Monolithic Amplifier

DC-1 GHz

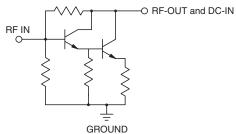
Product Features

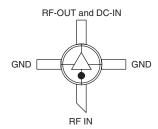
- Wideband, DC to 1 GHz
- High gain, 17.8 dB typ. at 0.1 GHz
- Low noise figure, 3.5 dB typ.
- Exact foot print substitute for MSA-0185
- Low current, 17mA
- · Cascadable, unconditionally stable
- Aqueous washable
- Protected by US Patent 6,943,629

Typical Applications

- Cellular
- PCN instrumentation

CASE STYLE: VV105 PRICE: \$0.99 ea. QTY. (30)


+ RoHS compliant in accordance with EU Directive (2002/95/EC)


The +Suffix has been added in order to identify RoHS Compliance. See our web site for RoHS Compliance methodologies and qualifications.

General Description

MAR-1+ (RoHS compliant) is a wideband amplifier offering high dynamic range. It has repeatable performance from lot to lot. It is enclosed in a Micro-X package. MAR-1+ uses Darlington configuration and is fabricated using InGaP HBT technology. Expected MTBF is 15,000 years at 85°C case temperature.

simplified schematic and pin description

Function	Pin Number	Description
RF IN	1	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
RF-OUT and DC-IN	3	RF output and bias pin. DC voltage is present on this pin; therefore a DC blocking capacitor is necessary for proper operation. An RF choke is needed to feed DC bias without loss of RF signal due to the bias connection, as shown in "Recommended Application Circuit".
GND	2,4	Connections to ground. Use via holes as shown in "Suggested Layout for PCB Design" to reduce ground path inductance for best performance.

Electrical Specifications at 25°C and 17mA, unless noted

Parameter		Min.	Typ. ³	Max.	Units
Frequency Range*		DC		1	GHz
Gain	f=0.1 GHz f=1 GHz	15²	17.8 16.5		dB
Input Return Loss	f=DC to 1 GHz		17.5		dB
Output Return Loss	f=DC to 1 GHz		21		dB
Output Power @ 1 dB compression	f=0.5 GHz		+2.5		dBm
Output IP3	f=0.5 GHz		+14		dBm
Noise Figure	f=0.5 GHz		3.3		dB
Recommended Device Operating Current			17		mA
Device Operating Voltage			5.0		V
Device Voltage Variation vs. Temperature at 17 mA			-2.9		mV/°C
Device Voltage Variation vs. Current at 25°C		15.0		mV/mA	
Thermal Resistance, junction-to-case ¹			203		°C/W

^{*}Guaranteed specification DC-1 GHz. Low frequency cut off determined by external coupling capacitors.

Absolute Maximum Ratings

Parameter	Ratings	
Operating Temperature	-40°C to 85°C	
Storage Temperature	-55°C to 100°C	
Operating Current	40mA	
Power Dissipation	200mW	
Input Power	13dBm	

Note: Permanent damage may occur if any of these limits are exceeded.


These ratings are not intended for continuous normal operation.

¹Case is defined as ground leads. ²Full temperature range. ³Based on test data of Model MAR-1SM+ (Case Style WW107).

Product Marking

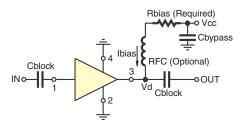
Additional Detailed Technical Information

Additional information is available on our web site. To access this information enter the model number on our web site home page.

Performance data, graphs, s-parameter data set (.zip file)

Case Style: VV105

Plastic micro-x, .085 body diameter, lead finish: tin/silver/nickel


Tape & Reel: F20

Suggested Layout for PCB Design: PL-262

Evaluation Board: TB-432-1+

Environmental Ratings: ENV08T3

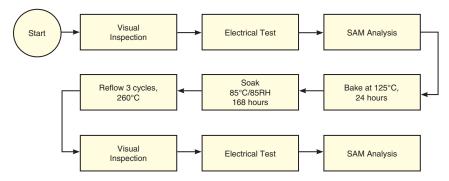
Recommended Application Circuit

Test Board includes case, connectors, and components (in bold) soldered to $\ensuremath{\mathsf{PCB}}$

R BIAS				
Vcc	"1%" Res. Values (ohms) for Optimum Biasing			
7	118			
8	178			
9	237			
10	294			
11	357			
12	412			
13	464			
14	536			
15	590			

ESD Rating

Human Body Model (HBM): Class 1B (500v to < 1000v) in accordance with ANSI/ESD STM 5.1 - 2001


Machine Model (MM): Class M1 (< 100v) in accordance with ANSI/ESD STM 5.2 - 1999

MSL Rating

Moisture Sensitivity: MSL1 in accordance with IPC/JEDEC J-STD-020C

No.	Test Required	Condition	Standard	Quantity
1	Visual Inspection	Low Power Microscope Magnification 40x	MIP-IN-0003 (MCT spec)	45 units
2	Electrical Test	Room Temperature	SCD (MCL spec)	45 units
3	SAM Analysis	Less than 10% growth in term of delamination	J-Std-020C (Jedec Standard)	45 units
4	Moisture Sensitivity Level 1	Bake at 125°C for 24 hours Soak at 85°C/85%RH for 168 hours Reflow 3 cycles at 260°C peak	J-Std-020C (Jedec Standard)	45 units

MSL Test Flow Chart

