.0)*μV input 10 dB (S+N)/N at 0.35 (0.5)*μV input	Carrier Suppression SSB	40 dB
Selectivity	4.5 kHz minimum bandwidth at -6 dB and 30 kHz maximum bandwidth at -60 dB	Unwanted Sideband Suppression SSB	50 dB
Spurious Rejection	50 dB		MANCE SPECIFICATIONS are shown er than NOMINAL value

Audio Output Power 2 watts with less than 10% distortion at $1000 \mu V, \; 1000 \; \text{Hz}$

OPERATING INSTRUCTIONS

GENERAL INFORMATION

Introduction

The Viking 352 is a compact 23 channel AM/SSB Citizens Radio transceiver which operates in a full carrier AM mode or a fully suppressed upper or lower A3J single sideband mode. It includes a fully synthesized 23 channel single conversion receiver for both AM and SSB modes.

Features

- ALL SOLID STATE Transistorized construction for low current drain and a long, trouble-free life.
- FULL 23 CHANNEL OPERATION No additional crystals are required for full Citizens Radio coverage.
- METERING The illuminated front panel meter indicates received signal strength in the receive mode.
 In the transmit mode you can read percent of modulation, and relative power output.
- LARGE CHANNEL SELECTOR An illuminated dial lets you see several channel numbers at once for easy channel selection.
- PUBLIC ADDRESS FUNCTION Useful for paging, remote monitoring and other needs.
- FULL LEGAL POWER RF output level is controlled by an automatic level control (ALC) circuit which provides full legal undistorted "talk power" for any voice.

Inspection

Carefully inspect your transceiver for possible shipping damage. Report any damage immediately to the transportation service--not to the E. F. Johnson Company.

Citizens Radio License

DO NOT TRANSMIT WITH YOUR EQUIPMENT UNTIL YOU HAVE RECEIVED YOUR LICENSE FROM THE FCC. ILLEGAL OPERATION CAN RESULT IN SEVERE PENALTIES.

An FCC Citizens Radio License application, FCC Form 505, is included with each transceiver, as well as a copy of the Citizens Radio Service Rules and Regulations, Part 95. If you do not already have a license, fill out the license application (FCC Form 505) as soon as possible and forward it to the Federal Communications Commission, Gettysburg, Pennsylvania 17325.

Before filling out FCC Form 505, read the instructions carefully--they are clear and easy to follow. When you sign FCC Form 505, you are affirming that you are in possession of, understand, and agree to abide by all of the rules and regulations of the Citizens Radio Service. While waiting for the FCC to process your license, take the time to review and thoroughly understand all of them. Remember, "I didn't know" is no excuse for violation of rules.

IMPORTANT: Effective March 1, 1975, the FCC license fee for Class "D" Citizens Radio is \$4.00.

Use FCC Form 505 for license application and make your check payable to Federal Communications Commission.

FEDERAL COMMUNICATIONS COMMISSION RULES AND REGULATIONS PROHIBIT TAMPERING WITH ANY INTERNAL RADIO ADJUSTMENTS. TAM-PERING WITH INTERNAL ADJUSTMENTS CAN SOME-TIMES CAUSE ILLEGAL OPERATION.

ONLY QUALIFIED TECHNICIANS HOLDING A VALID COMMERCIAL FIRST OR SECOND CLASS RADIO OPERATOR'S LICENSE, OR PERSONS UNDER THEIR IMMEDIATE SUPERVISION, ARE AUTHORIZED TO ADJUST RADIO TRANSMITTERS.

WARRANTY REGISTRATION

Fill the warranty registration card out completely on both sides and return it to the E. F. Johnson Company as soon as possible to ensure that your warranty will be effective.

OPERATING SUMMARY

Note: Refer to the Installation Section of this manual for instructions concerning installation of the transceiver.

To Receive:

OFF-Volume - Rotate clockwise past click position and set for a comfortable message volume level. CB-PA - Set to CB position.

- NB-OFF Set to OFF position when receiving normal signal. Set to NB (Noise Blanker) position when noisy signal is being received.
- USB-LSB-AM MODE A red lamp indicates USB (Upper Sideband), a blue lamp indicates LSB (Lower Sideband) and an amber lamp indicates AM (Amplitude Modulation). Set this switch to the desired mode of operation.
- CHANNEL SELECTOR Set to the desired operating channel.
- RF GAIN Adjust this control clockwise on weak received signal levels.
- FINE TUNE CONTROL Adjust this control to the point where the received signal sounds most natural.
- SQUELCH Advance this control clockwise to the point where speaker sound is "squelched" or cut off.

To Transmit:

- USB-LSB-AM MODE Set this switch to the desired mode of operation.
- $\ensuremath{\mathsf{CHANNEL}}$ SELECTOR Set to the desired operating channel.
- CB-PA Ensure that this switch is in the CB position.
- MICROPHONE Depress the push-to-talk (PTT) button and speak directly into the microphone grille (one or two inches away) in a normal voice. Release the PTT button to hear reply.
 - Note: When the microphone PTT switch is depressed, the VIK ING logo will glow red.

To Use PA (Public Address):

CB-PA - Set to PA position.

- PA SPKR JACK An external speaker, E. F. Johnson Part No. 250-0064-001, must be connected to this jack for PA operation.
- MICROPHONE Depress the PTT button and speak directly into the mouthpiece.

GENERAL OPERATION

CHANNEL SELECTION

The channel selector switch is a 24 position switch. The open position between channels 22 and 23 disables the transceiver. Do not attempt to transmit in this switch position.

The illuminated channel selector indicator allows you to see the channel switch positions adjacent to the channel on which you are operating. This is an aid in channel switching, since it reminds you which direction you should rotate the channel selector switch for any desired channel.

SIGNAL STRENGTH - RELATIVE POWER OUTPUT METER

The transceiver features a front panel mounted meter which monitors received signal strength and transmitted relative power output. The upper scale indicates received signal strength (S). Refer to the graph to determine actual signal strength, expressed in microvolts (μ V), of a received signal at given "S" meter readings. The meter indication varies when you speak into the microphone, indicating voice variations (modulation).

TRANSMITTER POWER CHECK

The relative output meter function measures the radio frequency voltage at the antenna jack on a scale that indicates power into a 50 ohm load. The nominal reading is "4." It is to be expected that your antenna will not present exactly a 50 ohm load to the transmitter, and that the antenna load will vary between channels 1 and 23. The power indication may, therefore, vary from the nominal reading of "4" on the relative output scale.

TRANSMITTER MODULATION CHECK

Transmitter modulation (voice transmission) is indicated by meter deflection variations when speaking into the microphone.

ANTENNA

Your transceiver is designed to operate into a 50 ohm, 27 MHz, CITIZENS RADIO antenna. Results obtained with your transceiver will be determined mainly by antenna system quality and proper antenna installation practices. (Refer to the antenna installation instructions included with your antenna.)

FCC rules and regulations concerning antenna structure height limitations allow the highest point of our omnidirectional antenna to be located up to 60 feet above ground level. However, there is a 20-foot height restriction on the highest point of a directional antenna (effective September 6, 1974).

Refer to FCC Part 95 Citizens Radio Service Rules and Regulations, Section 95.37 (C) for complete antenna requirement details.

The antenna should be as high as permissible, and as clear of surrounding objects (buildings, trees, power lines, etc.) as the location permits. If it is possible to increase antenna height by placing it on a nearby building, it may be worthwhile, even though the lead-in must be extended.

After installation of the antenna, the standing wave ratio (SWR) should be checked. The SWR should be regularly checked thereafter (consult a service technician for assistance).

OPERATING PROCEDURE

For most satisfactory transmitter operation, hold the microphone from one to two inches from your mouth and speak slowly and distinctly into the mouthpiece in a normal conversational manner. Depress the microphone push-totalk switch before you start to speak and release it after you finish speaking. Do not shout into the mouthpiece or otherwise try to vary your normal voice. Shouting does not increase range; speaking distinctly can increase range.

Each licensee is issued a call sign by the FCC (Federal Communications Commission) which identifies his station. There are 24 radio districts in the United States, and originally all Class D Citizens Radio station call signs began with prefixes 1W through 24W depending upon geographical location. More recently a series of three letters has been adopted in place of the earlier arrangement, for example--KLF0100.

Call signs must be used at the beginning and end of each series of communications. Proper procedure is shown in the following EXAMPLE:

When the operator of station KLF0100 unit 1 wishes to communicate with station KLF0100 unit 2 (which must be on the same channel), he transmits "KLF0100 unit 2 from KLF0100 unit 1, over."

The station called replies 'KLF0100 unit 1 from KLF-0100 unit 2, go ahead.''

KLF0100 unit 1 then proceeds with his message. When he wishes unit 2 to reply he says "over" and releases the PTT switch. Operators soon become accustomed to the change in background noise when the other station goes off the air, making the "over" unnecessary.

At the termination of communication the operator says, "This is KLF0100 unit 1, out" and the other station says, "This is KLF0100 unit 2, out." "Out" means end of communications for the time being.

Stations in the Citizens Radio Service use the 23 channels in the 27 MHz band on a shared basis. Since many people share this band, brevity and good operating procedure will save time and make best use of the channels available with minimum interference.

The term "Roger," a phonetic for "R" meaning "received and understood," is widely used. If it is necessary to break into a conversation between two stations, transmit "break, break" and your call sign and wait for an acknowledgment.

FULL 23 CHANNEL OPERATION

Your transceiver operates on all 23 Citizens Radio channels when purchased, eliminating the inconvenience and expense of purchasing and installing additional crystals.

You may communicate with any number of units operating under the same license on any one of the 23 Citizens Radio channels except channel 9, which is reserved for use in an emergency or to aid motorists, and between units operating under different licenses on channels 10 through 15 and on channel 23.

Channel 9 has been set aside for emergency communications involving the immediate safety of life of individuals or the immediate protection of property, or for communications necessary to render assistance to a motorist.

RADIO FREQUENCY INTERFERENCE

Your transceiver, when properly installed, will provide the reliability and efficiency necessary for good communications. But the operator must be aware of additional factors which affect communications, such as radio frequency interference. Radio frequency interference can be caused by generator systems and ignition systems in automobiles, trucks and boats. Not only does this type of interference cause an annoying noise, it can also reduce effective communications range.

Another type of radio frequency interference sometimes encountered in large municipalities or near medical centers, which produces a rough, raspy signal in the speaker, is caused by industrial equipments and medical diathermy. These equipments are operated for the most part between Citizens Radio channels 13 and 14, and for this reason, these and adjacent channels are avoided in large municipalities or near medical centers.

Atmospheric conditions sometimes cause "skip" phenomena, whereby distant signals hundreds of miles away can be heard clearly. FCC regulations make long range communications via "skip" illegal on Citizens Radio. Normally, strong local signals override skip signals. Use of some sort of directional antenna (such as rotatable or switchable beam) can help minimize skip signal interference and also enhances both the received signal and the transmitted signal in the favored direction.

"TEN SIGNALS"

The so-called "Ten Signals" are widely used in twoway radio communications to save time and reduce interference. Use of them will identify you as a qualified and informed two-way radio communicator. If you wish to know the location of a mobile or other unit, merely call the unit and request its "ten twenty." In like manner, any "Ten Signal" will convey its basic meaning. As operators memorize the "Ten Signals," common exchanges are greatly expedited.

- 10-1 Unable to copy
- 10-2 Signals good
- 10-3 Stop transmitting
- 10-4 Message received
- 10-6 Busy, stand by
- 10-7 Out of service, leaving air
- 10-8 In service, subject to call
- 10-9 Repeat message
- 10-10 Transmission completed, standing by
- 10-13 Weather and road conditions
- 10-16 Pick up at
- 10-18 Anything for us
- 10-19 Nothing for you
- 10-20 Location
- 10-24 Finished with last assignment
- 10-27 Moving to channel

INSTALLATION INSTRUCTIONS

The transceiver may be mounted under the dash or on the floor of a vehicle and will operate from either positive or negative ground battery voltage. A suggested installation procedure is as follows, for a more detailed installation procedure refer to E. F. Johnson booklet "Installing Your Citizens Radio" Part No. 004-2000-001.

- a. Select a mounting location that will allow clearance for heater and air conductioning ducts. Install the antenna and route the transmission line to the intended mounting location.
- b. Temporarily assemble the transceiver and the mounting bracket and hold it in the intended mounting location and check for clearance. Remove the bracket from the transceiver and hold the bracket in the mounting location and mark the mounting hole locations.
- c. Center punch and drill the mounting holes where marked and install the mounting bracket.
- d. Connect the antenna transmission line to the antenna connector, connect the red B+ lead to the positive (+) battery terminal, connect the black B+ lead to the negative (-) battery terminal and connect the external speaker, if used.
- e. Install the transceiver in the mounting bracket using the enclosed hardware.

CIRCUIT DESCRIPTION

GENERAL

The Johnson Viking 352 is a 23 channel fully solid state citizens radio transceiver that operates on upper sideband, lower sideband and regular AM channels. All transmit and receive frequencies are generated by a ten crystal frequency synthesizer. The Carrier Insertion Oscillator is a separate oscillator which generates a 7. 8025 MHz carrier for sideband detection and transmission.

The receiver is a single conversion receiver with four IF stages and a crystal filter for good selectivity and image rejection. Also included in the receiver is a noise blanker to remove any impulse type noise, an automatic gain control circuit (AGC) to maintain a constant receive signal level and an automatic noise limiter circuit (ANL) to remove any audio noise from the receive signal.

The transmitter consists of a mixer stage and a Class B RF power output stage to provide 4 watts RF output in AM and 12 watts PEP output in SSB.

The transceiver also includes an S/RFO meter which indicates receive signal strength in receive and relative RF output power in transmit in both AM and SSB modes of operation. The transceiver also includes a public address (PA) function so that the audio amplifiers can be used without activating the RF stages of the transmitter.

CARRIER FREQUENCY OSCILLATOR

The Carrier Oscillator consists of Y501, Q19 and associated components. The crystal controlled oscillator uses a crystal operating at series resonance to produce its fundamental frequency of 7.8025 MHz. Oscillator frequency adjustment is provided for by capacitor C510 and temperature compensation is provided by C501 and C502. Since the oscillator is not used in the AM mode, the supply voltage is switched off by the mode switch, S2-2, in the AM position and on in the LSB and USB positions.

In the LSB transmit mode, the 7. 8025 MHz is coupled from the emitter of Q19 through C512 to the base of the Buffer stage and then to the Balanced Modulator to be used in audio modulation. In the USB transmit mode, the 7. 8025 MHz is used in the Balanced Modulator and it is also coupled by C505 through CR501 to tuned transformers T501 and T502. Transformers T501 and T502 are tuned to pass only 15. 6050 MHz (second harmonic of 7. 8025 MHz) which is then coupled to the second gate of the USB Mixer transistor through C514 to be used in the Frequency Synthesizer.

In the LSB receive mode, the 7.8025 MHz is coupled through C457 to the emitters of Q16 and Q17, the SSB Detector, to detect the audio signals. To receive USB, the 15.6050 MHz from T502 is coupled to the gate of the USB Mixer and the 7.8025 MHz is also used by the SSB Detector.

FREQUENCY SYNTHESIZER

General

The frequency synthesizer circuitry consists of six high frequency crystals and four low frequency crystals, a high frequency (HF) oscillator, a low frequency (LF) oscillator, a synthesizer mixer, a 19 MHz amplifier, an upper sideband mixer, a 35 MHz amplifier and a diode switching network.

The synthesizer output is <u>7.8025 MHz below</u> the channel frequency for AM transmit and Lower Sideband (LSB) transmit and receive, <u>7.800 MHz below</u> the channel frequency for AM receive and <u>7.8025 MHz</u> above the channel frequency for Upper Sideband (USB) transmit and receive.

Low Frequency (LF) Oscillator

The LF oscillator consists of crystals Y607 through Y610, Q21 and its associated circuitry. The Channel Selector Switch, S1-3, selects one of these crystals and applies the signal to the base of the oscillator transistor, Q21. The oscillator is a modified Colpitts oscillator connected in a common collector configuration to provide high input impedance. In the transmit and receive SSB mode and the transmit AM mode, the crystals operate on their fundamental frequencies along with capacitors C601 and C602 to provide the low frequencies. In the AM receive mode, the LF crystal frequency is increased 2.5 kHz by CR603 so that the output of the synthesizer mixer will be 7.800 MHz below the channel frequency and the signal will pass at the center frequency of the crystal filter, F401.

The low frequency signal is coupled from the emitter of Q21 through C604 to the gate of the Synthesizer Mixer, Q25, where it is mixed with the signal from the high frequency oscillator.

High Frequency (HF) Oscillator

The HF oscillator consists of Q22, its associated

circuitry, and crystals Y601 through Y606. The oscillator is a modified Colpitts oscillator connected in a common collector configuration to provide high input impedance. The crystals operate at series resonance to produce their fundamental frequencies and are adjustable ±800 Hz with the Fine Tune Control. Since the carrier is not transmitted in the SSB mode, the receiver reinserts the carrier and the Fine Tune Control allows the receive crystals to be compensated for any difference between the transmitter carrier frequency and the receiver carrier frequency. The Fine Tune Control, R626, varies the voltage across CR606, this voltage change is felt as a change in capacitance across the high frequency crystals which results in a corresponding change in oscillation and improved audio reproduction.

The desired HF crystal is selected by S1-1 at the same time as S1-3 selects the LF crystal. The crystal frequency is connected to the base of the HF oscillator transistor, Q22, through C638. The HF signal is amplified by the transistor and then coupled from the emitter of Q22 through C608 to the gate of the Synthesizer Mixer, Q25. To eliminate any crystal frequency other than the desired frequency, S1-2 shorts out the unused crystals. To prevent the transceiver from operating on the blank space between channels 22 and 23, S1-4 effectively shorts the synthesizer B+ through R608 to ground.

SYNTHESIZER OUTPUT

Lower Sideband (LSB) and AM

The signal from the LF oscillator is mixed with the signal from the HF oscillator at the synthesizer mixer, Q25. The synthesizer output circuitry T601 and T602 is tuned to pass the sum of the two frequencies, which is in the 19 MHz range and is coupled to the base of the 19 MHz amplifier, Q26, through C617. The output of Q25 is coupled to the switching diode CR602 through T603. The output frequency of Q26 for AM receive is 2.5 kHz higher than the AM transmit and the LSB transmit and receive frequencies. For example channel 1 on AM transmit and LSB would be; 11.700 MHz + 7.4625 MHz = 19.1625 MHz and channel 1 on AM receive would be; 11.700 MHz + 7.465 MHz = 19.165 MHz.

Upper Sideband (USB)

The 19 MHz signal from C616/T602 junction is coupled to the first gate of Q23, the USB Mixer, where it is mixed with 15. 6050 MHz from the carrier oscillator. The output of the carrier oscillator is doubled by T501 and T502 to produce 15. 6050 MHz which is then coupled through C514 to the second gate of Q23 to be mixed with the 19 MHz. The output circuitry of T604, C611, T605 and C612 is tuned to pass the sum frequency which is in the 35 MHz range. The 35 MHz signals are then coupled through C612 to the base of the 35 MHz Amplifier, Q24. The amplified 35 MHz signals are then coupled to the USB Mixer and 35 MHz Amplifier and CR601 are switched from the 19 MHz

CHANNEL NUMBER	HIGH FREQUENCY + CRYSTAL	LOW FREQUENCY CRYSTAL	= LSB SYNTH OUTP	ESIZER + 2 (x) CARRIER UT FREQUENCY	USB SYNTHESIZ
1	Y601-11.700 MHz	Y607-7.4625 MHz	19.1625	MHz 15.605 MHz	34.7675 MHz
2	Y601-11.700 MHz	Y608-7.4725 MHz	19.1725		34.7775 MHz
3	Y601-11.700 MHz	Y609-7.4825 MHz	19, 1825		34.7875 MHz
4	Y601-11.700 MHz	Y610-7.5025 MHz	19.2025	MHz 15.605 MHz	34.8075 MHz
5	Y602-11.750 MHz	Y607-7.4625 MHz	19.2125	MHz 15.605 MHz	34.8175 MHz
6	Y602-11.750 MHz	Y608-7.4725 MHz	19.2225	MHz 15.605 MHz	34.8275 MHz
7	Y602-11.750 MHz	Y609-7.4825 MHz	19.2325	MHz 15.605 MHz	34.8375 MHz
8	Y602-11.750 MHz	Y610-7.5025 MHz	19.2525	MHz 15.605 MHz	34.8575 MHz
9	Y603-11.800 MHz	Y607-7.4625 MHz	19.2625	MHz 15.605 MHz	34.8675 MHz
10	Y603-11.800 MHz	Y608-7.4725 MHz	19.2725	MHz 15.605 MHz	34.8775 MHz
11	Y603-11.800 MHz	Y609-7.4825 MHz	19.2825	MHz 15.605 MHz	34.8875 MHz
12	Y603-11.800 MHz	Y610-7.5025 MHz	19.3025	MHz 15.605 MHz	34.9075 MHz
13	Y604-11.850 MHz	Y607-7.4625 MHz	19.3125		34.9175 MHz
14	Y604-11.850 MHz	Y608-7.4725 MHz	19.3225		34.9275 MHz
15	Y604-11.850 MHz	Y609-7.4825 MHz	19.3325		34.9375 MHz
16	Y604-11.850 MHz	Y610-7.5025 MHz	19.3525		34.9575 MHz
17	Y605-11.900 MHz	Y607-7.4625 MHz	19.3625		34.9675 MHz
18	Y605-11.900 MHz	Y608-7.4725 MHz	19.3725		34.9775 MHz
19	Y605-11.900 MHz	Y609-7.4825 MHz	19.3825		34.9875 MHz
20	Y605-11.900 MHz	Y610-7.5025 MHz	19.4025		35.0075 MHz
21	Y606-11.950 MHz	Y607-7.4625 MHz	19.4125		35.0175 MHz
22	Y606-11.950 MHz	Y608-7.4725 MHz	19.4225		35.0275 MHz
23	Y606-11,950 MHz	Y610-7.5025 MHz	19.4525	MHz 15.605 MHz	35.0575 MHz

SSB RECEIVE BLOCK DIAGRAM

AM RECEIVE BLOCK DIAGRAM The output of the USB Mixer for channel 1 USB transmit and receive frequencies would be 19.1625 MHz (from the Synthesizer Mixer) + 15.6050 MHz (2 x 7.8025 MHz from the Carrier Oscillator) = 34.7675 MHz.

RECEIVER

RF Amplifier

The received signal is coupled through the antenna switching diodes through C444 to the primary of tuned transformer T406. T406 passes the desired 27 MHz signals which are then applied to the gate of the RF Amplifier, Q15. The negative gate bias voltage for Q15 is supplied through CR415. CR425 provides stability of the RF amplifier by rectifying the AGC voltage and applying the resultant negative voltage as degenerative feedback to the gate of Q15. The gate voltage establishes the rate of conduction and the stage gain of Q15. As the received signal is applied to the gate of Q15, it is also applied to the receiver image trap, L404 and C461, which removes the first image frequency. The amplified RF Amplifier output is coupled to the Receive Mixer by T405 and C439.

Receive Mixer

Along with the receive RF signal on gate 1 of the mixer, the mixing frequency from the synthesizer diode switching network is coupled through C701 to gate 2 of the mixer. The output circuitry of the mixer, T404, is tuned to pass the difference between the received RF and the synthesizer mixing frequency. In the AM and LSB mode, the synthesizer frequency is low side injection and in the USB mode the synthesizer uses high side injection. The mix frequency for AM is 7.8 MHz below the receive RF, for LSB reception the mix frequency is 7.8025 MHz below the receive RF and for USB reception the mix frequency is 7.8025 MHz above the receive RF signal. The IF frequencies from T404 are applied directly to the base of the IF Amplifier, Q13.

IF Amplifier and Crystal Filter

The IF Amplifier amplifies the IF frequency enough to be applied to the crystal filter. The output of Q13 is coupled through C433 and through the noise gate diode CR412 and through C432 to the input of the crystal filter. C432, R426 and R425 provide a proper impedance match between the IF Amplifier and the crystal filter to get maximum signal coupling. The crystal filter has a center frequency of 7.8 MHz and a narrow bandwidth to provide good selectivity and image rejection of the received signal.

The output of the filter is coupled through C431 to the base of Q12, the second IF Amplifier. The IF frequency is amplified and coupled through three tuned transformer stages, at the collector of Q10 the IF signal is coupled through C459 to the AM Detector diodes CR417 and CR418.

AM Detector and Noise Limiter

In the AM mode, the amplified IF signal is coupled to the detector diodes through coupling capacitor, C459. When

the signal is applied to the detector, current will flow only during the negative portion of the IF signal. This current causes C445 to charge to the peak value of the rectified voltage on each negative half cycle. Capacitor C446 acts as a filter to remove the IF frequency component of the detector output so that the remaining DC component varies only according to the modulation of the original signal.

The Noise Limiter, CR419, works in conjunction with the Noise Blanker circuit. With the Noise Blanker Switch, S4, in the "ON" position, nine volts bias is applied to CR419 anode through R443 to forward bias the diode. With the Noise Blanker Switch in the "OFF" position, the nine volts is applied to the anode and cathode of CR419 which biases the diode off.

With the Noise Blanker "ON", the amplitude of the audio signal is limited by the conduction of CR419. CR419 is biased so that it will conduct only when aided by a specified level of audio which removes the AM noise from the audio waveform. Capacitor C447 couples the audio to the detector switch diode CR420 which is forward biased in the AM mode by the Mode Switch, S2-2. In the AM mode, the audio is passed through CR420 to the Volume Control.

SSB Detector

The SSB Detector, detects audio from the IF frequency by mixing the received signal with the 7.8025 MHz carrier. Since the carrier is removed from the transmitted signal by the balanced modulator, the receiver must reinsert the carrier as a reference to detect the audio.

The SSB Detector functions as a product detector and consists of T409, Q16, Q17 and associated components. In the SSB mode, supply voltage for the detector transistors and carrier oscillator is provided through the Mode Switch, S2-2. The 7.8025 MHz carrier is taken from the emitter of Q19 and coupled to the emitters of Q16 and Q17 by C457 causing a balanced condition and no output. When a signal is received, a sample of the IF frequency is taken from T402 by coupling capacitor C448 and applied to T409. The IF frequency is then applied to the base of Q16 and Q17 causing Q16 and Q17 to conduct. With 7.8025 MHz on the emitters of Q16 and Q17, the modulation on the IF causes the transistors to conduct. Therefore the audio signal is reproduced on the collectors of Q16 and Q17. The audio from Q17 is then applied to the Volume Control through C325. The signal from Q16 is coupled through C451 to the SSB Meter Amplifier, Q18.

Audio

The audio at the volume control, either from the AM Detector or the SSB Detector, is coupled to the base of the Audio Preamplifier, Q5, through C304. The audio is amplified and filtered by Q6, R311, R312, R313, C309 and C310. The amplified and filtered audio is coupled through R315 and C312 from the emitter of Q6 to the input of the Audio Power Amp, IC301, on pin 5. The Audio Power Amp amplifies the audio to 3 watts which is taken from pin 10 of the integrated circuit to the receive contact of the relay, K1, through C322 through the external speaker jack to the speaker.

Automatic Gain Control (AGC)

The Automatic Gain Control (AGC) circuit causes the receiver audio output to remain constant at the level set by the volume control regardless of the received RF signal level. In the SSB mode the received signal disappears when there is no modulation, therefore the AGC must reduce the receiver gain quickly upon receiving a large signal and increase gain slowly when the signal decreases or disappears. This fast attack and slow release action compensates for short pauses in conversation. The AGC response time can be adjusted by the Q7 source resistor R467. Since the slow release AGC action is not required in the AM mode, CR401 and CR402 are switched out of the circuit in the AM mode by S2-7.

A sample of the received signal is coupled from the collector of Q10 through C416 to the junction of CR404 and the AGC attack rectifier CR405. When the received signal level increases, the signal is rectified by CR405 which applies a negative DC bias voltage on the gate of the AGC Amplifier, Q7. The rate of conduction of Q7 is slowed by a negative voltage on the gate which causes the voltage drop across the source resistor R467 to decrease. This negative going voltage is applied to the base of Q13 through T404 and to the base of Q12 through R424. This negative voltage acts as reverse bias and reduces conduction of both transistors and reduces the IF gain. The negative voltage from Q7 source is also applied to the AGC control, Q32, which causes Q32 conduction to decrease. Since Q32 is in series with the source of the RF Amplifier, the gain of the RF Amplifier decreases. The overall effect is to decrease the RF and IF gain to prevent receiver overloading.

Another IF sample is coupled from T402 through C415 to the AGC release rectifier, CR401. CR401 and CR402 rectify this IF signal which charges C402 which, along with R401, establishes an RC time constant for the AGC release time. When the received signal decreases, the attack rectifier voltage decreases. However the action of Q7, to increase receiver gain, is slowed down by the voltage on C402 discharging through R401 which is felt at the gate of Q7. This negative voltage causes the conduction of Q7 to increase gradually to allow for a conversational pause.

Noise Blanker

The Noise Blanker circuit removes any impulse noise from the received signal. In the "ON" position, the Noise Blanker ON/OFF switch applies B+ to IC401, the Noise Blanker Amplifier, Q9, the Noise Amplifier and, Q8, the Blanker Gate. A sample of the IF frequency is taken from T404 and coupled through L403, C460 and C414 to the 7.8 MHz trap, T407, which effectively removes all 7.8 MHz signal and passes any noise pulses through C412 to the input of IC401 on pin 3. The amplified noise is coupled to the Noise Amplifier, Q9, through T408 and C408. The output from the Drain of Q9 is rectified by CR408 and CR409 and the resultant positive going DC voltage is applied to the gate of Q8, the Blanker Gate. Any negative pulses that may ap-

pear at the gate of Q8 are removed by CR424. The positive voltage at the gate of Q8 drives the transistor into satura-

tion which removes the forward bias from the anode of CR412 and blocks the IF frequency from Q13. Since the conduction of the Blanker Gate is coincident with the noise pulses only the noise pulses are removed and all audio is allowed to pass.

Squelch

The squelch circuitry will quiet the receiver until a signal is received to effectively eliminate any noise on the channel. The amount of signal necessary to open the squelch and enable the receiver is determined by the setting of the squelch control, R319. The farther clockwise the control is rotated, the larger the signal level required to open the squelch.

When a signal is received, a sample is coupled from Q10 collector through C416 causing an AGC action. The AGC voltage from the source of Q7 is felt on the base of the Squelch Amplifier, Q3. This voltage causes Q3 to conduct. With Q3 conducting, the collector voltage decreases and this negative going voltage forward biases the Squelch Gate, Q4. With Q4 conducting, the collector voltage decreases, causing Q5, the Audio Preamplifier, to conduct which enables the receiver audio.

When no signal is received, the Audio Preamplifier is reverse biased which disables the receiver audio. With no received signal, Q3 is cut off causing the collector voltage to increase. This positive voltage is felt at Q4 base causing Q4 to cut off. With Q4 cut off, its collector voltage goes high acting to reverse bias the Audio Preamplifier and disable the receiver audio.

TRANSMITTER

General

When the microphone push to talk button is depressed, the relay K1 is energized to switch the B+ voltage from receive to transmit circuitry. With K1 energized, the forward bias is removed from the switching diode CR 201 which turns on the mike amp, Q2, (to isolate the microphone input from the receive circuit).

Microphone Amplifier and AM Modulator

Audio from the microphone is coupled through C204 through the Limiter, Q1, to the base of the Microphone Amplifier, Q2. In the AM mode, the audio is amplified by Q2 and coupled from the collector through C207 and C208 through S3-4, the CB/PA switch, to the Active Filter, Q6. The Active Filter, which consists of R311, C309, R312, C310, R313 and Q6, provides filtering and audio shaping to limit effective bandwidth of the audio before it is amplified by the Audio Power Amplifier, IC301. The audio is coupled from Q6 emitter through R315 and C312 to pin 5 of IC301. The amplified audio is taken from pin 10 through K1 and switch S3-3 through R217 and diode CR204 to the collectors of Q30 and Q31. This acts as modulated B+ for Q30 and Q31 at a level of approximately 7 volts DC for the required 3 to 4 watt power output.

Automatic Microphone Limiter (Audio Compressor)

In the AM transmit mode, a sample of the audio is coupled from IC301 pin 10 through C212. The compressor diode, CR203 applies negative bias voltage through limiter resistor, R202, to the gate of the Limiter, Q1. The negative voltage at the gate of Q1 decreases the gain of Q1 and limits the audio input from the microphone.

Balanced Modulator

In the SSB transmit mode, the audio from the microphone is coupled through C204 through the Limiter and to the base of the Microphone Amp, Q2, through C205. The audio is amplified by Q2 and is coupled to the Balanced Modulator through C207, CR202, C215 and L501. CR202 is forward biased through S2-3, the Mode switch, by placing 9.0 volts on the anode through R209 in either the LSB or USB position.

The Balanced Modulator consists of CR502, CR503, CR504, CR505, T503, R514 and associated components. With no audio input from the Microphone Amplifier, the Balanced Modulator is balanced with R514. The Carrier Oscillator frequency of 7.8025 MHz is coupled from the emitter of Q19 through C512 to the base of the Buffer, Q20. The Buffer stage is an emitter follower configuration to provide high input impedance and prevent any oscillator loading effects from the Balanced Modulator. The carrier frequency from the Buffer is coupled through C513 to R514 which is adjusted for no output from T503.

With audio applied to the junction of CR502/CR503 and CR504/CR505, the diodes will conduct with respect to the audio sinewave voltage polarity. As the modulator diodes conduct, an unbalanced condition arises and the carrier frequency varies at the audio rate. These variations are felt at T503 primary which induces a corresponding voltage at T503 secondary. The modulated carrier frequency is coupled through the switching diode CR413, which has been forward biased through K1 relay contacts and S3-1, to the 7.8 MHz crystal filter. The filtered, modulated 7.8025 MHz is then coupled to the IF Amplifier, Q12, through C431. After the signals are amplified at Q12 they are coupled through the switching diode CR407, which also is forward biased through the relay contacts, S3-1 and R706, to gate 2 of the Transmit Mixer, Q27.

Mixer

The Mixer, Q27, combines the audio modulated 7.8025 MHz from the Balanced Modulator that appears on gate 2 with the frequency synthesizer output present on gate 1 for Upper and Lower Sideband operation. In the AM mode, the mixer mixes the synthesizer frequency with the unmodulated carrier frequency, 7.8025 MHz. For example on Channel 1 frequencies,

AM; synthesizer output of 19.1625 MHz + carrier frequency of 7.8025 MHz = 26.965 MHz. The 26.965 MHz then is modulated by the Driver and Power Amplifier Stages.

LSB; synthesizer output of 19. 1625 MHz + 1 kHz modulated carrier frequency of 7. 8015 = 26.9640 MHz.

USB; synthesizer output of 34.7675 - 1 kHz modulated carrier frequency of 7.8015 MHz = 26.9660 MHz.

RF Stages

The output of the mixer is selected by tuned transformers T701 and T702 and coupled to the Transmit Amplifier, Q28. The Transmit Amplifier and the Pre-Driver, Q29, the Driver, Q30, and the Power Amplifier, Q31, amplifiy the SSB signals to an RF, PEP (peak envelope power) of 12 watts. In the AM mode, the unmodulated carrier frequency is amplified by Q28 and Q29 then modulated by Q30 and Q31 and amplified for approximately 4 watts RF output.

The power output of the transmitter is determined by the B+ voltage on the collectors of Q30 and Q31. In the AM mode, the collector voltage is approximately 7 volts and is modulated from audio power amp IC301 which results in a 4 watt RF level. In the SSB mode, the collectors are connected directly to the 13.8 VDC source through S2-4, the mode switch, which results in 12 watts PEP RF output.

Automatic Level Control (ALC)

The ALC is used to limit the modulation in SSB operation. A sample of the transmitted RF is coupled by C723 to the ALC Detector diode CR708, which rectifies the RF and the resulting negative voltage is applied to the gate of Q7 through CR406. The negative bias voltage decreases the gain of Q7 causing the source voltage to decrease. This negative going voltage is applied to the base of the IF Am plifier, Q12, and reduces the gain of Q12, which in turn limits the modulated 7. 8025 MHz from the Balanced Modulator.

METER CIRCUITRY

The front panel meter serves the dual purpose of indicating received signal strength in "S" units and relative output power in the transmit condition.

In the AM receive condition, a sample of the IF signal is coupled from the secondary of T401 by C419 and is rectified by CR410 and CR411. This allows current to flow through meter giving an indication of the receive signal strength. Meter adjust potentiometer, R469, is adjusted for an S9 meter reading with a 50 μ V signal at the antenna.

In the SSB receive condition, the SSB signal sample is coupled from the collector of Q16 through C451 to the emitter of the SSB Meter Driver, Q18. When Q16 is conducting the collector voltage is a negative going voltage which forward biases Q18. As Q18 conducts, the receive signal from Q18 is rectified by CR422 and CR423. This positive voltage causes current to flow through the meter and R470, the SSB meter adjustment potentiometer.

In the AM and SSB transmit mode, a sample of the output power is coupled through C725 and rectified by CR709. The resultant positive voltage causes current to flow through the meter which is proportional to the modulated RF output.

PUBLIC ADDRESS (PA)

The Public Address (PA) function allows the audio amplifier sections to be used without activating the transmitter so that with a PA speaker connected to the PA speaker jack, the transceiver becomes a public address amplifier. With the PA/CB switch in the PA position and the microphone keyed, audio from the microphone is amplified by Q2 and coupled through C208 through the CB/PA switch to the Volume Control. The Volume Control establishes the gain provided by the Audio Preamplifier, Q5. The amplified audio is coupled from Q5 collector through the Active Filter to the Audio Power Amp, IC301. The amplified audio from the power amp is coupled through the transmit contact of relay K1 through S3-3 and to the external PA speaker.

ALIGNMENT

Carrier Oscillator

- a. Set the mode switch to LSB and connect the frequency counter to TP2, junction of C457 and R461.
- b. Adjust C510 for 7.8025 MHz.

FREQUENCY SYNTHESIZER

Frequency Adjustment

- a. Connect the frequency counter to the emitter of Q22 using an X10 RF probe. Set the Fine Tune control to mid-range and the Mode switch to LSB.
- b. Rotate the Channel Selector switch and adjust the High Frequency Oscillator frequency as listed in Table 1.

TABLE 1 HIGH FREQUENCY OSCILLATOR FREQUENCIES					
Channel Switch Position	Adjust	Frequency			
1 5 9 13 17 21	C648 C647 C646 C645 C644 C643	11,700 MHz 11,750 MHz 11,800 MHz 11,850 MHz 11,900 MHz 11,950 MHz			

c. Connect the frequency counter to TP1, junction of CR601 and CR602 and adjust the synthesizer output frequencies as listed in Table 2.

TABLE 2 SYNTHESIZER OUTPUT FREQUENCIES						
Channel Switch Position	Adjust	Frequency				
1 6 11 16	C642 C641 C640 C639	19.1625 MHz 19.2225 MHz 19.2825 MHz 19.3525 MHz				

Synthesizer Output

- a. Set the channel selector switch to channel 13 and set the mode switch to LSB.
- b. Connect an RF voltmeter to TP1, junction of CR601 and CR602. Adjust T601, T602 and T603 for a maximum meter reading.
- c. Set the mode switch to USB and adjust T501, T502, T604, T605 and T606 for a maximum meter reading.
- d. Readjust T606 and T603 for approximately equal voltage levels for USB and LSB respectively.

RECEIVER ALIGNMENT

Connect the receiver test circuit as shown in Figure 5 and refer to Figure 8 for alignment points location. Set the squelch control fully counterclockwise, the RF gain control fully clockwise, the fine tune control to its center position and the volume control for a suitable reading.

SSB TRANSMIT BLOCK DIAGRAM

AM TRANSMIT BLOCK DIAGRAM

RF AND IF SECTION

IF Adjustment (AM)

- a. Connect the DC voltmeter to the source of Q7 and adjust R467 for 1.7 VDC.
- b. Set the mode switch to AM and set the channel selector to channel 13. Set the signal generator to 27.115 MHz modulated 30% with 1 kHz and connect it to the base of Q13 through a ceramic 0.01 μ F capacitor.
- c. Adjust T401, T402 and T403 for maximum audio output while keeping the generator output to a minimum.
- IF Adjustment (SSB)
- a. Set the mode switch to USB and connect a signal generator to the base of Q13 through a 0.01 μ F ceramic capacitor. Set the signal generator output to 7.8 MHz unmodulated.
- b. Adjust T409 for maximum audio output. Readjust T401, T402 and T403 if necessary.

RF Adjustment

- Set the mode switch to AM, set the channel selector switch to channel 13 and connect the signal generator to the antenna connector. Set the generator output to 27.115 MHz modulated 30% with 1 kHz.
- Adjust T404, T405 and T406 for maximum audio output while keeping the generator output to a minimum.

Tight Squelch Adjustment

- a. Set the mode switch to AM, set the channel selector switch to channel 13 and connect the signal generator to the antenna connector. Adjust the signal generator output for 27.115 MHz at a level of 250 μ V.
- b. Set the squelch control, on the front panel, fully clockwise then adjust R318 until the squelch just opens.

Receive Meter Adjust

- a. Set the mode switch to AM, set the channel selector switch to channel 13 and connect the signal generator to the antenna connector. Adjust the generator output for 27.115 MHz at a level of 150 μ V.
- b. Adjust R469 for an S-9 reading on the front panel meter.
- c. Change the mode switch to LSB and adjust R470 for an S-9 reading on the front panel meter with the same signal input as in step a.

Noise Blanker Adjustment

a. Set the mode switch to AM, set the Noise Blanker switch to the NB position, set the channel selector switch to channel 13 and connect the signal generator to the antenna connector. Set the generator output to 27, 115 MHz unmodulated.

- b. Connect the RF voltmeter to TP4, gate of Q9, and adjust C460 and T408 for a maximum meter reading.
- c. Adjust T407 for a minimum meter reading with a modulated 27.115 MHz signal at the antenna connector.

Receiver First Image Trap Adjustment

- Set the mode switch to USB, set the channel selector switch to channel 13 and connect the signal generator to the antenna connector. Set the generator output to the first image spurious frequency at USB (channel 13 = 42.7160 MHz).
- b. Adjust C461 for a minimum audio output while keeping the generator output at a maximum.

TRANSMITTER TUNEUP

NOTE

The directional insertion wattmeter which is used to read CW signals will not read SSB peak envelope power directly. Therefore a PEP power meter should be used. If a PEP power meter is not available, the directional insertion wattmeter can be used. To convert the reading to PEP, use the following formula:

Peak Envelope Power (PEP) = $\frac{\text{Wattmeter reading}}{0.405}$

AM and SSB Power Adjustment

a. Set the mode switch to AM and connect the transmitter test setup as shown in Figure 6.

- b. Key the transmitter and adjust T701, T702 and T703 for maximum power output.
- c. Set the mode switch to LSB and connect two audio generators to the microphone input as shown in Figure 7. Adjust the output of one generator to 500 Hz and the other to 2400 Hz at a level that will produce a good crossover waveform.

d. Key the transmitter and adjust T704, T705 and T706 for maximum RF output while keeping the two tone audio signal input to a minimum.

NOTE

To adjust T703 and T706; melt the wax, make the adjustment and reseal with wax.

SSB Carrier Suppression Adjustment

- a. Set the mode switch to LSB and refer to the transmitter test setup.
- b. Key the transmitter, with no modulation, and adjust C511, R514 and T503 for a minimum RF voltmeter reading at the antenna, approximately 20 mV.

Automatic Level Control (ALC) Adjustment

- a. Connect the test setup as shown in Figure 2 and set the mode switch to LSB.
- b. Connect the two tone generators to the microphone input, one generator set to 500 Hz and the other at 2400 Hz.
- c. Key the transmitter and set the audio generator output level to produce 6 watts PEP (2.4W RMS) from the transmitter.
- d. Increase the generators output level by 23 dB, and adjust R727 for a transmitter power output of 12 watts PEP (4.8 W RMS).

Automatic Modulation Limiter

- a. Connect a signal generator to the microphone connector and set the Mode switch to AM.
- b. Set the audio generator output for 1 kHz at a level sufficient to provide 50% modulation.
- c. Increase the audio generator output level 16 dB and adjust R216 for 90% modulation.

Transmitter Frequency Adjustment

- a. Connect the test setup as shown in Figure 2, set the mode switch to AM and set the channel selector switch to channel 13.
- b. Loop couple the frequency counter to L707 and key the transmitter.
- c. Adjust R626 for 27.115 MHz (unmodulated channel 13) and recheck the frequency on all channels. The transmitted frequency should be within ±0.005% of the channel frequency.

ALIGNMENT POINTS FIGURE 8

- R] Meter
- a. Connect the test setup as shown in Figure 2 and set IF the mode switch to AM.
- a. Key the transmitter, unmodulated, and adjust R726 b. for a reading of 4 on the meter.
- b.

Harmonic Trap

This adjustment is made at the factory and it removes

the second harmonic frequency from the transmitted signal. Since the second harmonic is in the 54 MHz range, it can interfere with television channel 2. Therefore if there is some question about TV interference, proceed as follows:

- Turn on a nearby TV and set it to channel 2. a.
- b. Set the transceiver channel selector to channel 13, set the Mode Switch to AM, connect a 50 $\ensuremath{\Omega}$ dummy load and key the transmitter.

Adjust C735 for minimum TV interference. c.

					DC VC	TABLE 4	
Q1	AM SSB G 0 0.45 D 0 0 S 0 0	Q2	B E C	1.6 1.14 2.8		Q3	B 0.6 Q4 B 8.6 (unsquelct E 0.05 E 9.2 C 8.8 C 1.15
Q5	B 1.8 (unsquelched) E 1.15 C 4.0	Q6	B E C	4.8 3.9 9.2		Q7	D 3.7 (RF Gain Max.) Q8 D 7.5 G -0.1 G 0.01 S 1.5 S 0.49
29	D 9.3 (NB ON) G 0 S 0	Q10	B E C	1.5 0.9 8.9		Q11	B 1.6 Q12 B 1.2 E 1.0 E 0.7 C 8.9 C 8.8
Q13	B 1.5 E 0.8 C 8.5	Q14	D G1 G2 S	8.0 0 0 4.0		Q15	D 8.9 Q16 B 1.6 G 0.01 E 1.2 S 1.2 C 3.2
Q17	B 1.6 E 1.2 C 2.8	Q18	B E C	2.0 1.4 2.6		Q19	B 3.1 Q20 B 2.3 E 3.3 E 2.5 C 6.8 C 8.5
Q21	B 2.6 E 2.4 C 9.2	Q22	B E C	2.4 2.5 8.4		Q23	D 13.2 Q24 B 1.0 G1 0.01 E 0.4 G2 0.01 C 6.5 S 0.62
Q25	D 8.8 G 0.06 S 1.8	Q26	B E C	1.2 0.5 5.4		Q27	AMSSBQ28B0.6D10.812.0E1.3G11.96.7C9.0G22.63.8S1.00.8
Q29	B 0.7 E 0.1 C 12.9	Q30	B E C	AM 0.5 0 5.3	SSB 0.6 0 13.2	Q31	AM SSB Q32 B 0.5 B 0.6 0.6 E 0 E 0 0 C 6.2 C 5.0 13.2
IC301	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IC401	1 3 4	8.9 1.5 0	5 7 8	1.5 8.9 9.4	J

c.

PARTS LIST

SYMBOL NO.	DESCRIPTION	PART NO.	SYMBOL NO.	DESCRIPTION	PART NO
	CA DA CITODS		C416	Same as C415	
	CAPACITORS		C416		F10 0001 10
C101	Foodthm, consoiter	022 2810 020	C417 C418	0.01 μ F ceramic 50 WV	510-0001-10
C101	Feedthru capacitor	022-2810-020	-	$0.04 \ \mu F$ mylar 50 WV	510-1003-47
C102	2200 μ F electrolytic 16 WV	022-2810-021	C419	$0.001 \mu\text{F}$ ceramic 50 WV	510-3002-10
C103	220 μ F electrolytic 16 WV	022-2810-017	C420	0.04 μ F mylar 50 WV	510-1003-47
C104	Same as C103		C421	Same as C420	
C105	Same as C103		C422	Same as C420	
C106	0.01 μ F ceramic 50 WV	510-0001-103	C423	Same as C420	
C201	Same as C106		C424	Same as C420	
C202	Same as C106		C425	Same as C420	
C203	Same as C106		C426	20 pF mica 50 WV	022-2810-00
C205	1 μ F electrolytic 50 WV	022-2810-009	C428	0.04 µF mylar 50 WV	510-1003-47
C206	47 μ F electrolytic 16 WV	022-2810-015	C429	Same as C428	
C207	$1 \ \mu F$ electrolytic 50 WV	022-2810-009	C430	Same as C428	
C208	0.02 μF ±20%, 16V	510-3010-223	C431	0.001 µF ceramic 50 WV	510-3002-10
C209	10 μ F electrolytic 16 WV	022-2810-013	C432	Same as C431	
C210	0.04 mylar 50 WV	510-1003-473	C433	20 pF mica 50 WV	022-2810-00
C211	4.7 μ F electrolytic 25 WV	022-2810-019	C434	0.01 μ F ceramic 50 WV	510-0001-10
C212	Same as C211		C435	$0.04 \mu\text{F}$ ceramic 50 WV	510-1003-10
C213	$10 \ \mu F$ electrolytic 16 WV	022-2810-013	C437	$0.01 \ \mu F$ ceramic 50 WV	510-0001-10
C214	0.001 µF ceramic 50 WV	510-3001-102	C438	Same as C437	
C215	$1 \mu\text{F}$ electrolytic 50 WV	022-2810-009	C439	3 pF mica 50 WV	022-2810-01
C216	$0.01 \ \mu F$ ceramic	510-0001-103	C440	5 pF mica 50 WV	022-2810-00
C301	$1 \ \mu F$ electrolytic 50 WV	022-2810-009	C441	$0.01 \mu\text{F}$ ceramic 50 WV	510-0001-10
C302	Same as C301	022 2010 007	C442	Same as C441	010 0001 10
C303	$0.01 \ \mu\text{F}$ ceramic 50 WV	510-0001-103	C443	$1 \ \mu F$ electrolytic 50 WV	022-2810-00
C304	$1 \ \mu F$ electrolytic 50 WV	022-2810-009	C444	$0.01 \ \mu\text{F}$ ceramic 50 WV	510-0001-10
C305	$0.01 \ \mu\text{F}$ ceramic 50 WV	510-0001-103	C445	100 pF mica 50 WV	510-0001-10
C306	Same as C305	510-0001-105	C446	$0.1 \mu\text{F}$ mylar 50 WV	510-1003-10
C307	$0.22 \ \mu\text{F}$ electrolytic 16 WV	022.2810.014	C447	$0.04 \ \mu\text{F}$ mylar 50 WV	510-1003-47
C308		022-2810-014	C448	1 pF mica 50 WV	022-2810-01
C309	47 μ F electrolytic 16 WV	022-2810-015	C449	0.04 mylar 50 WV	
	$0.01 \ \mu F mylar 50 WV$	022-2810-022	C449	Same as C449	510-1003-47
C310	Same as C309	000 0010 016	C450		022 2010 00
C311	0.0047 μ F mylar 50 WV	022-2810-016	C451 C452	1 μ F electrolytic 50 WV	022-2810-00
C312	0.01 μ F mylar 50 WV	510-1003-103	C452 C453	0.01 mylar 50 WV	022-2810-02
C313	0.01 μ F ceramic 50 WV	510-0001-103	C454	$10 \ \mu\text{F}$ electrolytic 16 WV	022-2810-01
C314 C315	47 μ F electrolytic 16 WV	022-2810-015	C455	0.01 μF ceramic 50 WV 1 pF electrolytic 50 WV	510-0001-10
C316	220 μ F electrolytic 16 WV	022-2810-017	C455	Same as C455	022-2810-00
C317	120 pF mica 50 WV	510-0001-121	C450 C457	15 pF mica 50 WV	510-0001-15
C318	300 pF mica 50 WV 0.1 μF mylar 50 WV	510-0001-301	C458	$0.01 \ \mu\text{F}$ ceramic 50 WV	510-0001-15 510-0001-10
	$0.033 \mu\text{F}$ mylar 50 WV	510-1003-104	C459	47 pF mica 50 WV	510-0002-47
C319 C320		510-1003-333	C439	40 pF trim	022-2812-00
C320	47 μ F electrolytic 16 WV 470 μ F electrolytic 16 WV	022-2810-015 022-2810-018	C400 C461	10 pF trim	022-2812-00
C322	$220 \ \mu\text{F}$ electrolytic 16 WV	022-2810-018	C462	0.04 mylar 50 WV	510-1003-47
C322	Same as C322	022-2010-017	C463	56 pF mylar	022-2810-00
C324	$0.1 \ \mu F mylar 50 WV$	510-1003-104	C464	1 μ F electrolytic 50 WV	022-2810-00
C325	$1 \ \mu F$ electrolytic 50 WV	022-2810-009	C465	0.04 mylar 50 WV	510-1003-47
C326	$10 \ \mu\text{F}$ electrolytic 16 WV	022-2810-013	C466	Same as C465	
C401	$0.01 \ \mu F$ ceramic 50 WV	510-0001-103	C501	22 pF ceramic NPO 50 WV	510-3013-22
C402	$1 \mu\text{F}$ electrolytic 50 WV	022-2810-009	C502	500 pF mica 50 WV	510-0001-51
C403	$0.1 \mu\text{F}$ mylar 50 WV	510-1003-104	C503	150 pF mica 50 WV	510-0001-15
C 40 4	$0.01 \ \mu F$ ceramic 50 WV	510-0001-103	C504	0.01 μ F ceramic 50 WV	510-0001-10
C405	$1 \ \mu F$ electrolytic 50 WV	022-2810-009	C505	15 pF mica 50 WV	510-0001-15
C 40 6	0.001 μF ceramic 50 WV	510-3002-102	C506	2 pF 500 WV	510-9002-20
C407	20 pF mica 50 WV	022-2810-005	C507	$0.01 \ \mu F$ ceramic 50 WV	510-0001-10
C408	Same as C407		C508	$0.001 \ \mu F$ ceramic 50 WV	510-3002-10
C408	$0.01 \ \mu\text{F}$ ceramic 50 WV	510-0001-103	C509	$0.01 \mu\text{F}$ ceramic 50 WV	510-0001-10
C409	20 pF mica 50 WV	022-2810-005	C510	20 pF trim	022-2812-00
C410	$0.01 \ \mu\text{F}$ ceramic 50 WV		C511	10 pF trim	022-2812-00
C412	20 pF mica 50 WV	510-0001-103 022-2810-005	C512	100 pF mica 50 WV	510-0001-10
	$0.01 \ \mu\text{F}$ ceramic 50 WV		C513	Same as C512	010 0001 10
C413		510-0001-103	C514	5 pF mica 50 WV	022-2810-00
C414	15 pF mica 50 WV	510-0001-150	C514 C515	$0.01 \ \mu\text{F}$ ceramic 50 WV	510-0001-10
C415	4.7 pF mica 50 WV	022-2810-010	0.010	5.01 µr. ceramic 50 WV	510-0001-10

SYMBOL NO.	DESCRIPTION	PART NO.	SYMBOL NO.	DESCRIPTION	PART N
C601	100 pF mica 50 WV	510-0001-101	C715	100 pF mica 50 WV	510-0001-1
C602	300 pF mica 50_WV	510-0001-301	C716	0.01 μ F ceramic 50 WV	510-0001-1
C603	$0.01 \ \mu F$ ceramic 50 WV	510-0001-103	C717	Same as C716	
C604	2 pF mica 50 WV	022-2810-001	C718	56 pF mica 50 WV	510-0001-5
C605	100 pF mica 50 WV	510-0001-101	C719	150 pF mica 50 WV	510-0001-1
C606	300 pF mica 50 WV	510-0001-301	C720	0.01 μ F ceramic 50 WV	510-0001-1
C607	0.01 µF ceramic 50 WV	510-0001-103	C721	Same as C720	
C608	10 pF mica 50 WV	510-0001-100	C722	150 pF mica 50 WV	510-0001-1
C609	0.01 μ F ceramic 50 WV	510-0001-103	C723	20 pF mica 50 WV	022-2810-0
C610	Same as C609		C724	400 pF mica 50 WV	022-2810-0
C611	1P 500V	510-9002-109	C725	2 pF mica 50 WV	022-2810-0
C612	56 pF 500V	022-2810-002	C726	$0.01 \ \mu F$ ceramic 50 WV	510-0001-1
C613	$0.01 \mu\text{F}$ ceramic 50 WV	510-0001-103	C727	65 pF mica 50 WV	022-2810-0
C614	Same as C613		C728	200 pF mica 50 WV	510-0001-2
C615 C616	Same as C613 2 pF 500V	510-9002-209	C729 C730	0.01 μ F ceramic 50 WV	510-0001-1
C617	100 pF mica 500V	510-0001-101	C730	0.1 μ F mylar 50 WV 0.01 μ F ceramic 50 WV	510-1003-1 510-0001-1
C618	$0.01 \mu\text{F}$ ceramic 50 WV	510-0001-103	C732	100 pF mica 50 WV	510-0001-1
C619	220 pF mica 50 WV	510-0001-221	C733	$1 \mu\text{F}$ electrolytic 50 WV	022-2810-0
C620	0.01 µF ceramic 50 WV	510-0001-103	C734	$0.01 \ \mu\text{F}$ ceramic 50 WV	510-0001-1
C621	22 pF ceramic 50 WV	510-3013-220	C737	22 μF	022-2810-0
C622	Same as C621		C738	$10 \ \mu F$ electrolytic 16 WV	022-2810-0
C623	Same as C621		C801	$0.01 \mu\text{F}$ ceramic 50 WV	510-0001-1
C624	Same as C621		C802	Same as C801	
C625	30 pF ceramic 50 WV	022-2810-003	C803	Same as C801	
C626	Same as C625		C804	Same as C801	
C627	Same as C625		C805	Same as C801	
C628	Same as C625		C806	0.04 μF mylar 50 WV	510-1003-4
C629	Same as C625		C807	Same as C806	
C630	Same as C625			510554	
C631	15 pF mica 50 WV	510-0001-150		DIODES	
C632	0.01 μ F ceramic 50 WV	510-0001-103	GD 101		
C633	0.04 μ F mylar 50 WV	510-1003-473	CR101	Silicon, U05B	022-2823-0
C634	0.01 μ F ceramic 50 WV	510-0001-103	CR102	Zener 9V 1W	022-2823-0
C635	Same as C634		CR103	Same as CR102	
C636	Same as C634		CR104	Same as CR102	
C637	56 pF mica 50 WV	510-0001-560	CR201 CR202	Germanium 1N60	022-2823-0
C638	0.001 μ F ceramic 50 WV	510-3002-102	CR202 CR203	Silicon WG713	022-2823-0
C639	40 pF trim	022-2812-001	CR203 CR204	Germanium 1N60	022-2823-0
C640	Same as C639		CR204 CR301	Silicon U05B Germanium 1N60	022-2823-0
C641	Same as C639		CR401	Same as CR301	022-2823-0
C642	Same as C639		CR401 CR402	Silicon WG713	022-2823-0
C643	30 pF trim	022-2812-002	CR402 CR403	Same as CR402	022-2823-0
C644	Same as C643		CR403 CR404	Same as CR402 Same as CR402	
C645	Same as C643		CR404 CR405	Same as CR402 Germanium 1N60	000 0000 (
C646	Same as C643		CR405 CR406	Silicon WG713	022-2823-0
C647	Same as C643		CR406 CR407	Silicon wG/13 Same as CR406	022-2823-0
C648	Same as C643	F10 0001 100	CR407 CR408	Germanium 1N60	000 0000 0
C649	0.01 μ F ceramic 50 WV	510-0001-103	CR408 CR409	Same as CR408	022-2823-0
C650	Same as C649		CR409 CR410	Same as CR408 Same as CR408	
C651	Same as C649		CR410 CR411	Same as CR408	
C652	Same as C649		CR412	Same as CR408	
67 01	100 - E	E10 0001 101	CR413	Same as CR408	
C701	100 pF mica 50 WV	510-0001-101	CR413 CR414	Silicon WG713	022-2823-0
C702	5 pF mica 50 WV	022-2810-004	CR414 CR415	Silicon 1S2472	022-2823-0
C703	$0.01 \ \mu F$ ceramic 50 WV	510-0001-103	CR415 CR416	Same as CR415	022-2023-(
C704	Same as C703	E10 0001 101	CR410 CR417	Germanium 1N60	022-2823-0
C705	100 pF mica 50 WV	510-0001-101	CR417 CR418	Same as CR417	022-2023-0
C706	1 pF 500V	510-9002-109	1	Same as CR417 Silicon WG713	022 2022 (
C707	220 pF 500V	510-0001-221	CR419	Silicon wG/13 Same as CR 419	022-2823-0
C708	0.01 μ F ceramic 50 WV	510-0001-103	CR420	Same as CR419 Same as CR419	
C709	Same as C708	F10 0001 101	CR421 CR422	Same as CR419 Germanium 1N60	022-2823-0
C710	130 pF mica 50 WV	510-0001-131		Same as CR422	022-2023-6
C711	0.01 μ F ceramic 50 WV	510-0001-103	CR423		000-0000-0
C712	Same as C711		CR424	Germanium 1N34A	022-2823-0
C713	Same as C711		CR425	Silicon WG713	022-2823-0
C714	30 pF mica 50 WV	022-2810-003	CR501	Same as CR425	

PARTS LIST (cont'd)								
SYMBOL NO.	DESCRIPTION	PART NO.	SYMBOL NO.	DESCRIPTION	PART NO.			
CD 500	<i>a</i>							
CR502	Germanium 1N60P	022-2823-007	L502	150 μH choke	022-2842-003			
CR503	Same as CR502		L601	5.5 µH choke	022-2842-004			
CR504	Same as CR502		L602	470 μH choke	022-2842-002			
CR505	Same as CR502		L603	Same as L602				
CR601	Silicon WG713	022-2823-004	L 6 04	0.22 μH choke	022-2842-005			
CR602	Same as CR601		L608	22 μH choke	542-3002-002			
CR603	Germanium 1S1007	022-2823-008	L701	0.65 μ H choke	022-2842-006			
CR604	Silicon WG713	022-2823-004	L702	Same as L701				
CR605	Same as CR604		L703	0.22 μH choke	022-2842-005			
CR606	Silicon	022-2823-009	L704	22 µH choke	542-3002-002			
CR701	Zener 0.7V 250 mW	022-2823-010	L705	Same as L704				
CR702	Same as CR701		L706	0.65 μH choke	022-2842-006			
CR703	Same as CR701		L707	0.22 μH choke	022-2842-005			
CR704	Silicon 10D4	022-2823-011	L708	C997ND 27 MHz ant	022-2842-007			
CR705	Same as CR704		L714	1.2 µH choke	022-2842-008			
CR706	Germanium 1N60	022-2823-003						
CR707	Same as CR706			METER				
CR708	Same as CR706							
CR709	Same as CR706		м1	Meter	022-2854-001			
			IVII	Meter	022-2854-001			
	LAMPS			TRANSISTORS				
DS101	14V 75 mA	022-2849-001	Q1	FET limiter	022-2876-001			
DS102	16V 40 mA	022-2849-002	Q2	NPN mic.amp	022-2876-002			
DS103	Same as DS102		Q3	NPN squelch amp.	022-2876-002			
DS104	Same as DS102		Q4	NPN squelch gate				
DS105	Same as DS102		Q5	NPN audio preamp	022-2876-004			
DS106	Red 16V 40 mA	022-2849-003	Q6	NPN active filter	022-2876-003			
		044 4017 000	Q7		022-2876-003			
	FUSES		Q8	FET AGC amp FET blanker gate	022-2876-005			
			Q9	FET noise amp	022-2876-001			
F101	Fuse, 3A 250V	534-0003-026	Q10	•	022-2876-006			
F301	Fuse (pigtail) 1.5A	022-2834-001		NPN IF amp	022-2876-007			
TB302	Terminal strip	586-1001-019	Q11	Same as Q10				
1 0002	Terminal Strip	300-1001-019	Q12	Same as Q10				
	FILTER		Q13	Same as Q10				
	FILTER		Q14	FET receive mixer	022-2876-008			
F401	Crystal filter 7.8 MHz	022-2832-501	Q15	FET RF amp	022-2876-009			
1.401	Crystar inter 7.8 MHz	044-2032-301	Q16	NPN SSB detector	022-2876-007			
	IC		Q17	Same as Q16	2			
	IC .		Q18	NPN SSB meter amp	022-2876-007			
IC301	HA1339 audio amp	022-2844-001	Q19	NPN 7.8025 MHz osc	022-2876-007			
IC401	Noise amp μ A703	022-2844-001	Q20	NPN 7.8025 MHz buffer	022-2876-007			
10401	Noise amp µA/05	022-2044-002	Q21	NPN low frequency osc	022-2876-007			
			Q22	NPN high frequency osc	022-2876-007			
	CONNECTORS		Q23	FET USB mixer	022-2876-008			
1101	Min compositor	F1F 1000 001	Q24	NPN 35 MHz amp	022-2876-007			
J101	Mic connector	515-1003-001	Q25	FET synthesizer mixer	022-2876-005			
J301	3.5 connector	022-2815-001	Q26	NPN 19 MHz amp	022-2876-007			
J302	Same as J301	E1E 0000 001	Q27	FET transmit mixer	022-2876-008			
J701	Antenna connector	515-3003-001	Q28	NPN transmit amp	022-2876-007			
	RELAY		Q29	NPN predriver	022-2876-010			
	RELAI		Q30	Driver	022-2876-011			
К1	Relay	022-2867-001	Q31 Q32	NPN power amplifier AGC control	022-2876-012 022-2876-007			
	SPEAKER		-	RESISTORS				
LS1	Speaker	022-2889-001	D101					
			R101	56Ω 1 W metal oxide	569-1006-560			
	INDUCTORS		R102	Same as R101				
			R103	33Ω 1 W metal oxide	569-1006-330			
L101	1 mH choke	022-2842-001	R 202	270 K Ω 1/4 W carbon	569-1002-271			
L401	470 μH choke	022-2842-001	R 203	$10K\Omega 1/4$ W carbon	569-1002-103			
L402	Same as L401	Una-4014-004	R 204	3.3K Ω 1/4 W carbon	569-1002-332			
L403	22 μH choke	542-3002-002	R 205	$15K\Omega 1/4$ W carbon	569-1002-153			
L404	$1 \mu H$ choke	542-3002-002	R 206	$470\Omega 1/4 W$ carbon	569-1002-471			
L501	22 μH choke	542-3002-001	R 207	Same as R206				
	an per clore	J74-J004-004	R 208	2.2KΩ 1/4 W carbon	569-1002-222			

	0		T (cont'd)		
SYMBOL NO.	DESCRIPTION.	PART NO.	SYMBOL NO.	DESCRIPTION	PART NO.
R 209	10KΩ 1/4 W carbon	569-1002-103	R441	22K 1/4 W carbon	569-1002-223
R210	$1K\Omega 1/4$ W carbon	569-1002-102	R442	Same as R441	
R212	$22K\Omega 1/4$ W carbon	569-1002-223	R443	$33K\Omega 1/4$ W carbon	569-1002-333
R 213	2. 2KΩ 1/4 W carbon	569-1002-222	R445	Same as R443	
R214	10KΩ 1/4 W carbon	569-1002-103	R446	Same as R443	
R215	470Ω 1/4 W carbon	569-1002-471	R447	Same as R443	
R216	1ΚΩ	022-2862-006	R448	$10K\Omega 1/4$ W carbon	569-1002-103
R 217	0.22Ω 1/4 W carbon	022-2869-003	R449	Same as R448	
R301	$100\Omega \ 1/4 \ W \ carbon$	569-1002-101	R450	Same as R448	
302	$56K\Omega 1/4$ W carbon	569-1002-563	R451	$15K\Omega 1/4$ W carbon	569-1002-15
R303	$33K\Omega 1/4$ W carbon	569-1002-333	R452 R453	3. $3K\Omega 1/4$ W carbon	569-1002-33
304	4.7K Ω 1/4 W carbon	569-1002-472	R454	10KΩ 1/4 W carbon Same as R453	569-1002-10
305	$15K\Omega 1/4$ W carbon	569-1002-153 569-1002-102	R456	$15K\Omega 1/4$ W carbon	569-1002-15
306 307	$1K\Omega 1/4$ W carbon 3. $3K\Omega 1/4$ W carbon	569-1002-332	R457	4.7K Ω 1/4 W carbon	569-1002-47
308	$1K\Omega 1/4$ W carbon	569-1002-102	R458	$470\Omega 1/4$ W carbon	569-1002-47
309	$10K\Omega 1/4$ W carbon	569-1002-103	R459	2. $2K\Omega 1/4$ W carbon	569-1002-22
310	Same as R309	007 2002 200	R460	3.3K Ω 1/4 W carbon	569-1002-33
311	1.8K Ω 1/4 W carbon	569-1002-182	R461	$1K\Omega 1/4$ W carbon	569-1002-10
312	4.7K Ω 1/4 W carbon	569-1002-472	R464	$100\Omega 1/4$ W carbon	569-1002-10
313	Same as R312		R465	2.2KΩ 1/4 W carbon	569-1002-22
314	Same as R312		R466	$10K\Omega 1/4$ W carbon	569-1002-10
			R 467	5ΚΩ	022-2862-01
R316	330Ω 1/4 W carbon	569-1002-331	R 468	Potentiometer, RF gain	022-2862-00
317	1KΩ 1/4 W carbon	569-1002-102	R469	20ΚΩ	022-2862-00
318	10ΚΩ	022-2862-007	R470	100KΩ	022-2862-00
R319	Potentiometer, squelch	022-2862-002	R 501	4.7KΩ 1/4 W carbon	569-1002-47
320	Potentiometer volume	022-2862-001	R 502	Same as R 501	
R401	470KΩ 1/4 W carbon	569-1002-471	R 503	470Ω 1/4 W carbon	569-1002-47
402	1KΩ 1/4 W carbon	569-1002-102	R 504	$220\Omega 1/4$ W carbon	569-1002-22
403	100K Ω 1/4 W carbon	569-1002-104	R 505	2.7KΩ 1/4 W carbon	569-1002-27
404	270Ω 1/4 W carbon	569-1002-271	R 506	33KΩ 1/4 W carbon	569-1002-33
R405	3.3KΩ 1/4 W carbon	569-1002-332	R 507	$15K\Omega 1/4$ W carbon	569-1002-15
R406	2.7KΩ 1/4 W carbon	569-1002-272	R508	1KΩ 1/4 W carbon	569-1002-10
R407	$1K\Omega 1/4$ W carbon	569-1002-102	R 509	Same as R508	
R408	$1M\Omega \ 1/4 \ W \ carbon$	569-1002-105	R510	47KΩ 1/4 W carbon	569-1002-47
409	Same as R408		R511	330Ω 1/4 W carbon	569-1002-33
R410	220KΩ 1/4 W carbon	569-1002-224	R512	$100\Omega \ 1/4 \ W \ carbon$	569-1002-10
R411	20KΩ 1/4 W carbon	569-1002-203	R513	$330\Omega 1/4$ W carbon	569-1002-33
412	1KΩ 1/4 W carbon	569-1002-102	R514	500Ω	022-2862-01
413	$220\Omega \ 1/4 \ W \ carbon$	569-1002-221	R601	$1K\Omega 1/4$ W carbon	569-1002-10
414	15KΩ 1/4 W carbon	569-1002-153	R602	$33K\Omega 1/4$ W carbon	569-1002-33
415	3.3KΩ 1/4 W carbon	569-1002-332	R603	$22K\Omega 1/4$ W carbon	569-1002-22
416	470Ω 1/4 W carbon	569-1002-471	R604	330Ω 1/4 W carbon	569-1002-33
417	1KΩ 1/4 W carbon	569-1002-102	R605	$22K\Omega 1/4$ W carbon	569-1002-22
418	3.3KΩ 1/4 W carbon	569-1002-332	R606	33KΩ 1/4 W carbon	569-1002-33
419	470Ω 1/4 W carbon	569-1002-471	R607	330Ω 1/4 W carbon	569-1002-33
420	1KΩ 1/4 W carbon	569-1002-102	R608	100Ω 1 W	569-1006-10
421	$47\Omega \ 1/4 \ W \ carbon$	569-1002-470	R609	470Ω 1/4 W carbon	569-1002-47
422	100Ω 1/4 W carbon	569-1002-101	R610	Same as R609	
423	1KΩ 1/4 W carbon	569-1002-102	R612	47K 1/4 W carbon	569-1002-47
424	$200\Omega 1/4$ W carbon	022-2869-004	R613	$47\Omega 1/4$ W carbon	569-1002-47
425	47KΩ $1/4$ W carbon	569-1002-473	R614	560Ω 1/4 W carbon	569-1002-56
426	$220\Omega 1/4$ W carbon	569-1002-221	R615	470K 1/4 W solid	569-1002-47
427	$1K\Omega 1/4$ W carbon	569-1002-102	R616	$1K\Omega 1/4$ W carbon	569-1002-10
428	Same as R427		R618	$220\Omega 1/4$ W carbon	569-1002-22
429	$3.3K\Omega 1/4$ W carbon	569-1002-332	R619	$47 \mathrm{K} \Omega \ 1/4 \mathrm{W} \mathrm{carbon}$	569-1002-47
430	$470\Omega 1/4$ W carbon	569-1002-471	R620	$47\Omega \ 1/4 \ W \ carbon$	569-1002-47
431	$47\Omega 1/4$ W carbon	569-1002-470	R621	$680\Omega 1/4 \text{ W carbon}$	569-1002-68
432	$100 \text{K} \Omega 1/4 \text{ W carbon}$	569-1002-104	R622	$1K\Omega 1/4$ W carbon	569-1002-10
433	$1M\Omega 1/4$ W carbon	569-1002-105	R623	$100 \text{K} \Omega 1/4 \text{ W carbon}$	569-1002-10
434	Same as R433	007 x00M x00	R624	$3.3K\Omega 1/4$ W carbon	569-1002-33
435	$100K\Omega$ 1/4 W carbon	569-1002-104	R625	Potentiometer, fine tune	022-2862-00
436	$10K\Omega 1/4$ W carbon	569-1002-104	R626	10K	
(430 (437	$470\Omega 1/4$ W carbon	569-1002-105	R627	$100\Omega \ 1/4 \ W \ carbon$	022-2862-01 569-1002-10
R437	$15K\Omega 1/4$ W carbon	569-1002-153	R701	$100\% \ 1/4$ W carbon $100\% \ 1/4$ W carbon	569-1002-10
R440					569-1002-10
1110	$220\Omega 1/4 \text{ W carbon}$	569-1002-221	R702	$1K\Omega 1/4$ W carbon	307-1002-10

PARTS LIST (cont'd)									
SYMBOL NO.	DESCRIPTION	PART NO.	SYMBOL NO.	DESCRIPTION	PART NO.				
R703	3.3KΩ 1/4 W carbon	569-1002-332	T704	C979NT 10MM 27 MHz	022-2892-017				
R704	470Ω 1/4 W carbon	569-1002-471	T705	C996NT 10MM 27 MHz	022-2892-018				
R705	Same as R704		T706	C043ND 10MM 27 MHz	022-2892-019				
R706	10KΩ 1/4 W carbon	569-1002-103							
R707	2.7KΩ 1/4 W carbon	569-1002-272		CRYSTALS					
R708	$470\Omega \ 1/4 \ W \ carbon$	569-1002-471							
R709	$47\Omega 1/4$ W carbon	569-1002-470	Y501	7.8025 MHz HC-25/U	022-2820-011				
R710	$10\Omega 1/4$ W carbon	569-1002-100	Y601	11.700 MHz HC-25/U	022-2820-001				
R711	$1K\Omega 1/4$ W carbon	569-1002-102	Y602	11.750 MHz HC-25/U	022-2820-002				
R712	5.6 Ω 1/4 W carbon	569-1002-569	Y603	11.800 MHz HC-25/U	022-2820-003				
R713	2. 2Ω 1/2 W solid	569-1004-222	Y604	11.850 MHz HC-25/U	022-2820-004				
R714	$1K\Omega 1/4$ W carbon	569-1002-102	Y605	11.900 MHz HC-25/U	022-2820-005				
R715	$47\Omega 1/2$ W solid	569-1004-470	Y606	11.950 MHz HC-25/U	022-2820-006				
R716	470Ω 1/2 W solid	569-1004-471	Y607	7.4625 MHz HC-25/U	022-2820-007				
R717	$22\Omega 1/2$ W solid	569-1004-220	Y608	7.4725 MHz HC-25/U	022-2820-008				
R718	$100\Omega 2$ W metal oxide	022-2869-001	Y609	7.4825 MHz HC-25/U	022-2820-009				
R719	$10\Omega \ 1/2 \ W$ solid	569-1004-100	Y610	7.5025 MHz HC-25/U	022-2820-010				
R720	$150\Omega \ 1 \ W \ metal \ oxide$	022-2869-002							
R721	3.3K Ω 1/4 W carbon	569-1002-332		KNOBS					
R722	$1K\Omega 1/4$ W carbon	569-1002-102							
R723	4.7M Ω 1/4 W solid	569-1004-475		Knob, squelch	547-0014-002				
R724	$1K\Omega 1/4$ W carbon	569-1002-102		Knob, volume	547-0014-002				
R725	15KΩ 1/4 W carbon	569-1002-153		Knob, mode switch	547-0014-002				
R726	100K Ω	022-2862-009		Knob, RF gain	547-0014-002				
R727	10ΚΩ	022-2862-012		Knob, fine tune	547-0014-002				
	SWITCHES			Knob, channel selector	547-0014-001				
		000 0000 001		HARDWARE					
S1	Channel selector switch	022-2883-001							
S2	Mode switch	022-2883-002		352 panel	022-2832-001				
S3	CB-PA slide switch	022-2883-003		Dial	022-2832-002				
S4	Noise blanker slide switch	022-2883-004		352 overlay (Viking 352)	022-2859-001				
	TRANSFORMERS			352 overlay (Johnson)	022-2859-002				
	I KANSF OKMERS			Pilot lamp bracket, red	022-2817-001				
T401	S190AT 10MM 7.8 MHz IF	022-2892-001		Pilot lamp bracket, amber	022-2817-002				
T401	S190AT 10MM 7.8 MHZ IF S183AT 10MM 7.8 MHZ IF	022-2892-001		Pilot lamp bracket, blue	022-2817-003				
T402	Same as T402	022-2092-002		Pilot lamp bushing	022-2813-001				
T404	Same as T402			Johnson plastic trade mark	559-2018-002				
T405	10MM 27 MHz	022-2892-003		Front overlay	022-2859-003				
T405	Same as T405	022-2092-005		Rear panel Battery cable stopper	022-2817-004				
T407	S183AT 10MM 7.8 MHz IF	022-2892-002		3.5 connector mounting plate	586-1001-019 022-2817-005				
T408	Same as T407	022 20/2 002		Main chassis	022-2817-006				
T409	S185ZT 10MM 7.8 MHz detector	022-2892-005		Meter mounting panel	022-2817-000				
T501	Z176IT 10MM 15.6 MHz multi	022-2892-006		Heat sink for Q29,Q30,Q31	022-2814-001				
T502	Same as T501			Heat sink for IC301	022-2814-002				
T503	S111DT 10MM balance modulator	022-2892-007		Feedthru capacitor mounting					
T601	Z282IT 10MM 19 MHz	022-2892-008		plate	022-2817-008				
T602	Z188AT 10MM 19 MHz	022-2892-009		Cabinet	022-2817-009				
Т603	Z284AT 10MM 19 MHz	022-2892-010		Mounting bracket	537-9352-001				
Т604	Z285IT 10MM 35 MHz	022-2892-011		Crystal holder	126-0110-005				
T605	Z286KT 10MM 35 MHz	022-2892-012		Insulator f/HA1339	022-2818-001				
Г606	Z287AT 10MM 35 MHz	022-2892-013		Insulator f/mic connector	022-2818-002				
T701	C181ZT 10MM 27 MHz	022-2892-014		Rubber plate f/speaker	022-2818-003				
T702	C182ZT 10MM 27 MHz	022-2892-015		Mount plate f/speaker	022-2817-011				
Т703	C042QD 10MM 27 MHz	022-2892-016		Phone plug	515-0020-001				
		ŝ							

FREQUENCY SYNTHESIZER PC BOARD (SOLDER SIDE VIEW)

TRANSCEIVER PC BOARD (SOLDER SIDE VIEW)

QUALITY ELECTRONIC PRODUCTS SINCE 1923

Printed in U.S.A.

Part No. 002-9352-001

