" COMMODORE 04
| PROGRAMMER’S
L REFERENCE GUIDE

* coammodore

COMPUTER

/
f
¥
i
i ! o

' .COMMODORE 64X

PROGRAMMER'S

. -REFERENCE GUIDE

Published by
Commodare Business Machines, Inc.
and
Howard W. Sams & Co., Inc,

FIRST EDITION
THIRD PRINTING—1983

Copyright () 1982 by Commodore Business Machines, Inc.
All rights reserved,

This manual is copyrighted and contains propriztary information, Mo part of this publica-
tion may be repreduced, stored in a retrieval system, er transmitted in any form or by any
maans, electronic, mechanical, photacopying, recording, or otherwise, without the prior
written permissien of COMMODORE BUSINESS MACHIMES, Ine.

TABLE OF CONTENTS

INTRODUCTION s ix
& WhEY S [HalTdEdR L it s pecn s eretabe AT X
® How to Use This Reference Guide xi
® Commodore 64 Applications Guide ..., .., i
® Commodore Information Network_..... . o xvii

1. BASIC PROGRAMMING RULES 1
0 TbSEHERIaN | s s e s e A SR SR R S TR 2
® Screen Display Codes (BASIC Character Set) 2

The Operating System (OS) 2
® Programming NMumbers and Variables 4
Integer, Floating-Point and String Constants 4
Integer, Floating Point and String Variables........... 7
Integer, Floating-Point and Siring Arrays 8
® Expressions and Operatoeisvvvesevinnennsene 9
Arithmetic Expressions ..o iiivennnennanisas 10
ATitHMETE O pBIEIIONS. .. ccop v s rm sans s e 1B
Relotiono] Operadors: i aolys o i e oe e e esmte 12
Logicol Operaters o ciiiia i il Erssas e e sats 13
Hierarchy of Operations. ... cviviviiivessenasiosasaes 15
iy (e ey e e TR e NESORN TN St o 1 16
el e M de Ty T TTCY) e R o S P Y P [
® Programming Techniques i iiiernnnnnrians 18
Deite CORVERIIONS i m v moso s i s foi b f e e i it 8
Using the INPUT Statement ... iiineinennnnn 18

Using the GET Statement cccuvvnnnna. 22
How to Crunch BASIC Pregrems ovevnvennn.. 24

2. BASIC LANGUAGE VOCABULARY 29
® |ntroduction T I R S PO |+
® BASIC Keywords, Abbreviations, and Functien Types . . 31
® Description of BASIC Keywords (Alphabetical) 35
® The Commodore 64 Keyboard and Features 93
B Serean BAOR o i v sl mands dE s A i i e e 04

3. PROGRAMMING GRAPHICS ON THE
COMMOBORE B8 o iomom e s s e va i in 5 imie

® Grophics Overview . ..i:..oiiuisuuineiaivisiieain.
Charccter Display Modes .. v oo viveininaioiisiiicses

B M MEBEE . A i i s i s s e e et it
PR o R T e S R e r e o R AL
® Craphick Loetdlons: <o i s i e s e L
Yideo Benk Seleciion: ou s i an s s e e d e s
Soteen Memeny vosnraiasmn s e v e e
Colar MBMORE = 55w emimsn s Sommeme dh s Srnwss
fad =TT T ST T S A USRS
® Standard Character Mede
Choracter Behihions v steing aiitimas Do areos sopedim i
® Programmoble Characters i iiini.
® Multi-Color Mode Graphicsccvviiriiiinnnn...
Multi-Color Mode Bit ..o iiiiiveirarvanisnanis
® Extended Background Color Mede,.
@ Bit Mapped Graphics T e Y T I
Standard High-Resolution Bit Map Mede
g oie et | A T R D
® Multi-Color Bit Map Medeoiiiiiirienninnnennn

SGOTH BETOIIAG v mr st armts e e ik e i e

WSERTEE L el L o e L L el e i S e T

Dathg BeSHTte ron sttt nn addn, o b me o | be 0%
Sprite Paliterss coue i auie baddinie s v ss senesivars

Turning Sprites N vy ss iy paamen Sl sh Trsder i s s s
Turring SPRESOM & o o cin srsimn s i <ibms s F o s s
CRloE clsn i e s e slele] | st | b s §) gl

Setting a Sprite to Multi-Coler Mede

ExpeindBel SREtEE v v s wars eim wim soii bir » memis o 0 5ie o 40
S POSTHIDTIIE ovomvne vr s & min st mrdnn b g s 5 i e

Sprite Pesitioning Summary . ..o i i e,
Sprite Display Priorities . ovevniinen i eeiae e
CRllTEian DBYOCE 1o e sm i s b i s i b A S W
B Ofher Graphics FEOMIBE o conswomnm sy bamsson s

SErEEi BIGTIHG. o mwmns v s enmsswieml@ e s a0

RESTRE REBTEEN . 00 08 Mo @ e e L D
Interrupt Status Register ... cvvnivninnit i iennnnns
Suggested Screen and Characrer Celar Combinations . . .

® Progromming Sprites—Anether Lok 153

Maoking Sprites in BASIC—A Short Program 153
Crunching Your Sprite Pregramsooviiiiinvnnnnnon, 156
Positioning Sprites on the Screen 157
SETTHE PrIOrTES: « &0 v o mmd sl b e e ai e s 141
D RO DBRHE | s e e e s 163
Creating a Sprite . . . Step by Stepc.u... 163
Moving Your Sprite on the Screen.................... 165
VEPHCOL SEROITIMG s v s vipmcs g i o mm B s S5 w0 e 166
The Dancing Mouse—A Sprite Program Example 164
Easy Spritemaking Charto i, 176
Spritemaking Notes: . i:ouiveieeecavinis iy rsressaasi 177

4. PROGRAMMING SOUND AND MUSIC

ON YOUR COMMODODRE 64ccounn.. 183
= e [Tt o S e) L o O SNBSSt N 184
Notume: Eomtrel o coyipeiesis sivunasssvs avniaass wi 186
Frequencies of Sound Wavescovviiiiiinnnn.. 186
® Using Mulltiple Voices iiiiiiiiin i iirrnas 187
Controlling Multiple Voicesooierin i iiinnnn 191
® Changing Wovefarms i iiiernne. 192
Understanding Waveformsovviverinniiiiiineiess 194
® The Envelope Generater 195
BT tIRE o ta e iR b e 8 S b E R b o g, 199
® Advenced Technigues vvveriiineninnnnnneeennnn. 202
® Synchrenizetion and Ring Medulatien 207

5. BASIC TO MACHINE LANGUAGE 209

® What is Machine Language?_..._ crmasas 21D
What Does Machine Code look Like? 21
Simple Memory Map of the Commodare 64 _ 212

The Registers Inside the 6310 Microprocesser 213
® How Do You Write Machine Language Programs? 214
® Hexadecimal Notation .. ovviiviiiiviiiivaiiiiia.. 215
Yaur First Machine Languege Instruction 218

Writing Your First Progrom .. .ccovviinanas, RPN
W Addrassing Modas o o cooswuis s s vs s s b b T] |
Zove P e i S R L S N e s e N e 221
The Sk cosnmmamna s s e s st e T ST e 222

L T L e 223
Inirdel INABREE: <o ann smr s e b SR e e 223
hyned TNAIRRCE & waimnion e oo i s b w e 224
Branches and Testing 226

8 SubrouBRes: o Eer i D e e 228

® Useful Tips fer the Beginner _..... 219

® Approaching a large Task.ooveiiiieniniiiiinennns 230

® MCS56510 Microprocessor Instruction Set—

Alphabetic Sequence ... iie i, el S ROE
Instruction Addressing Modes and
Related Execcution Times .o vt viinvennnnenriivnnnns 254

® Memory Management on the Commodare 64 260

& i RN A = e e G R e e e St s A 2568

® KERNAL Power-Up Activitiesvvirvinnmnnnnanreivnnns 269
How to Use the KERNALcvviiiinnnnrininns 270
User Calluble KERNAL Routinesovvurvninivnens 272
Erpersiceriay, o« .t alii con. B ko s BE - LBeagr o 306

® Using Machine Language From BASIC 307
Where to Put Machine Language Routines............. 309
How to Enter Machine Languagecovuniiinnn 309

® Commodare 64 Memory Map 310
Commodore 64 Input/Output Assignments 320

INPUT/OUTPUT GUIDE.ovvvniinnniiiinns 335

W ITOTUBITON. oo snmenmnca anir s b S Tmmie 4 L L R 7D 336

e v, (- o S S P SRR WL . (.

® Qutput to Other Devices vieeniinnnnnaniiiinn 337
OUpul 46 PERREP o oo oo ian i s e e G 338
I CTH) B8 Lt e) RO SRS G AT TR P 33¢9
Working With Caossefte Tape _......... ... 340
Data Storage on Floppy Diskettes vy 342

® Tha Goame Ports oo .oy clasosnicaebasioniinsi: 343
P R ER B0 v i S S A W A 346
a7 S S SR o P & U0 NIRRT L S B P 348

& R5-232 Interface Description ., . 0 vvaiviviiinnnan cveas 348
i praker B 0t mie doain a ae S ara 348
Opening en RS 232 Channel iy 349
Getting Data From an RS-232 Channel 352
Sending Data to an RS-232 Chornel ... 353
Clesing an RS-232 Data Channel 354
Sample BASIC Programs.o i ininanianaaiin 356

.
wvi

Receiver Transmitter Buffer Base Lecation Pointars 357
Zero-Poge Memeory Locations and Usoge

for RS-232 System Interfoice 358
Nonzero-Puge Memory Locations and Usoge
for RS-232 System Interfoce 358
B The L ael Bairt e i s et s e v e S R AT 359
Port Pin DRSeFipHon, . ..o s varesi ey s i mopin simacin 359
B Thi Bariail] Bus i i s i iis i sl g e s f s b 28 362
Sariol BirsiPinmiths Soec s sage s smar s S s e 383
& The Expomsion Port . coonainin au o s sl s s 366
® 7-8B0 Microprocessar Cartridge 368
Using Commodore CP/M®, 369
Running Commodore CPIM®oonnioan. .. 369
IPRENINERS .. .o ouimnnismusms s s s da i 373
A. Abbreviations for BASIC Keyweords 374
B. Screem Disploy: Codes ssaaamivialesd Mstie s dobde e st 376
C. ASCH and CHRE Eodar; cvivivsiiiv st iassres 379
D. Screen and Color Memary Mops... ... viviiiniiinnnnn 38z
E.. -MogiE Note ValUed ..o b v v e s s S s 384
F. Bibliograghy o1 L o Nola Al o TN AL BT 388
G WIC Chip Register MOp (i, i viriaqivssiasssesienses 391
H. Deriving Mathematical Functions0oooiiiinn, 394
I. Pinouts for Input/Output Devices.vvvieiininnnsn 395
J. Converting Standard BASIC Programs to
Commodore 64 BASICovveiiivvrinnnsirininanns 398
K. Error Messages .. sivveiowiiaineiisiabnasaviasissan 400
L. 6510 Microprocessar Chip Specifications0vuut. 402
M, 6526 Cemplex Interface Adepter (CIA)
Chil SEecIlcalibig s sr lisva e aniaih pianvaslesvaae i 419
N. &586/6567 (VIC-1) Chip Specifications_.. 436
O. 6581 Sound Interfuce Device (SID) Chip Specifications ... 457
F.. UHIHEEATY bt o B ot et S 482
WEDER ;o B0 e i bRk drsimets s 483
COMMODORE 64 QUICK REFERENCE CARD 487
SCHEMATIC DIAGRAM OF THE COMMODORE 64 491

vii

INTRODUCTION

The COMMODORE 464 PROGRAMMER'S REFERENCE GUIDE has been
developed as a working tool and reference source fer those of you who
wart ta maximize your use of the kuilt-in capabilities of your COMMO-
DORE 64, This manucl contains the 'rformation you need for your pro-
grams, from the simplest exemple all the way tc the most complex. The
PROGRAMMER’'S REFERENCE GUIDE is designed so tha everyone from
the beginring BASIC programmer to the professional experienced in
6502 machinz lcnguage can get information lo develop his or her own
creative pragrams. Af the same time this book shows you how clever
vour COMMODORE 64 really is.

This REFERENCE GUIDE is not designed to teach the BASIC pro-
gramming langucge or the 6502 machine language. There is, however,
an extensive glossary of terms ard o “semi-tutoricl” aporeach to many
of the sections in tha book. If you den't olready have a working knowl
edge of BASIC and how to use it to program, we suggest that you study
the COMMODORE &4 USER'S GUIDE thot come with your computer. The
USER'S GUIDE gives you an easy 1o read introduction 1o |he BASIC pro-
gramming language. It you still have difticulty understanding how to use
BASIC then turn to the back of this book (or Appendix N in the USER'S
GUIDE) and check out the Bibliography.

The COMMODORE 64 FPROGRAMMER’S REFERENCE GUIDE is just
that; a reference. Like most reference books, your aoility 1o apply the
information creatively really depends on how much knowledge you have
aoout the subject. In other words if you are o novice programmer you
will not be able to use cll the facts and figures 'n this bock until you
expand your current pregramming knowledge.

What you can do with this book is to find o considerable amount of
valuable programming reference information written in easy to read,
plain English with the programmer’s jargon explained. On the other
hand the programming professional will find all the information needed

to use the capabilities of the COMMODORE 64 effectively.
WHAT'S INCLUDED?

® Qur complete “BASIC dictionary” includes Commodore BASIC lan-
guage commands, statements and functions listed in alphabetical
order. We've created o “quick list” which contgins all the words
and thair abbreviations. This is followed by a section containing a
more detailed definition of each word wlong with sample BASIC
programs to illustrete how they werk,

® |f you need an introduction to using muchine lunguage with BASIC
programs cur layman’s cverview will get you started.

® A powerful feature of ull Commodore computers is colled the KER-
NAL. It helps insure that the programs you write today can elso be
used on your Commodore computer of lomorrow,

® The Input/Output Programming section gives you the opportunity to
use your computer o the limit, It describes how to hook-up and use
everything from lightpens and joysticks to disk drives, printers, and
telecommunication devices called modems.

® You can explore the world of SPRITES, programmable characters,
and high resclution graphics for the most detailed and advanced
animated pictures in the microcomputer industry.

® You can also enter the world of music synthesis and create your
own songs and sound effects with the best built-in synthesizer
available in any persenal computer.

® |f you're an experienced programmer, the soft lood language sec-
tion gives you information about the COMMODORE é4's ability to
run CP/M* and high level lenguages, This is in additicn ro BASIC.

Think of your COMMODORE 64 PROGRAMMER'S REFERENCE GUIDE
us a useful tool to help you and you will enjoy the hours of programming
ahead of you.

*CP/M is e registered trademark of Digital Research, Inc.

x INTRODUCTION

HOW TO USE THIS REFERENCE GUIDE

Throughout ikis manudl certain conventionel notaticns are used to de-
scribe the syntax (pragramming sentence structure) of BASIC commands
or statemenis and to show both the required and optianal parts of ecch

BASIC keywaord. The rules to use for interpreting statement syniax are as
follows:

1. BASIC keywords are shown in capital letters. They must appear
where shown in the statement, entered and spzllzd exactly as shown,

2. ltams shown within quotation marks (" ") indicate variable dalc
which you must put in. Both the quotation marks and the datc
inside the quotes must appear where shown in each statement.

3. ltems inside the square brackets ([]) indicate an optional state-
ment parameter. A parameter is a limiration or additional gualifier
for your statements. If you use cn optional parometer you must
supply the data for that optional parameter, In addition, ellipses
{...)show that an ontional item can he repected 0s many times
as o programming line allows.

4. If an item in the scuare brackets ([1) is UNDERLINED, thet means
that you MUST use those certain characters in the optional pa-
rameters, and they clso have fo be spelled =xucily as shown.

5. Items inside angle brackets (<] indicate variable dota which you
previde. While the slash { () indicates Ihat you must make o choice
between two mutually exclusive cptions.

EXAMPLE OF SYNTAX FORMAT:

OPEN<file-num™>,<device > [,<ecddress>], [“<drive>: <file-
name>-] [,<<mode>1"

EXAMPLES OF ACTUAL STATEMENTS:

10 OPEN 2,8,6,”0:STOCK FOLIO.S, W*
20 OPEM 1,1,2,“CHECKBOOK"
30 OPEN 3.4

When you octually apply the syntax conventions in a practical situa-
tion, the sequence of purameters in your statements might noi be
exacily the same as the sequence shown in syntax examples. The
examples are nol meunt o show every possible sequence. They are
intended to present all required and optional poarameters,

INTRODUCTION xi

Programming examples in this back are shawn with blanks separating
words and operators for the soke of readability. Normelly though,
BASIC doesn’t require blanks between words unless leaving them out
would give you un aombiguous or incorrect syntax,

Shown below cre some examples and descriptions of the symbols
used for various stulemen! paramelers in the lollowing chaplers. The list
is not meant to show every possibility, but to give yvou a better under-
standing as to how synrax examples are presented,

SYMBOL EXAMPLE DESCRIPTION
<file-num > 50 A lagical file rumber
<device> 4 A hardware device number
< address=> 15 A serial bus secondary
device addrzss
number
<drive> 0 A physical disk drive number
<flle-ncme>> “TEST.DATA" The name of a dara or program file
<constant>> “ABCDEFG" Literal dato supplied by
Ihe programrmer
<varioble> X145 Any BASIC data variable name or
constant
<string > ABS Use of a string type variable required
<number> 12345 Use of a numeric type variable
required
<line-number> 1000 An actucl program line number
< numeric> 1.5E4 An integer or floating-pein® variable

COMMODORE 64 APPLICATIONS GUIDE

When you first thought about buying a computer you probably asked
yourself, “Now that | can affard to buy a compurer, what ean | do with
it once | get one?"

The great thirg about your COMMODORE 64 is that you can make it
do what YOU want it to do! You can make it calculots and keep track of
home and business budger needs. You can use it for word processing.
You can make it play arcade-style action goames. You can make it sing.
You can even create your own animaled carlogns, and more. The besl
pert of owning o COMMODORE 64 is that even If it did only one of the
things listed below it would be well worth the price you paid for it. But
the 64 is a complete computer and it dees do EVERYTHING listed and
then some!

xii INTRODUCTION

By the way. in additian ta everything here you can pick up o Iat of
other creative and practical ideas by signing up with a local Commo-
dore Users” Club, subscribing to the COMMODORE ond POWER/PLAY
magazines, and joining the COMMODORE INFORMATION NETWORK on

CompuServe™ .|

APPLICATION

ACTION PACKED
GAMES

ADVERTISING &

MERCHANDISING

ANIMATION

BABYSITTING

BASIC PROGRAMMING

BUSINESS
SPREADSHEET

COMMUNICATION

COMMENTS/REQUIREMENTS

You can get real Bally Midway arcade gomes
like Cmega Race, Gorf and Wizard of Wer, as
well as “play and learn” gomes like Math
Teacher |, Home Babysitter and Cemmodore
Artist,

Hook your COMMODORE &4 to a TV, put it in
a store window with a flashing, animated,
and musical message and you've geot a great
point of purchase store display.

Commodaore’s Sprite Grapghics allow you to
craate real cartoons with 8 different levels so
that shapes can move in front of or behind
each ather.

The COMMODOQRE 64 HOME BABYSITTER
cortridge can keep your youngest child occu-
gied for hours and teach clphabet! keyboard
recognition at the same time. It also teaches
special learning concepts and relationships.

Your COMMODORE 64 USER'S GUIDE and the
TEACH YOURSELF PROGRAMMING series of
books and fapes offer an excellent starting
point.

The COMMODORE 64 offers the "Ecsy” series
of business aids including the most powerful

word processor and largest spreadshest
cvailable for any personal computer.

Enter the fascinating world of computer "net-
warking.” If you hook a VICMODEM ta your

COMMODORE 584 you can communicate with

other computer owners all around the werld.

INTRODUCTION xidi

COMPOSING SONGS

CF/m*

DEXTERITY TRAINING

EDUCATION

FOREIGN LANGUAGE

GRAPHICS AND ART

Not only that, if you join the COMMODORE
INFORMATION NETWORK on CompuServe™
you can gel the lalest news and updates on
all Commodore products, financial informa-
tion, shop ot home services, you can even
play games with the friends you make through
the information systems you join.

The COMMODORE &4 is equipped with the
musl sophisticated buil-in music synthesizer
availobla on any computer. It has three com-
oletely programmable voices, rine “ull music
nctaves, and four contrallable woveforms.
Look for Commodore Music Cariridges and
Commadore Music books to help you create or
repreduce all kinds of music and sound effects.

Commodore cffers a CP/M* add-on and ac-
cess to scftware through an easy-to-load car-
tridge.

Hund/Eye coordination and manual dexierity
are cided by several Commodore games . . .
including “Jupiter Lander” end night driving
simulation.

While working with a computer is an educo-
tion in itself, The COMMODORE Educational
Resource Book contains general information
on the educaotional uses of camputers. We
also have a variety of lecrning cartridges de-
signed to teach everything from music to math
and art to astronomy.

The COMMODORE 64 programmable char-
acter set lets you replace the standard char-
acter set with user defined farsign language
characters.

In addition to the Sprite Graphics mentioned
above, the COMMODORE 64 offers high-
resolution, multi-color graphics plotting, pro-

"CP/W is o Registered trademerk of Digital Rezearch, Inc.

xiv INTRODUCTION

INSTRUMENT
CONTROL

JOURMNALS AND
CREATIVE WRITING

LIGHTPEN CONTROL

MACHINE CODE
PROGRAMMING

PAYROLL & FORMS
PRINTOUT

PRINTING

RECIPES

grammalble characters, and cembkinations of
all the different graphics and charucter dis-
play medes.

Your COMMODORE 64 haos o sericl paort,
RS-232 port and a user port for use with a
variety of specicl indusiricl applications. An
IEEE/488 cartridge is also availeble as an op-

tional exlira.

The COMMODORE 64 will soon offer an ex-
cepticnal wordprocessing system that matches
or exceeds the qualitics and flexibilities of
most “high-priced” wordprocessors available,
Ot course you con save the information on
either a 1541 Disk Drive or u Dulcsselle™
recorder and have it printed out using a VIC-
PRINTER or PLOTTER.

Applications requiring the uvze ot a lightpen
can be performed by any lightgen thar will fit
the COMMODORE 64 game porft cannector.

Your COMMODORE 64 PROGRAMMER'S REF-
ERENCE GUIDE includes o muachine lunguage
section, as well as a BASIC to machine code
interfuce section. There's even a bibliography
cvailable for more in-depth study.

The COMMODORE &4 can be programmed to
handle a variety of enfry-rype business appli-
cations. Upper/lower case letters combined
with €64 “business form” grophics make ir
easy for you to design forms which can then
ke printed on your printer.

The COMMODORE 64 interfaces with a vari-
ety of dot matrix and letter quality printers as
well as plotters.

You con store your favorile recipes on your
COMMODORE 64 ond its disk or cassette
storage unit, and end the need for messy rec-
ipe cards that often get lost when you need
them most.

INTRCDUCTION bl

SIMULATIONS Computer simulations let you conduct danger
oUs or expensive experiments of minimum risk
and cost.

SPORTS DATA The Source™ and CompuServe™ hoth offer
sports information which you can get using
your COMMODORE 64 and a VICMODEM.

STOCK QUOTES With a VICMODEM und a subscription to any
of the appropriate network services, your
COMMODORE 64 becumes your own private
stock ricker.

These are just o few of the many applications for you and your
COMMODORE 64. As you can see, for work or play, at home, in school
or the office, your COMMODORE 64 gives you a practical solution far
usl aboul uny need.

Commodore wants you to know that our support for users only STARTS
with your purchase of o Commodore computer. That's why we've
created two publications with Commadare information from arcund the
world, and a “rwo-way'’ computer information network with valuable
input far users in the U.S. and Canada fram coas® to coast.

In additicn, we wholeheartedly encourage and support the growth of
Commodare Users’ Clubs around the world. They are an excellent source
of information for every Commodore computer awner from the beginner
to the most advanced. Thke magazines dnd network, which are mora
fully described below, have the most up-to-date infermation about how
1o get involved with the Users’ Club in your area,

Finally, your local Commodere dealer is a usetul source of Comme-
dore support and information.

POWER/PLAY
The Home Computer Magazine

When it comes ta entertainment, learning at home and practical hame
apglications, POWER/PLAY is THE prime source of informaticn for Com-
modore home users. Find out where your nearest user clubs are and
what they're doing, learn about software, games, srogramming tech-
niques, telecemmunicaticns, and new products. POWER/PLAY is your
personal connection to other Commodore users, outside software and
hardware developers, and to Commcdore itself. Puklished quarterly.
Qnly $10.00 for a year of home computing excitement.

xvi INTRODUCTION

COMMODORE
The Microcomputer Magazine

Widely read ky educators, businessmen and students, as well as
home computerists, COMMODORE Magazine 's our ma'n vehicle far
sharing exclusive information on the more technical use of Cemmodore
systemns. Regular departments cover business, science and education,
programming tips, "excerpts fram a technical notebook,” and many
other features of interest 10 aryere who uses or Is thinking about pur-
chasing Commodcre equipment for business, scientific or educational
applicetions, COMMODORE is the deal complemant to POWER/ PLAY.
Published bi-monthly. Subscription price: $15.00 per year,

AND FOR EVEN MORE INFORMATION . . .
. . . DIAL UP OUR PAPERLESS USER MAGAZINE

COMMODORE INFORMATION NETWORK

The magazine of the future is here. To supplement and enhance your
subscription to POWER/PLAY and COMMODORE maogazines, the COM-
MODORE INFORMATION NETWORK—our "paperless magazine” is
avuilable now over the telephone using your Commodcre computer and
modem.

Joir our computer club, get help with o computing proklem, “talk” 1o
other Commadare friends, or get up-to-the-minute infarmotion on new
products, software and educational resources. Soon you will even be
able 1o save yourself the trouble of typing in the program listings vou
find In POWER/PLAY or COMMODORE by downloading direct from the
Information Netwark (a rew user service plannzd for early 1983). The
best part is that most of the answers are thers before you even ask the
questions. (Hew's that for service?)

To call cur electronic magazine yeu need cnly @ medem and o sub-
scription fo CompuServe™, one of the nation‘s largest telecommunica-
fions networks. (Te make it easy for you Commodore includes a FREE
year's subscription fo CompuServe™ in each VICMODEM package.)

Just dial your local number for the CompuServa™ dota bark and
connect your phone 1o the modem. Wher the CompuServe™ video text
appears on yeur screen type G CBM cn your computer keyboard, When
the COMMODORE INFORMATION NETWORK'S tohble of contents, or
“menu,” cppears on your screaen checse from ane of our sixteen de-
partments, moke yourself comfortable, and enjoy the paperless mago-
zine other magozines are writing ohaut,

INTRODUCTION i

For mere information, visit your Commodore dealer or contact Com-
puServa™ customer service ot 800-848-8990 (in Ohic, 614-457-8600),

COMMODORE INFORMATION NETWORK

Main Menu Description Cemmeodore Dealers —‘
Direct Access Codes Educational Resnurces |
Special Commends User Groups

User Questions Descriptions

Public Bulletin Board Questions ard Answers
Maguazines and Newsletters Software Tips

Products Announced Technical Tips

Commodore News Direcr Directory Descriptions ‘

xwiii INTRODUCTION

CHAPTER]

BASIC
PROGRAMMING
RULES

Introduction

Screen Display Codes (BASIC
Character Set)

Progromming Numbers and
Variables

Expressions and Operators
Pragramming Techniques

INTRODUCTION

This chapter 1alks cbout how BASIC stares and manipulates data. The
topics include:

1) A brief mention af the operating system comperente and functions
as well as the charccter set used in the Commodore 64.

2) The formation of constants and varicbles. What types of voriables
there are. And hew constants and variables are stored in memory.

3) The rules for arithmetic calculatiens, relationship tests, string han-
dling, and logical operations. Also included are the rules for form-

ing expressions, and the data conversions necessary when vou're
using BASIC with mixed data types.

SCREEN DISPLAY CODES
(BASIC CHARACTER SET)

THE OPERATING SYSTEM (OS)

The Cperaring System is ceniained in the Read Only Memory (ROM)
chips and is a combination of three separcte, bul interrelated, program
modules.

1) The BASIC Interpreter
2) The KERNAL
3] The Screen Editor

1) The BASIC Interpreter is responsikle for cralyzing BASIC stote-
ment syntax and for performing the required colculations and/or
data manipulation. The BASIC Interpreter has o vocabulary of 65
“keywords” which have special meanings. The upper and lower
case alphabet and the digits 0—9 are used to make beth keywords
and varichle names, Certain punctuction charccters and special
symbels alse have meanings for the Interpreter. Table 1-1 lists the
special characters and their uses.

2) The KERNAL handles most of the interrupt level processing in the
system (for detcils on interrupt level processing, see Chapter 5).
The KERNAL clso does the actual input ond cutput of data.

3) The Screen Editor controls the outpul to the videc screen (television
set) and the editing of BASIC program text. |n addition, the Screen
Editor intercepts keyboard input so thal it can decide whether the

2 BASIC PROGRAMMING RULES

Table 1-1. CEM BASIC Character Set

CHARACTER

MAME and DESCRIPTION

-

——l e

%

Vol e e

9

BLANK — seporates keywords and variable names

SEMI-COLON—used in varioble lists to format output

EQUAL SICN—value assignment and relationsnip

testing

PLUS SIGN —arithmetic addition or string concatenction
(concatenation: linkirg togetherina chain)

MINUS SIGN arithmetic subtraction, unary minus(—1)

ASTERISK — arithmetic multiplicatian

SLASH—arithmetic division

JP ARROW —arithmetic exponentiction

LEFT PARENTHESIS —expression evaluation and

functions
RIGHT PAREMTHESIS —expression evaluation and
functions
PERCENT—declares var'able name as an integer
NUMBER—comes kefore logica file number in input/
output statemants
DOLLAR SIGN—declares variable nume ds a siring
COMMA—used in variabla lists fo formet ourput;
also separates command parameters

PERIOO—decimal point in floating point constants

GUOTATION MARK —encloses string constants

COLON—separates multiple BASIC statements in a line

GUESTION MARK—cbbreviation for the keyword PRINT

LESS THAN —used in re ationship tests

CREATER THAN —used in relatienship tests

Pl—the numeric constant 3.141592654

charectars put in should be acted upan immediately, or passed on
to the BASIC Interpreter.

The Operating System gives you two modes of BASIC operatfion:

1) DIRECT Moda
2) PROGRAM Mode

1) When you're using the DIRECT mode, BASIC staternents dan’t have
line numbers in front of the statemeni., They are exscuted

whenever the key is pressed.
2) The PROGRAM mode is the one you use for running programs.

BASIC PROGRAMMING RULES 3

When using the PROGRAM mode, all of your BASIC statements
must hove line numbers in front of them. You can have mere than
one BASIC statement in a line of your program, but the number of
statements is limited by the faet thet you can only put 80 char-
acters on a logical screen line. This means that if you are going 10
go over rhe 80 chdracter [imit you have to put the entfire BASIC
statement thet dossn’t fit on a new line with u new line number,

MOTE: Alwerys type NEW and hit Eefore sturling ¢ new program.
|

The Cummodore 64 has two complete character sets that you can use
either frem the keybeard or in your programs.

In SET 1, the upper case alphabet and the numbers 0— are availahle
without pressing the key. It you hold down the key
while typing, the graphics characters on the RIGHT side of the front of
the keys ere used. If you hold down the [key while tysing, the
graphics characters on the LEFT side of the front of the key are used.
Holding down the key while typing any character that doeen't
have graphic symbols on the front of the key gives you the symbol on the
fop meosr part of the key.

In SET 2, the lower case alphabet and the numbers 0—9 are availakle
without pressing the key. The upper cose alphabet is guailable
when you hold down the key while typing. Agalin, the graphic
symhboals on the LEFT side of the front of the keys are displaysd by press-
ing the E key, while the symbols on the top most part of any key
wilhout graphics characrers are selected when you hald dawn
the key while typing.

To switch from one characier set to the other press the [and
the keys together.

PROGRAMMING NUMBERS AND VARIABLES
INTEGER, FLOATING-POINT AND STRING CONSTANTS

Caonstants are the data values that wou put in your BASIC stotements.
BASIC uses these values lo represent data during statement execurion.
CBM BASIC can recognize and manipulote three types of constants:

1} INTEGER NUMBERS
2) FLOATING-PCINT NUMBERS
3] STRINGS

4 BASIC PROGRAMMING RULES

Integer constants are whale numbers (numbers without decimal
points). Integer constants must be between —32768 and +32767. In-
teger constants do not have decimal points or commaos between digits.
If the plus (+] sign is left out, the constant is assumed to be a positive
numher. Zeros coming before a constant are ignered ang shouldn't be
used since they waste memory end slow down your program. However,
they won't cause an error. Integers are stored in memory as twa-byte
binary numbers. Some examples of integer constants are:

—12
8765

— 312768
44

0

32767

NOTE: Da NOT put commas inside any number. For example, always type 32,000 cs
32000. It you put a comma i the middle of a numbe- you will ge- the BASIC error
message PSYNTAX ERROR.

Floating-point constants cre positive or negative numbers and can
contain fractions. Fractional parts of o numhar may be shown using a
decimal point. Once again remember that commas are NOT used be
tween numhbers. If the plus sign (+) is laft off the front of a numoer. the
Commodore 64 assumes that the number is positive. If you leave off the
decimal point the computer will aissume that it fallows the last digit of
the numker. And as with integers, zeros that come before a constant
nre ignored. Flocting-point constants can be used In two ways:

1) SIMPLE NUMBER
2) SCIENTIFIC NOTATION

Fleating-point canstants will show you up te nine cigits on your screen.
These digits carn represent values berween —999999999. and
+999990099, |f you enter more than nine digits the number will be
rounded based on the tenth digit. If the tenth dig't 's greater than or
equal to 5 the number will be rounded upward. Less thcn 5 the number
will be rounded downward. This could be impoartant to the final totals of
some numbers you may want to work with.

Fleating-point numbers are storad (using five bytes of memory! and
are manipulated in calculations with ter places of accuracy. However,

EASIC PROGRAMMING RULES 5

the numoers are rounded 7o nine digits when results are printed. Some
examples of simgle floating-point numbers are:

1.23
.998877
+3.145%9
TIP7777
=43
01

Numbers smaller than .01 or larger than 999999900, will be printed in

scientific nofation. In scienlific notation o Noating-point constont is made
up of three parts:

1) THE MANTISEA
2) THE LETTER E
3) THE EXPONENT

The maantissa is a simple floating-point number. The letter E is used 1o
tel you that yeu're seeing tha number in exponential form. In other
words E represents *10 (eg., 3E3=2*1013=3000). And the exgonent is
what multiplication pawer of |0 the number is roised 1o.

Both the mortissa and the exponent are signed (+ or) numbers.
The exponent’s range is from —39 to +38 ond it indicates the number of
rlaces that the actual decimal point in the mantissa would be moved to
the lell (=) or right (+) if the valus of the canstant were rapresented as
a simple numker.

There is a limit to the size of floating-gpoint numbers that BASIC ran
handle, even in scientific notation: the largest number is
F1.70141183E+ 38 ond calculations which would result in a lorger
number will display the BASIC error message 7TOVERFLOW ERROR. The
smallest flocting-point number is +2.93873588E—39 and calculations
which result in o smaler value give you zero as an answer and NO errar
message. Some examples of floating-point numbers in scientific notation
{and their decimal values) are:

235.988E—3 1.235988)

23509E5 2359000000,
~7.09E—12 {—.00000000C00709)
—3.14159E+5 (—314159.)

String constants are groups of alphanumeric information like letrers,
numbers and symbols, When you enter a string from the keyboard, 't
can hove any length up to the space available in an 80-character line

6 BASIC PROGRAMMING RULES

(that is, any character spaces NOT taken up by the line number and
other required parts of the statement),

A string constant can confain blanks, ‘etters, numbers, puncruation
and color or cursor control characters in any combination. You can even
put commas between numbers. The only cheoracter which cannot be in-
cluded in o string is the double quote mark (”). This is because the
dauble quote mark is used fo define the beginning ard end of the string.
A string can also have a null value—which means thet it con contain no
character dato, You can leave the ending quote mark off of o string if
it's the lost item on a line or if it's followed by a colon (:). Seme exam-
ples of string constants are:

der

“HELLO"
$25,000.00"
“NUMBER OF EMPLOYEES"

(a null string)

MNOTE: Use CHR$:34) to include quetes () in strings.

INTEGER, FLOATING-POINT AND STRING VARIABLES

Variubles aure numes that represent dulo values used in your BASIC
statements, The value represented by a varicble can be cssigned by
sefting it equal to a canstant, or it can be the result of colculations in the
pragram. Variable dato, like constants, can be integers, floating-point
numbers, or strings. If you refer to a variable name in @ program before
a value hos been assigned, the BASIC Interpreter will automatically
create the variable with o value of zerc if it's an integer or floating-point
number. Or it will create a variable with a null value if you're using
strings.

Varioble names can be any length bur only the first two characters
are considered significert in CBM BASIC. This means that all names
used for variobles must NOT have the same firsr twe characters. Vari-
able names may NOT be the same as BASIC keywords and they may
NOT contain keywords in the middle of varicble nomes. Keywords in-
clude all BASIC commands, stotements, function nomes end logicel
operator names. If you accidentally use a keyword in the middle of a
variakle name, the BASIC error message ?SYNTAX ERROR will show up

on your screen.,
The characters used to form variable names are the alphabet and the

numbers 0—9. The firs! character of the name must be a leter. Dara

BASIC PROGRAMMING RULES 7

type declaration characters (%) and ($) can be used as the Inst char-
acter of the name, The percent sign (%) declares the variable to be an
integer and the dollar sign ($) declares a string variable. If no typs
declaration character is used the Interpreter will assume that the vari-
able is a floafing-point. Some examples of variahle names, value cs-
signments and data types are:

A$="GROSS SALES” (string variable)
MTHE="JAN"+ A% (string variuble)

K% =5 linteger variable)
CNT% =CNT% | | (integer variable)
FP=12.5 floating-point variable)
SUM=FP*CNT%% floating-point variable)

INTEGER, FLOATING-POINT AND STRING ARRAYS

An array is © tasle (or list) of assaciated data items referred 1o by a
single variable namea. In ether wards, an array is a sequence of related
variables. A table of numbers can be seen as an array, for example.
The individual numbers within the table beceme “elements” of the
arrcy.

Arrays ore o useful sharthand way of deseribing o large numhber of
related variobles. Taoke o table of numbers for instance. Let's say that
the rable has 10 rows of numbers with 20 numbers in each row. Thar
mokes o total of 200 numkers in the table. Without a single array name
to call on you would have to cssign @ unique name to each value in the
toble. But because you can use arrays you only need cne name for the
array and all the elements in the array are identified by their individual
locations within the array.

Arruy nomes can be inlegers, MNouling-points or siring dalu lypes und
all elements in the array have the same data type cs the array name.
Arroys can have o single dimension (us in a simgle list] or they can have
multiple dimensions (imagine o grid marked in rows ond columns or a
Rubk’s Cube®). Each element of an array is uniguely identified and re-
ferred to by o subseript (or index variable) fallowing the array nome,
enclosed within parentheses ().

The maximum number of dimensions an crray can have in theory is
255 and the number of elements in each dimension is limited to 32767,
But for practical purposes array sizes ere limited by the memaory spoce
available to hold their data and/cr the 80 character logical screen line.
If an array has orly ane dimension and irs subscript value will never

B BASIC PROGRAMMING RUIFS

exceed 10 (11 items: O thru 10) then the array will be created by the
Interpreter and filled with zercs (or nulls it string type) the first time any
element of the array is referred to, atherwise the BASIC DIM siatement
must be used ‘o define the shape and size of the arrey. The amount of
memory required to store an array cen be determined as follows:

5 bytes for the erray name
+ 2 hytes far each dimension of rhe array
+ 2 bytes per element for integers
OR + 5 bytes per element for flocting-point
OR + 3 bytes per element for strings
AND + 1 byte per charccter in each string element

Subscripts can ke integer constants, varichbles, or an orithmetic ex-
pression which gives an integer result. Szparate subscripts, with com-
mas behween tham, are required for each dimension of an array. Sub-
scripts can have values “ram rero up to the number of elements in the
respective dimensions of the array. Values outside that range will cause
the BASIC error message TBAD SUBSCRIPT. Some examples of array
names, value assignments and data types are:

AK(0)="GROSS SALFS™ (string array)

MTHS (KL)="JAN" (string array)

G2%(X)=5 (integer array)

CNT%(G2%(X);=CNT%(1)—2 (integer arrcy)

FP(12¥K%)=24.8 (floating-point array!

SUM(CNT% (1)) =FPTK% (floating-point array)
A(5)=0D (sets the 5th element in the 1 dimensional

array called “A” equal to D)

BI5,6)=0 (sets the element in row position 5 and
calumn position 6 in the 2 dimensional array
colled “B" equal to 0)

C(1,2,3)=0 (sets the element in row position 1, celumn
position 2, and depth position 3 in the
2 dimensional array called “C" =qual to 0)

EXPRESSIONS AND OPERATORS

Expressicns are formed using constants, variakles and/or arrays. An
expressicn can be u single constent, simple variakle, or an array vari-

BASIC PROGRAMMING RULES 9

able of any type. It can also be a combination of constants and vari-
ables with arithmetic, relational ar logical eperators designed to
produce a single value. How operators work is exploined below. Ex-
pressions con be separated into two classes:

1) ARITHMETIC
2) STRING

Expressions are normally thought of as having rwo or more data items
called operands. Each operand is separated by o single operator to
produce the desired resu't. This is usually done by assigning the value of
the expression to a variable name. All of the examples of constants and
varinbles that you've seen so far, were ulso exomples of expressions.

An operator is a special symbol the BASIC Interpretar in your Com-
modore 64 recognizes us representing on operation o be performed on
the variables or constant data. One or more operators, combined with
one or mare variables and/or constants form an expression. Arithmetic,
relatinnal and leagical cperators are recagnized by Commaodare 64
BASIC.

ARITHMETIC EXPRESSIONS

Arithmetic expressions, when solved, will give an integer er floating-
point valve, The arithmetic operators (—, —, *, /, 1) are used to perform
oddition, subtraction, multiplication, division and exponentiation opera-

tions respectively.
ARITHMETIC OPERATIONS

An arithmetic operator defines an arithmetic operation which is per-
formed on the two operands on either side of the eperator. Arithmeatic
operaticns are performed using floating-peint numbers. Integers ars
converted 1o floating-point numbers before an arithmetic operation is
pertormed. The result is converted back 1o an integer if it is ossigned to

an integer varicble nome.

ADDITION (+): The plus sign (+) specifies that the operana on the
right Is added to the operand on the left,

10 BASIC PROGRAMMING RULES

EXAMPLES:
242
A+B+C
X% —1
BRI10E 2

SUBTRACTION (—): The minus sign {—) zpecifies that the operand on
the right is subtracted from the operand on the left.

EXAMPLES:
4—1
100—64
A—B
55—142

The minus can also be used as @ unary minus. That means that it is
the minus sign in front of o negative number. This is equal to subtracting
the numbker from zero (0).

EXAMPLES:
-+
—OE4
—B
4— (—2) same as 4+2

MULTIPLICATION (*): An asterisk (*) specifies that the operand on the
left is multiplied by the operand on the right.

EXAMPLES:
100*2
50*0
AFX1
R9%*14

DIVISION (/): The slash (/) specifies that the operand on the left is
divided by the operand on the right.
EXAMPLES:

10/2
£400/4
AJB
AE2/XR

BASIC PROGRAMMING RULES 11

EXPONENTIATION (1): The up arrow (1) specifies that the operand on
the left is raised 1o the power specified by the operand on the right (the
exponent). If the operand on the right is a 2, the number on the left is
squared; if the exponent is a 3, the number an the left is cubed, stc. The
exponent can be any number so long as the result of the operation gives
a valid floating-point number,

EXAMPLES:
212 Equivalent to: 2%2
313 Equivalent to: 3¥3%3
474 Equivalent to: 474474
ABTCD
31-—2 Equivalent to: 1/a™ 1/

RELATIONAL OPERATORS

The relational operaters (<, =, >, <<=, ==, <) are primarily used
to compare the values of two operands, but they also produce an arith-
metic result. The relational operators and the logical operators (AND,
OR, und NOT), when used in comparisons, actually produce an arith-
metic true/talse evaluation of an expression. |f the relationship steted in
the expression is true the resull is ussigned an integer value of —1 and if
it's false a value of 0 is assigned. These are the relational operaters:

== LESS THAN

= EQUAL TO

> GREATER THAN

<= LESS THAN OR EQUAL TC
>= GREATER THAN OR EQUAL TO
<> NOT EQUAL TO

EXAMPLES:
I=5—4 result true (—1)
14=66 result false (0)
15>=15 result true (— 1)

Relational operators con ne used to compare strings. For comparison
purposes, the letiers of the alphabst have the order A<B<C<D, etc.
Strings are compared by evaluating the relationship between corre-
sponding characters from left to right (see String Operations).

12 BASIC PROGRAMMING RULES

EXAMPLES:

- result rue (— 1)
A — gyt resuh‘ 'FCI‘S@ :0}
BBf <> CC$

Numeric data items can only be compared (or assigned] to other
numeric itermns. The sume is true when comparing strings, otherwise the
BASIC errar message ?TYPE MISMATCH will occur. Numeric operands
ure comoared by first converting the values of either or both operands
from integer to floating-point form, as necessary. Then the relationship
of the floating-point values is evaluated to give a trueffalse result,

At the end of all comparisons, you ger an integer ne matter what
data type the operand is {even if both are strings). Because of this, a
comparison of two operands can he used as an operand in performing
calculations. The result will be 1 aor 0 and can be used as anything but
a divisor, since division by zero is illegal.

LOGICAL OPERATORS

The logical operators (AND, OR, NQOT) can be used to modify the
meanings of the relational cperators or 1o produce an arithmetic result,
Logical cperators cen produce results other than —1 and 0, though any
nonzero result is considered true when testing for o true/false condition,

The logical operators (sometimes called Boolean aperators) can nlso
be used to perform logic operations en individual binary digits (bits) in
two opercnds. But when you're using the NOT eperctar, the operation is
performed only on the single operand to the right. The operands must
he in the integer range of values [—32768 to +32767) (floating-paint
numbers are converted to integers) and logicel operations give an in-
teger result.

Logical operations are perfermed bit by cerresponding bit on the two
operands, The logical AND produces a bir result of 1 enly if both
operand bits are 1. The logizal OR produces a bit result of 1 if either
operand bit is 1. The logicul NOT is the opposite valve of each bit us o
single operand. In other words, it's really seying, "It it's NOT 1 then it is
0. If it's NOT 0 then it is 1.”

[he exclusive DR [(XOR) daesn’t have a lagical cperator but it is oer-
formed os part of the WAIT statement. Exclusive OR means that fthe bits of
two operands are equal then the result is 0 otherwise the resulris 1.

Logical operations cre defined by groups of statements which, tcken
together, constitute a Beoclean “truth teble” as shown in Table 1-2.

BASIC PROGRAMMING RULES 13

Table 1-2. Boolean Truth Table

'The AND operation results in a 1 cnly if both hits are 1:

| 1 AND 1 =1
| 0AND 1 =0
| 1 AND O = 0
‘ 0 AND O = 0

The OR operation results in a 1 it aither bit is 1:

10R1 =1
0CR1 =1
1 QRO =1
OCRC =0

The MNOT operation legically complements each bit:

NOT1 =0
NOT 0 = 1

The exclusive OR (XOR) is part of the WAIT statement:

1 XOR1 =20
1 XORD =1
G XOR1 =1
CXOROD =20

The legical operators AND, OR and NOT gpecify o Boolean arithmetic
operation fo be performed on the two operand expressions on either
side of the operator. In the case of NOT, ONLY the operand cn the
RIGHT is considered. Logical operations (or Boolean arithmetic) aren't
performad until all arithmetic end relational operations in an axpression
hove been completed.

EXAMPLES:

IF A=100 AND B=100 THEN 10 (if both A and B have a value
of 100 then the result is
true)

A=96 AND 32: PRINT A (A = 32)

14 BASIC PROGRAMMING RULES

IF A=100 OR B=100 THEN 20 (if A or Bis 100 then the
rasult iz true)

A=64 OR 32: PRINT A (A = 26)
IF NOT X=<Y THEN 30 (it X=>=Y the result is frue)
X= NOT 96 (result is —97 (two's complement))

HIERARCHY OF OPERATIONS

All expressions perform the different types ol operaliuns vccording 1o
a fixed hierarchy. In other words, certain operations cre performed be-
fore other operations. The normal order of operations cun be modified
by enclesing two or more operands within parentheses (), creating a
“subexpression.” The parts of an expression enclosed in parentheses will
be reduced to o single value befare warking en parts outside the par-
entheses.

When you use parentheses in expressions, they must be paired so that
you alwoys have an egual numbker of lelt ond right parentheses.
Otherwise, the BASIC error message ?SYNTAX ERROR will appecr.

Expressions which have operands inside parentheses may themselves
be enclosed in parentheses, forming complex expressions of multiple
levels. This is called nesting. Parentheses can be nested in expressions
tc © maximum depth of ten levels—1en marching sets of puarentheses.
The inner-most expression has its operations performed first. Some
examples of expressions are:

A+B

CHDHEYV2
(X—CHD+EF2)* 10)+1
CC$>HH%

J1$+"MORE”

K% =1 AND M<I>=X

K% =2 OR (A=B AND M<K)
NOT (D—E)

The BASIC Interpreter will normally perform operations on expressions
by perfarming arithmetic operations first, then relational operations, and

logical operations last. Both arithmetic and logical operctors have an

BASIC PROGRAMMING RULES 15

order of precedence (or hierarchy of operations) within themsalves. On
the other hand, relational operators do not have an order of precedence
and will be performed as the expression is evaluated fram left to right.
If all remaining operators in an expression have the same level of
precedence then operations happen from left to right, When performing
operations on expressions within parentheses, the normal order of pre-
cedence is maintained. The hierarchy of arithmetic and logical opera-
tions is shown in Table 1-3 from first to last in order ot precederce.

Takle 1-3, Hierarchy of Operations Performed on Expressions

OPERATOR DESCRIPTION EXAMPLE
1 Exponentiation BASE T EXP
- Negetion (Unary Minus] —A
. L Multiplication AB T CD
, Division EF / GH
|
E = Addition CNT + 2
Subtraction JK — PQ
e B Relctional Operations A <=8
NOT Logical NOT NOT K%
(Integer Twe's Complemens)
AND Logical AND JK AND 128
OR Llogical OR PQ OR 15

STRING OPERATIONS

Strings are compared using the same relational operators (=, <>,
<=, >=, <, =) that are used for comparing numbers. String coamperi-
sons are made by taking one character at g time (left-to-right) from
each string and evaluating each character code peosition from the PET/
CBM character sat. |f the characrer codes are the same, the characters
are equal. If the character codes differ, the character with the lower
code number is lower in the character set. The comparison stops when

16 BASIC FROGRAMMING RULES

the end of cither string is reached. All other things being equal, the
shorter string is considered less thun the longer string. Leading or troil-
ing blanks ARE significant.

Regordless of the data types, at the end of all comparisons you get
an integer result, This is true aven if both operands are strings. Because
of this @ comparison of two string operands can be used as an operand
in performing caolculations. The result will be —1 or O (true ar false} and
can be used us anything bul a divisor since division by zerc is illegal.

STRING EXPRESSIONS

Expressions are freated as if an implied "<>=0" follows them. This
means that if an expression is true then the nexi BASIC statements on
the same program line are executed. If the expression is false the rest of
the line is ignored and the next line in the program is executed.

Just as with numkers, you can alsu perform vperations on string vari-
ables. The only string arithmetic cperator recognized by CBM BASIC is
the plus sign (+) which is uvsed 1o perform cancatenation of strings.
When strings cre concatenated, the string on the right of the plus sign is
auppended to the string on the left, forming a third string os o result. The
result can be printed immediately, used in a comparison, or assigned fo
a variable name. ¥ a string date item is compared with (or set equal to)
a numeric item, or vice-versa, the BASIC error message TTYPE MIS-
MATCH will sccur. Same examples of string expressicns and cencatena-
tion are:

10 AS="FILE"” : B$="NAME"
20 NAM$ = AS | B$ (gives the string: FILEMAME)
30 RES$ = “NEW “ + A% + B3 (gives the string: NEW FILENAME)

Mote space here.

BASIC PROGRAMMIMG RULES 17

PROGRAMMING TECHNIQUES
DATA CONVERSIONS

When necessary, the CBM BASIC Interpreter will convert a numeric
duta item from an integer to floating-point, or vice-versa, according 1o
the following rules:

8 All arithmetic and relational opercations are performed in Aoating-
point formai. Integers cre converted to floating-point form for
evaluation of the expression, and the result is converted back to
integer. Louical operations convert their operands to integers and
return an integer result.

® |f o numeric variable name of one type is set equal to g numeric
data item of o different type, the number will be converted and
stored as the data type declared in the variakle name.

® When a floating-point volue is converted to an integer, the frac-
tional portion is truncated {eliminated) and the integer result is less
than ar equal to the floating-peint value. If the result is outside the
range of +32767 thru —32768, the BASIC error message ?ILLEGAL
QUANTITY will occur.

USING THE INPUT STATEMENT

Now that you know what variables are, let’s take that infermation and
put it together with the INFUT siaiement for some practical program-
ming applications,

In our first example, you can think of a variable as a “storage com-
partment”’ where the Commaodore 64 stores the user's response ta your
prompt guestion. To write a program which csks the user 1o type in a
name, you might assign the variable N$ to the name typed in. Now
every time you PRINT N$ in your program, the Commodore 64 will
automatically PRINT the name that the user ryped in.

Type the word NEW on your Commodore 64. Hit the m key,
and iry this example:

10 PRINT “YOUR NAME"”:INPUT N5
20 PRINT “HELLO " N§

i8 BASIC PROGRAMMING RULES

In this example you used N ta remind yourself that this variable srands
for “NAME." The dellar sigr ($) is used to tell the camputer that you're
using a string variable. It is impartant to differentiate between the two
types of variables:

1) NUMERIC
2) STRING

You probably remember from the earlier sections that numeric vari-
ables ore used to store number values such as 1, 100, 4000, etc. A
numeric variable con be a single letter (A), any two leHers (AB), a leftar
and o number (A1), or two letters and o number (AB1]. You can save
memory space by using sharter variables. Another helpful hint is to use
letiers und numbers for different categories in the same program (Al,
A2, A3). Also, if you want whole numbers for an answer instead of
numbers with decimal peints, all you have 1o do is put a percent sign
(%) at the end of your variable name (AB%, Al %, etc.)

Naw let's look at a few examples that use different types of variables
and expressions with the INPUT statement.

10 PRINT "ENTER A NUMBER":INPUT A
20 PRINT A

10 PRINT “ENTER A WORD':INPUT A$
20 PRINT A%

10 PRINT “ENTER A NUMBER":INFPUT A
20 PRINT A “TIMES 5 EQUALS" A™5

NOTE: Fxample 3 shows that MESSAGES or PROCMPTS are irside the guetation
marks (" ") while the variakles are outside. Natice, tac, that ia ling 20 the variablz A
wos printed first, then the message “TIMES & EQUALSY, ond thea the calculation
multiply varickle A by 5 (A%5].

Colculations are important in most programs. You have a choice of
using “actual numbers” or variables when doing calculations, but if

you're working with numbers supplied by © user you must use numeric
variables, Begin by asking the user to type in two numkers like this:

10 PRINT “TYPE 2 NUMBERS":INPUT A:INPUT B

BASIC PROGRAMMING RULES 19

INCOME/EXPENSE BUDGET EXAMPLE

= PRIMT “m CLR /HOME
1€ PRIMTY"HOMTHLY IHCOME": IHPUT IH
28 FPRINT
HE PRIMTM"EXPEMSE CATESCRY 1"-IMPUT E1f
42 PRINT"EXFEMSE AMOUNT® : IMPUT EI
T PRLIMNT
GE FRIMTYEXFEMSE CATEGORY 2":IMFUT E2%
78 FRINT"ERFENSE AMOUNT" P INFUJT EZ
&€ FRIMT
S8 PRINT"EXPEMIE CATEGORY 3" :IMPUT 235
1388 FPRIMT"EXFEMEE AMOUNT" ' IMRUT E2
118 FRINT "7I1
128 E=E1+EZ+E3
128 EF=E-IN
148 PEIMT"MOMTHLY IMCOME: "IN
18 PRIMT"TOTAL EXPEMESES: #"E
128 PRIHT"BALANCE E@AUALS: $"IMN-E
178 PRIMT
129 PRINT E1£"="CEI/Ep#1i00"Y OF TOTAL EXFPENSES"
158 FPRINT EZE"="(EZ2/EI%1BU"Y DOF TATHL EXPENSES"
ZE PRIMTES:"="(EI/E2#100"X OF TOTAL EX¥FEMSES"
=Z1e PRINT
228 PRINT"YOUR EWPEHSEC="EP#188'% QOF YOUR TOTAL
INCORE"
238 FOR w=1TOS@@0:HEXT :PRIMT
2de PRIMT"EEFERT? <% OF HI":INPUT Y#:IF YE="%Y"THEMS
2510 FRIHT "I)*ERD
CLR/HOME

MOTE: |N can NOT = 0, and E1, E2, E3 can NOT all be 0 ul the sume fime.

20 BASIC PROGRAMMING RLULES

LINE-BY-LINE EXPLANATION OF
INCOME/EXPENSE BUDGET EXAMPLE

Line(s) Description
5 Clears the screen,
10 PRINT/INPUT stctement.
20 Inserts blank line.
30 Expense Category 1 = E1§.
40 Expense Amount = E1.
50 Inserts hlank line.
&0 Expense Category 2 = E25.
70 Expense Amount 2 = E2.
80 Inserts blank line.
90 Expense Category 3 = E35.
100 Expense Ameount 3 — E3.
110 Clears the screen.
120 Add Expense Amounts = E.
= 130 Calculote Expense/lncome%.
140 Display Income.
150 Display Total Expenses.
- 160 Display Income — Fxpenses.
170 Inserts blank lina.

180—-200 | Lines 180—200 caolculate % each expense
amount is of total expenses.

210 Inserts blank line.
220 Display E/l %.
230 Time delay loop.

Now multiply these tweo numbers together to create o new variable C as
shown in line 20 below:

20 C=A"B
To PRINT the result as a message type
= 30 PRINT A "“TIMES” B “EQUALS” C

Enter these 3 lines and RUN the pragram. Notice that the messages are
inside the quotes while the variables are not.

BASIC PROGRAMMING RULES 21

Mow let's say that you wanted a dollar sign ($) in front of the number
represented by variable C. The $ must be PRINTed inside quetes and in
front of variable C. To add the § to your program hit the
and keys. Now type in line 40 as follows:

40 PRINT “§” C

Now hit , type RUN and hit again.

The dollar sign goes in quotes because the variable C only represents
a number end can’t contain a $. If the number represenied by C was
100 then the Commodore 64 screen would display $ 100. But, if you
tried to PRINT $C without using the quetes, you would get a PSYNTAX
ERROR message.

One last tip cbout $$%: You can create o variable that represents a
dollar sign which you can ther substitute for the $ when you wont fo use
it with numeric variables. Far example:

10 Z§="8¢"

Naw whenever you need a dollar sign you can use the string variakle
Z%. Try this:

10 Z$="$":INPUT A
20 PRINT Z$A

Line 10 defines the $ as a string varicble called 2%, and then INPUTs o
number called A. Line 20 PRINTs Z$ (5) next to A (number).

You'll probably find that it's easier to assign certain cheracters, like
dollar signs, to a string variable than to type "$" every time you want to
caleulate dollars or other items which require " " like 9.

USING THE GET STATEMENT

Most simple programs use the INPUT starement ic get data from the
person opercting the computer. When you're dealing vsith more complex
needs, like pratection from typing errors, the GET statement gives you
more flexibility and your pragram more “intelligence.” This section shows
you how to use the GET stulement tu udd some speciul screen ediling
features te your programs.

22 BASIC PROGRAMMING RULES

The Cammadare 64 has a keyboard buffer that holds uvp 1o 10 char-
acters. This means that if the computer is busy doing some operation
and it's not reading the keyboard, you can still fype in up to 10 char-
acters, which will be used as socn os the Commodore 84 finishes what it
was doing. To demaonsirate this, type in this progrem on your Commo-
dore 64:

NEW
10 Ti$="000000"
20 IF TI$ < “000015" THEN 20

Novr type RUN, hit and while the program is RUNning type
in the word HELLG.

Motice that nothing happened for akeut 15 seconds when the pro-
gram started. Only then did the message HELLC oppear on the screen,

Imagine standing in line for a movie. The first person in the line is the
first 10 get a ticker and leave the line. The lust person in line is lost for a
ticket. The GET statement acts like o ticket taker. First it looks to see if
there are any characters “in ling.” In other words have any keys been
typed. If the answer is yes then that character gefs placed in the ap-
prapriate variable. If no key wos pressed then an emply value is as-
signed to a variakle,

At this point iI's important to note that if you try to put mare than 10
characters into the huffer at one time, ell those aver the 10th character
will be lost.

Since the GET statement will keep going even when no character is
typed, it is often necessary to put the GET statement into o loop se that it
will have to wait until someane hite o key or until a character is received
Through your program.

Below is the recommended farm for the GET statement. Type NEW to
erase your previous program.

10 GET A$: IF A = " THEN 10

Notice that there is NO SPACE between the quote rmarks () on this line.
This indicates an empty value and sends the pragram back 1o the GET
statement in a confinuous loog until someone hits a key on the computer.
Once a key is hit the pragram will continve with the line following ine
10. Add this line to your program:

100 PRINT A%;: GOTO 10

BASIC PROCRAMMING RULES 23

Mow RUM the program. Notice that no cursor B appears on the screen,
bur any character you type will be printed in the screen. This 2-line
program can be turned into part of o screen editor progrom as shown
below.

There are many things you can deo with o screen editor. You can have
a flashing cursor. You can keep certain keys like from
accidentally erasing the whole screen. You might even want to be able
to use your function keys to represent whole words or phroses. And
speaking of functicn keys, the following pregrom lines give each func-
tion key o special purpcse. Remember this is only the beginning of o
pragram that you can customize for your needs,

20 IF A$ = CHR$(133) THEN POKE 53280,8:GOTO 10

30 IF A$ = CHR%$(134) THEN POKE 53281,4:G0T0 10
40 IF A$ = CHR$(135) THEN A$="DEAR SIR:" +CHR$(13)
50 IF A% = CHRS$(1356) THEN AS="SINCERELY,“+CHRS$(13)

The CHRE numbers in parantheses come from the CHR$ code chart in
Appendix C, The chart lists a different number for each character, The
four function keys are set up to perform the tasks represented by the
instructions that follow the word THEN in each line. By changing the
CHR$ number inside each set of parentheses you can designate differ-
ent keys. Different instructions would be performed if you changed the
informntion after the THEN statement.

HOW TO CRUNCH BASIC PROGRAMS

You can pack more instructions—and power—into your BASIC pro-
grams by moking each program as shorf as possible. This process of
shertening programs is called "crunching *

Crunching programs lels you squeeze the maximum possikle number
of instructions into your program. It also helps you reduce the size of
progroms which might not otherwise run in a given size; and if you're
writing @ pragram which requires the input of data such as inventory
items, numbers or text, a short program will leave more memeory space
free to hald data.

ABBREVIATING KEYWORDS

A list of keyword aobreviations is given in Appendix A. This is helpful
when you program because you can octually crowd more infermation on
each line using obbreviations, The most freguently used ubbreviation is

24 EASIC PROGRAMMING RULES

the question mark (?] which is the BASIC abbreviation for the PRINT
command. However, if you LIST a program that has abkreviations, the
Cammadare 64 will autamatically print aut the listing with the full-length
keywords. If any program line exceeds 80 characters (2 lines on the
screen) with the kaywords unabbreviated, and you wanr 1o change i1,
you will have to re-enter thot line with the abbreviations before saving
the program. SAVEing o program incorpeorates the keywords without
inflating any lines because BASIC keywords cre tokenized by the Com-
modore 64. Usually, abbreviations are odded ofter o program is wrilten
and it ient going to be LISTed any more baftore SAVEing.

SHORTENING PROGRAM LINE NUMBERS

Most programmers start their pragrams at line 100 and number each
line ar intervals of 10 (i.e., 100, 110, 120). This allows extra lines of
instruction to be added (111, 112, efc.) cs the program is developad.
One means of crunching the program affer it is completed is to chonge
the line numbers to the lowest numbers possible (i.e., 1, 2, 3) because
longer line numbers take more memory than shorier numbers when ref-
erenced by GOTO and GOSUE statements. For instance, the numker 100
uses 3 bytes of memory (one for each number) while the number 1 uses

only 1 byte.
PUTTING MULTIPLE INSTRUCTIONS ON EACH LINE

You can put mare than ane instruction on each numbered line in your
program by separating them by a colon. The only limitation is that all
the instructians on each line, including colans, should nor exceed the
standard 80 character line length, Here is an example of hwo programs,
oefore and after crunching:

BEFORE CRUNCHING: AFTER CRUNCHING:

10 PRINT “HELLO. . ~; 10 PRINT “HELLO . . “;:FORT=1TO
20 FOR T=1 TO 500:NEXT E00:NEXT:PRINT”HELLO,

30 PRINT “HELLO, AGAIN . . * AGAIN . . “:GOTOI10

40 GOTO 10

REMOVING REM STATEMENTS

REM statements are helpful in reminding yourself—or showing other
pragrammers —what a particular sectlen of a program is doing. How-
sver, when the program is completed and ready to use, you probably

BASIC PROGRAMMING RULES 25

won’t need those REM statements anymore and you can save guite o bit
of space by removing the REM statements. If you plun to revise or study
the program structure in the future, it's a good idea 1o keep a copy on
file with the REM statements intact.

USING VARIABLES

If @ number, word or sentence is used repeatecly in your program it's
usually best to define those long words or numbers with a one or two
letter varioble. Numbers con be defined as single letters. Words and
sentences can be defined as string variables vsing o letter und dollar
sign. Here's one example:

BEFORE CRUNCHING: AFTER CRUNCHING:

10 FOKE 54296,15 10 V=54296:F=54273

20 POKE 54276,33 20 POKEV,15:POKES4276,33

30 POKE 54273,10 30 POKEF,10:POKEF,40:POKEF,70
40 POKE 34273,40 40 POKEV,0

50 POKE 54273,70
40 POKE 54296,0

USING READ AND DATA STATEMENTS

Large emounts of data can be typed in as one piece of data at o
time, over and over again . . . or you can print the instructional part of
the program ONCE and print all the data to be handled in a long run-
ning list called the DATA statement. This iz especially good for crowding
large lists of numbers into a pregram.

USING ARRAYS AND MATRICES

Arrcys ond matrices are similar to DATA statements in that long
amounts of data can be handled as o lis7, with the data handling oor-
tion of the orogram drawing from that list, in sequenca. Arroys differ in
that the list can be multi-dimensional

ELIMINATING SPACES

One of the easiest ways to reduce the size of your program is to
eliminate all the spaces, Although we often include spoces in sumple
programs to provide clarity, you actually don’t need any spaces in your
program and will save space if you eliminate them.

26 BASIC PROGRAMMING RULES

USING GOSUB ROUTINES

If you use a particular line or instruction over and over, it might he
wise to GOSUB fo the line from several places in your program, rather
than write the whole line or instruction avery fime you use ir.

USING TAB AND SPC

Instead of PRINTing several cursor commands to pesition o character
on the screen, it is often more economical to use the TAB und SPC in-
structions fo position words or charactere on the screen.

BASIC PROGRAMMING RLLES 27

BASIC PROGRAMMING RLULES

CHAPTER 2

BASIC LANGUAGE
VOCABULARY

® |ntroduction

® BASIC Keywords, Abbreviations,
and Function Types

® Description of BASIC Keywords
(Alphabetical)

® The COMMODOQRE 64 Keyboard and
Features

® Screen Editor

29

INTRODUCTION

This chapter sxplainse CBM BASIC Language keywerds. First we give
you an easy to read list of keywords, their abbreviations and what each
letter looks like on the screen. Than we explcin how the syntax and
operation of each keyword works in detail, and examples ure shown fo
give you an iden as to how to use them in your programs.

As o corvenience, Commodore 64 BASIC allows you to abbrevicte
mosi keywords. Abbraviations are entared by typing enough lefters of
the keyword to distinguish it from all other keywords, with the last letter
or graphics entered halding down the key.

Abbreviations do NOT save any memory when they're used in pro-
grams, because all keywards are recduced to single-character “rokens”
by the BASIC Interpreter. When a program containing abbreviations is
listed, all keywards appear in their fully spelled form. You can use ab-
breviations to put more statements onto © progrem line even if thay
won't fit onto the 80-character logical screen line. The Screen Editor
works on an E0-character line. This means that if you use cbbreviations
on uny line thal goss over 80 characiers, you will NOT be uble 1o edit
that line when LiSled. Instacd, what you'll have to do is [1) retype the
entire line including all abbreviations, or (2) breck the single line of code
intn hwo lines, each with its awn line number, etc.

A complete list of keyworas, abbreviations, and their appearance on
the screen is presented in Table 2-1. Thay are followed by an alphno-
betical description of all the statements, commands, and functions
availabls on your Commodoare 64,

This chepter alse explaine the BASIC functions built into rhe BASIC
Languoge Inierpreter, Buili<in funciions can be used in direct mode
statements or in any program, without having to define the funclion
further. This is NOT the case with user-delined [unclions. The results of
built-in BAS|C tunctions can be used os immediate cutput or they can be
ossigned fo o voriuble nome of an gppropriate type. There are two
types of BASIC funclions:

1) NUMERIC
2) STRING

Arguments of buili-in functions are always enclosed in parentheses
(). The parentheses always come directly after the function keyword
and NGO SPACES berween the lost letrer of the keyword ond the left
parenthesis (.

30 BASIC LANGUAGE YOCABLULARY

The type of argument needed is generally decided by the dato type in
the result. Functions which return a string value as their result are iden-
rified by having o dollar sign (£) as the last characrer of the keyword. In
some cases string functions contain one or mere numeric argument,

Numeric functions will convert between integer and floating-point
format as needed. In the descriptions that follow, the data type of the
valve returned is shown with each function name. The rypes of argu-
ments are also given with the statement farmat.

Table 2-1. COMMODORE 64 BASIC KEYWORDS

| COMMAND | ABBREVIATION SCREEN FUNCTION TYPE
ABS A B A 1] NUMERIC
AND A M A |/
ASC A s A [v] NUMERIC
ATN A r A [NUMERIC
CHRS c EmE H & [STRING
CLOSF cL EmE o ct []
CLR C L e L
CMD c M e N
CONT c o c O
cos none cos NUMERIC
DATA D A D 4]
DEF D E o B3
DIM [D [D Al :

BASIC LAMGUAGE VOCABULARY n

| commanD | ABBREVIATION SCREEN FUNCTION TYPE
I |
END E N E
EXP E X E NUMERIC
FN rone FN
FOR F o F [
FRE F GG ® F O NUMERIC
GET G F c]
GFT# nona GET#
GOsuUs | GO 5 Go ¥
GOTO G o ¢ [
IF rnone IF
INPUT none INPUT
INPUT# | N L /)
INT nene INT MUMERIC
LEFTS G F e STRING
LEN none LEN ' NUMERIC
LET L E g) .
LIST . B L 8]
LOAD L B8 o L [___| |
LOG | nene LCG ‘ NUMERIC

332

BASIC LANGUAGE VOCABULARY

COMMAND | ABBREVIATION SCREEN FUNCTION TYPE
MID$ M B | m R] STRING
NEW nane NEW
NEXT N E N]

NOT N o) N []

ON none ON

OPEN 0 P o [

OR none OR

PEEK P E P NUMERIC
POKE P o} P[]

POS none POS NUMERIC
PRINT 2 ?

PRINT# P R P

READ R EME ¢ R [

REM none REM

RESTORE RE @I S RE (W

RETURN REERLI=M T RE ’]:I

RIGHTS R EE R N] STRING
RND R N R NUMERIC
RUN E Eilag U R B ‘

BASIC LANGUAGE YCCABULARY

33

COMMAND | ABBREVIATION
SAVE S A
S5GN S G
SIN 3 I
SPC(S P
SQR 5 Q
STATUS ST
STEP STEIRS ¢
STOP s T
5TR$ sT Bl R
8YS s Y
TAB(T Billag A
TAN none
THEN T H
TIME Tl
TIMES TI$
o none
JSR u s
VAL Vv Bl A
VERIFY A E
WAIT "A SHIFT

SCREEN

s (4
s [

N

“In

S O T E O

TAN

TI
Tis
T0

u e
"
v O
w (]

FUNCTION TYPE

NUMERIC

NUMERIC

SPECIAL

NUMERIC

NUMERIC

STRING

SPECIAL

NUMERIC

NUMERIC

STRING

NUMERIC

NUMERIC

7

BASIC LANGUAGE VOCABULARY

DESCRIPTION OF BASIC KEYWORDS
ABS

TYPE: Function-Numeric
FORMAT: ABS(<expression>)

Action: Returns the absolute value of the number, which is its value
without any signs. The absolure value of o negative number is that
number multiplied by —1.

EXAMPLES of ABS Function:

10X = ABS (Y)
10 PRINT ABS (X * 1)
10 IF X = ABS (¥) THEN PRINT “POSITIVE"”

AND

TYPE: Operator
FORMAT: <expression> AND <expression>

Artion: AND is used in Boolean operations to test bits. It is alse used
in operations to check the truth of both operands.

In Booleun algebru, the result of an AND operaticn is 1 only if both
numbers being ANDed are 1. The result is O if either or both is 0 (false).

EXAMPLES of 1-Bit AND Operation:

0 1 0 1
AND O AND 0 AND 1 AND 1
0 0 0 1

The Commodare 64 performs the AND operation on numbers in tha
range from —32768 to —32767. Any fractional velues are not used, and
numbers beyond the range will cause an PILLEGAL QUANTITY error

RASIC | ANGLIAGF VOCARLILARY as

message. When converted to binary format, the range allowed yields 16
bits for each number. Corresponding bits are ANDed together, forming
a 16-bit result in the same range.

EXAMPLES of 16-Bit AND Operation:

17
AND 194

0000000000010001
AND 000000001100001C

(BINARY) 0000000000000000

(DECIMAL) 0

32007
AND 28761

0111110100000111
AND 0171000001011001

(BINARY) 0111000000000007

(DECIMAL) 285673

— 241
AND 15359

T111111100001111
AND 0O011101111100111

(BINARY) 0077101100001111

(DECIMAL) 15119

36 BASIC LANGUAGE VOCABULARY

When evaluating a number for truth cr falsehood, the computer as-
sumes the numker Is true as long as its value isn't 0. When evaluating o
comparison, it assigns a value of —1 if the result is true, while false has
a value of 0, In binary formar, —1 is all 1’s and 0 is all 0°s. Therefore,
when AMDing trueffalse evaluations, the result will be true if any bits in
the result are frue.

EXAMPLES of Using AND with True/False Evalugtions:

30 [F X=7 AND W=3 THEN GOTC 10: REM CNLY TRUE IF BOTH X=7
AND W=3 ARE TRUE

60 IF A AND Q=7 THEN GOTO 10: REM TRUE IF A IS NON-ZERO
AND Q=7 IS TRUE

ASC

TYPE: Function-Numeric
FORMAT: ASC [<string™>)

Action: ASC will return a number from 0 to 255 which corresponds to
*he Commadare ASCII value of the first character in the string. The takle
of Commodars ASCIl values is shown in Appendix C.

EXAMPLES OF ASC Function:

10 PRINT ASC(“Z™)
20 X = ASC(“ZEBRA")
30 J = ASCUY)

If there are no charcerars in the string, an PILLEGAL QUANTITY error
results, In the third exemple above, if J$="", the ASC function will not
werk. The GET and GET# stctement read a CHRS(Q) as a null string. To
eliminate this problem, you should add a CHR$(Q) to the end of the
string as shown below.

EXAMPLE of ASC Function Avoiding ILLEGAL QUANTITY ERROR:
30 J = ASC(J§ + CHR$(0))

BASIC LAMGUAGE VOCABULARY a7

ATN

TYPE: Function-Numeric
FORMAT: ATN (<number>)

Action: This mcthematical function returns the arctangent of the
number. The resull is the ungle {in rudians) whose fangent is the number
given. The result is always in the range —/2 to +4r/2.

EXAMPLES of ATN Function:

10 PRINT ATN (0)
20X = ATN (J) * 180 / w : REM CONVERT TO DEGREES

CHR$

TYPE: Function-String
FORMAT: CHR$ (<number>>)

Action: This function converts ¢ Commodore ASCI| cade to its char-
aucter equivalent. See Appendix C for o list of characters and their
codes. The number must have a value between 0 and 255, or an ?IL-
LEGAL QUANTITY error message rasults.

EXAMPLES of CHRS Function:

10 PRINT CHRS{é5) : REM 65 = UPPER CASE A

20 A$ = CHR$(13) : REM 13 = RETURN KEY

50 A = ASC(AS) : A$ = CHR$(A): REM COMVERTS TO Cé4 ASCII
CODE AND BACK

38 BASIC LANGUAGE VOCABULARY

CLOSE

TYPE: I/Q Statement
FORMAT: CLOSE <file number>

Action: This statement shuts off any data file or channel to a device,
The file numker is the same ©s when the file or device was OPFNed (see
OPEN statement and the section on INPUT/OUTPUT programming).

When working with storage devices like cassetre tape and disks, the
CLOSE operation stores any incomplete buffers to the device. When this
is not performed, the file will be incomplete on the rape and unrecdable
on the disk. The CLOSE operation isn't as necessary with other devices,
but it does free up memory for other files. See your exrernal davice
maonual for more details.

EXAMPLES of CLOSE Statement;

10 CLOSE |1
20 CLOSE X
J0CLOSE? * (1 + 1)

CLR

TYPE: Statement
FORMAT: CLR

Action: This statement makes availcble RAM memory thot had been
used but is no longer needed. Any BASIC program in memory is un
touched, but all variables, arrays, GOSUB addresses, FOR. . . NEXT
loops, user-defined functions, and files are ercsed from memory, and
their space is made availuble to new variables, efc.

BASIC LAMGUAGE VOCABULARY 29

In the case of files to the disk und cassette tupe, they are not properly
CLOSEd by the CLR statement. The information about the files is lost to
the computer, including any incomplete buffers. The disk drive will still
think the file is OPEN. See the CLOSE statement for more information on
this.

EXAMPLE of CLR Statement:

10 X=25
20 CLR
30 PRINT X

RUN
0

READY

CMD

TYPE: I/O Statement
FORMAT: CMD <file number> [, string]

Action: This statement switches the primary output device from the TV
screen to the file specified. This file could be on disk, tape, printer, or an
I/O device like the modem. The file number must be specified in a prior
OPEN statement. The string, when specified, is sent ta the file. This is
handy for titling printouts, etc.

When this command is in effect, any PRINT starements and LIST com-
mands will not display on the screen, but will send the text in the same
formar 1o the file.

To re-direct the output back to the screen, the PRINT# command
should send a blank line ro the CMD device before CLOSEing, so it will
stop expecting data (called “un listening” the device).

40 BASIC LANGUAGE YOCABULARY

Arny eystem error (like 2SYNTAX ERROR) will couse output to return to
the screen. Devices aren’t un-listened by this, 30 you should send «
olank line after an error condition. (See your printer or disk manual for
more details.)

EXAMPLES of CMD Siotement:

OPEM 4, 4: CMD 4, "TITLE" : LIST: REM LISTS PROGRAM OM PRINTER
PRINT# 4: CLOSE 4: REM UN-LISTENS AND CLOSES PRINTER

10 OPEN 1, 1, 1, “TEST”: REM CREATE SEQ FILE

20 CMD 1: REM OUTPUT TO TAPE FILE, NOT SCREEN

30 FORL — 1 TO 100

40 PRINT L: REM PUTS NUMBER IN TAPE BUFFER

50 NEXT

60 PRINT# 1: REM UNLISTEN

70 CLOSE 1: REM WRITE UNFINISHED BUFFER, PROPERLY FINISH

CONT

TYPE: Command
FORMAT: CONT

Action: This command re-starts the execution of a program which was
halted by o STCP or END slulemenl or the key being
pressed. The program will re-start at the exact place from which it left
off.

While tha pragram is stopped, the user can inspert or change any
variables or look at the program. When de-bugging or examining a
program, STOP statements can he placed at strategic locations to allow
examination of variables and to check the flow of the program.

The error message CAN'T CONTINUE will result from editing the
program (even just hitting with the cursor on an unchanged
line). or if the program halted due to an error, or if you caused an error
before typing CONT to re-start the program.

EXAMPLE of CONT Commaond:

10 PI=0:C=1

20 PI=P|+4/C—4/(C+2)
30 PRINT FI

40 C=C+4:GOTO 20

BASIC LANGUAGE VOCARULARY 41

This program celculates the value of Pl. RUN this program, and after
a short while hit the key. You will see the display:

BREAK IN 20 | NOTE: Might be ditterent number

—

Typa the eammand PRINT C to see how for the Commodore 64 has
gotten. Then use CONT to resume from where the Commodore 64 left
off.

COos

TYPE: Funciion
FORMAT: COS (<number>)

Action: This mathematical function calculates the casine of the
number, where the numker iz an angle in radians.

EXAMPLES of COS Function:

10 PRINT COS (0)
20X =COS(Y ™ =/ 180) : REM CONVERT DEGREES TO RADIANS

DATA

TYPE: Statement
FORMAT: DATA <list of constants™>

Bction: DATA sictements store information within @ program. The
program uscs the information by mecns of the READ statement, which
pulls successive constants fram the DATA statements.

The DATA statements don’t have to be executed oy the program, they
enly have to be present. Therefore, they are usuclly placed at the end of
the progrom.

All data sictements in o program cre freated as ¢ continuous list,
Data is READ from left 2o right, frem the lowest numbered line to the
highest. If the READ statement encounters data that doesn't fit the type
requested (if it needs a number and firde a string) an errer message
occurs,

42 BASIC LANGUAGE VOCABULARY

Any characters can be included as data, but if certcin ones are used
the data item must be enclosed by quote marks (* “). These include
punctuation like comma (,], colen (i), blank spazes, and shifred letters,
graphics, and cursor contrel characters.

EXAMPLES of DATA Statement:

10 DATA 1, 10, 5, 8

20 DATA JOHN, PAUL, GEORGE, RINGO

30 DATA “DEAR MARY, HOW ARE YOU, LOVE, BILL"
40 DATA —1.7E—%, 3.33

DEF FN

TYPE: Statement
FORMAT: DEF FN <name> (<variable>) = <expres-
sion>

Action: This sets up a user-defined function that can be used later in
the progrom. The funclion con consist of any mathematical formula.
Usec-defined functions save space in programs where a long formula is
used in several places, The formula need only be specified once, in the
definition statement, and than it is abbreviated cs a function name. It
must be executed once, but any suosequent executions are ignored.

The function name is the letters FN followed by any variakle name.
This can ke 1 or 2 choracters, the first being o letter and the second a
letter or digir.

EXAMPLES of DEF FN Statement:

1ODEFFNAX) =X + 7
20DEFFN AA(X) = Y * Z
30 DEF FNAS (@) = INT(RND(1)* @+ 1)

The tunction is called later in the program by using the funetion name
with a variable in parertheses. This function name is used like any other
veriable, and its value is automatically caleulated,

BASIC LANGUASGE VOCABULARY 43

EXAMPLES of FN Use;

40 PRINT FN A (9)

50 R — FNAA (9)
60 G = G + FN A9 (10)

tn line 50 aobove, the number 9 inside the parentheses does not affect
the outcome of the function, because the function definition in line 20
duesn’t use the varioble in the parentheses. The result is Y times Z,
regardless of the value ot X, In the other two functions, the value in
parentheses does offect the result.

DIM

TYPE: Statement
FORMAT: DIM <variable™> (<<subscripts>) [,
<variable> (<subscripts>) .. .]

Action: This stotement defines on array or matrix of variables. This
cllows you tc use the varieble name with a subscript. The subscript
points to the element being used. The lowest element number in an
array is zero, and the highest is the number given in the DIM statement,
which has a maximum of 32767,

The DIM statement must be executed once and only once for each
array. A REDIM'D ARRAY error occurs if this line is re-executed, There-
fore, most programs perform all DIM operations at the very beginning.

There may be any number of dimensions and 255 subscripts in an
array, limited only by the amount of RAM memory which is available to
hold the variables. The array muay be mude up of normal numeric vari-
ables, as shown above, ar of strings or integer numbers. If the variables
are other than normal numeric, use the $ or % signs after the variable
name to indicate string or integer variabkles,

44 BASIC LANGUAGE YOCABULARY

If an array refererced in o program was never DIMensioned, it is

autematically dimensioned te 11 elements in each dimension used ir the

first reference.
EXAMPLES of DIM Statement:

10 DIM A (100)

20DIMZ(5,.7).Y(3,4,35)

30 DIM Y7% (Q)

40 DIM PHS (1000)

50 F (4) =9: REM AUTOMATICALLY PERFORMS DIM F (10)

EXAMPLE of FOOTBALL SCORE-KEEPING Using DIM:

10 DIM S(1,5), TS(1)

20 INPUT “TEAM NAMES”; T$(0), T$(1)
30 FORQ=1TO 5: FORT=0TQO 1

40 PRINT T$(T), “SCORE IN QUARTER" Q
50 INPUT S(T.@): S(T,0)= S(T,0)+ 5(T.Q)
60 NEXT T,Q

70 PRINT CHR$(147) “SCOREBOARD"

80 PRINT “QUARTER”

90 FORQ=1TO 5

100 PRINT TAB(Q*2 +9) Q;

110 NEXT: PRINT TAB{15) “TOTAL"

120 FOR T=0 TO 1: PRINT T$(T);

130 FCR Q=1TO 5

140 PRINT TAB(Q*2 +9) S(T,Q);

150 NEXT: PRINT TAB(15) S(T,0)

160 NEXT

CALCULATING MEMORY USED BY DIM:

5 bytes for the array name

2 bytes for each dimension

2 bytes/alement for integer varicbles

5 bytes/element for normal numeric variables

3 bytes/alement for string variables

1 byte for each character in each string element

BASIC LANGUAGE VOCZABULARY

45

END

TYPE: Statement
FORMAT: END

Action: This finishes a program’s execution and displays the READY
message, returning contial 1o the person operating the computer. There
may be any numker of END statements within a program. While it is not
recessary to include any END staternents at all, it is recammended that
a program does conclude with one, rather than just running out of lines.

The END statement is similar to the STOP statement. The anly differ-
ence is that STOP causes the computer to display the message BREAK
IN LINE XX cnd END just displays READY. Both statements allow the
computer to resume execution by typing the CONT command.

EXAMPLES of END Stotement:

10 PRINT “DO YOU REALLY WANT TO RUN THIS PROGRAM"
20 INPUT AS

30 IF A$ — “NO"” THEN END

40 REM REST OF PROGRAM . . .

$99 END

EXP

TYPE: Function-Numeric
FORMAT: EXP { <number>)

Action: This mathematical function calculutes the constant e
(2.71828183) raisad to the power of the number given. A value greater
than 88.0204919 causes an OVERFLOW error to occur.

EXAMPLES of EXP Function:

10 PRIMT EXP (1)
WX=Y*EXP(Z" Q)

48 BASIC LAMGUAGE VOCABULARY

FN

TYPE: Function-Numeric
FORMAT: FN <name>> (<nmumber>)

Action: This function references the previously DEFined formula spec-
ified by name. The number is substituted into its place (if any) and the
formula is calculated. The result will be o numeric value.

This function can be used in direct mode, as long as the statement
DEFining it has been executed.

If an FN is executed before the DEF statemert which defines it, an
UNDEF'D FUNCTION error nccurs.

EXAMPLES of FN (User-Defined) Function:

PRINT FN A (@)
1100 1 = FN J (7) + FN J (9)
9990 IF FN B7 (I+1)= & THEN EMD

FOR.... 10 ... [3TEP. . .]

TYPE: Statement
FORMAT: FOR <variable> = <start> TO <limit>> [STEP
<increment>> |

Action: This is a special BASIC statement that lets you easily use «
variable as a counter. You must specify certain parameters: the
floating-point variable name, its starting value, the limir of the count,
and hew much to add during each eycle.

Here i a simple BASIC program that counts from 1 to 10, PRINTing
each number and ENDing when complete, ond using no FOR state-
ments:

1001L =1

110 PRINT L

120L = L + 1

130 IF L <= 10 THEN 110
140 END

BASIC LANGUAGE VCCABULARY 47

Using the FOR statement, here is the same program:

100 FORL — 1 TO 10
110 PRINT L

120 NEXT L

130 END

As you can see, the program is shorter and easier to understand using
the FOR statement.

When the FOR statement is executed, several operations take place,
The <start>> value is placed in the <varioble™ being used in the
counter. In the example above, a 1 is placed in L.

When the NEXT statement is reached, the <increment™> value is
added to the <variable>. If a 5TEP was not included, the <increment>
is set to +1. The first time the program above hits line 120, 1 is added
tc L, 3o the new value of L is 2.

Now the value in the <variable> is compared 1o the <limit=. If the
<limit=> has not been reached yet, the pregram GOes TO the line after
the original FOR statement. In this case, the value of 2 in L is less then
the limit of 10, so it GOes TO line 110.

Eventually, the value of <Climit> is exceeded by the <variable>>. Ar
that time, the loop is concluded and the program continues with the line
following the NEXT statement. In our example, the value of L reaches
11, which exceeds the limit of 10, and the pregram goes on with line
130,

When the value of <increment™ is positive, the <variable™> must
exceed the <limit>, and when it is negaotive it must become less than
the < limit>=.

[
L NOTE: A loop always executes ot least once,

EXAMPLES of FOR. . .TO. . .STEP. . .Statement:

100 FOR L 100 TO Q STEP —1
100 FOR L = PI TO é"m STEP .01
100 FOR AA = 3 TO 3

48 BASIC LANGUAGE VOCABULARY

FRE

TYPE: Function
FORMAT: FRE (<variable™)

Action: This function tells you how much RAM is ovailoble for your
program and its variables. If o program tries 1o use more space than is
available, the QUT OF MEMORY error results.

The number in parentheses can have any value, and it is not used in
the calculation.

MNOTE: If the result of FRE iz negetive, add 65536 to the FRE number to get the
number of bytes availakle in memory.

EXAMPLES of FRE Function:

PRINT FRE (0)
10X =(FRE(K)—1000)/7
$50 IF FRE (0) << 100 THEN PRINT “NOT ENOUGH RCOM"

“NOTE: The following always rells you the current avoiloble RAM:

PRINT FRE(0) — (FRE{0) < 0)* 65536

GET

TYPE: Statement
FORMAT: GET <variable list>

Action: This statement reads each key typed by the user. As the user
is typing, the characters are stored in the Cammodore é4's keyboard
buffer. Up to 10 characters are stored here, and any keys struck after
the 10th are lest. Reading one of the characters with the GET statement
makes room fer another character,

If the GET statement specifles numeric dota, and the user types a key
other than o rumber, the message PSYNTAX ERROR cppears. To be
safe, read the keys as strings and converl them te numbers later,

BASIC LANGUAGE VDCABULARY 49

The GET statement can ke used to avoid some of the limitations of the
INPUT statement. For more on this, see the section on Using the GET
Stotement in the Programming Techniques section.

EXAMPLES of GET Staiement:

10 GET AS: IF A$ = “* THEN 10: REM LOOPS IN 10 UNTIL ANY KEY
HIT

20 GET A%, B, C3, DS, ES: REM READS 5 KEYS

30 GET A, A$

GET#

TYPE: 1/O Statement
FORMAT: GET# <file number>, <variable list>

Action: This statement reads characters one-at-a-time from the device
or file specified. It works the same as the GET statement, except that the
datc comes from a different place than the keyboard. If no character is
received, the variable is set to an empty string (2qual 10 ") ar 10 D for
numeric variables. Characters used to separate data in files, like the
comma (,) or key code {ASC code of 13), are received lke
any aother character.

When used with device #3 (TV screen), this statement will read char-
acters one by one from the screen. Each use of GET# moves the cursor 1
position to the right. The character at the end of the logical line is
chenged to a CHR$ (13), the key code.

EXAMPLES of GET# Statement:
5 GET# 1, A$

10 OPEN 1, 3: GET# 1, I7%
20 GET# 1, A, B, C$. D$

50 BASIC LANCUAGE YOCAEULARY

GOsuUB

TYPE: Statement
FORMAT: GOSUB <line number>

Action: This is a specialized form of the GOTO statement, with one
important difference: GOSUB remembears where it came fram. When the
RETURN statement (different from the key on the keyboard)
is reached in the program, the program [umps back to the statement
immediately following the original GOSUB staterment.

The major use cf a subroutine (GOSUB really means GO to a SUB-
routine) is when a small section of program is used by different sections
of the program. By using subroutimes rather than repeating the same
lines over and over at different places in the program, you can save lots
of program space. In this way, GOSUB is similar to DEF FN. DEF FN lets
you save space when using a formula, while GOSUB saves space when
using a several-line routine. Here is an inefficient program that doesn’t
use GOSUB:

100 PRINT “THIS PROGRAM PRINTS”
110 FOR L = 1 TO 500 « NEXT

120 PRINT “SLOWLY ON THE SCREEN"
130 FOR L = 1 TO 500 : NEXT

140 PRINT “USING A SIMPLE LOOP”
150 FOR L = 1 TO 500 : NEXT

160 PRINT “AS A TIME DELAY."

170 FOR L = 1 TO 500 : NEXT

Here is the same pragram using GOSUB:

100 PRINT “THIS PROGRAM PRINTS"
110 GOSUB 200

120 PRINT “SLOWLY ON THE SCREEN"
130 GOSUB 200

140 PRINT “USING A SIMPLE LOOP*
150 GOSUB 200

160 PRINT “AS A TIME DELAY.”

170 GOSUB 200

180 END

200 FOR L = 1 TO 500 : NEXT

210 RETURN

BASIC LAMGUAGE VOCABULARY 51

Each time the program executes u GOSUB, the line number and posi-
tion in the program line are saved in a special crea called the “stack,”
which takes up 256 bytes of your memory. This limits the amount of data
that can be stored in the stack. Therefore, the number of subroutine
return addresses that can be stored is limited, and care should be token
to make sure every GOSUB hits the corresponding RETURN, er else you'll
run aut of memory even though you have plenty of bytes free.

GOTO

TYPE: Statement
FORMAT: GOTO <line number>
or GO TO <line number>

Action: This statement allows the BASIC program to execute lines out
of numerical order. The word GOTO fellowed by o number will make
the program jump to the line with that number. GOTO NOT followed by
a number equals GOTO 0. It must hove the line number ofter the word
GOTO.

It s possible to create loops with GOTO that will never end. The
simplest example of this is o line that GOes TO itself, like 10 GOTO 10.

These loops can be stopped using the key on the key-
board,

EXAMPLES of GOTD Statement:

GOTO 100
10 GO TO 50
20 GOTO 999

IF...THEN. . .

TYPE: Statement

FORMAT: IF <expression>> THEN <line number>
IF <expression> GOTO <line number>
IF <expression> THEN <statements>

Action: This is the statement that gives BASIC most of its “intelli-
gence,” the ability to evaluate conditions and take different actions de

pending on the outcome.

52 BASIC LANGUAGE YOCABULARY

The word IF is followed by an expression, which can include varic-
bles, strings, numkers, comparisons, and logical operators. The word
THEN appears on the some line and is followed by either a line numker
or one or more BASIC statements. When the expression is lalse, every-
thing ofter the word THEN on thet line is ignored, and execution con-
tinues with the next line number in the program. A true result makes the
program either branch to the line number after the word THEN or exe-
cute whatever other BASIC statements are fourd on that line.

EXAMPLE of IF. . .GOTO. . .Statement:

100 INPUT “TYPE A NUMBER"™; N

TI0 IF N <= 0 GOTO 200

120 PRINT “SQUARE ROOT=" SQR(N)
130 GOTO 100

200 PRINT “NUMBER MUST BE =>0"
210 GOTO 100

This program prints out the square roct of any positive number. The IF
stoternent here is used to vaolidotz the result of the INPUT, When the
result of N <= 0 is true, the proegram skips to line 200, and when the
result is false the next line to be executed is 120. Note that THEN GCTO
is not needed with IF. . .THEN, as in line 110 where GQTO 200 actually
means THEN GOTO 200.

EXAMPLE OF IF. . . THEN. . . Statement:

100 FOR L = 1 TO 100

110 IF RND(7) < .5 THEN X = X+ 1 : GOTO 130
120 =% 1

130 NEXT L

140 PRINT “HEADS= " X

150 PRINT “TAILS= “ Y

The IF in line 110 tests a random number to see if it is less than .5.
When the result is true, the whole series of statements following the
werd THEN are executed: first X is ineremented by 1, then the program
skips to line 130. When the result is false, the program drops to the next
statement, line 120.

BASIC LANGUAGE YOCABULARY 53

INPUT

TYPE: Statement
FORMAT: INPUT [“<prompt>" ; 1 <variable lisi>

Action: This is o statement that lets the person RUNning the program
“feed” information into the computer. When executed, this statement
PRINTs o question mark (?) on the screen, and positions the cursor 1
space to the right of the gquestion mark. Now the computer waits, cursor
blinking, for the operator to type in the answer and press the
key.

The word INPUT may be followed by ony text contained in quote
marks (” "). This text is PRINTed on the screen, followed by the ques-
tion mark.

After the text comes a semicolen (i) and the name of one ar more
variables separated by commas. This variable is where the computer
stores the information that the operator types. The variable can ke any
legal varicbhle name, and you con have several different variahle
names, each for a different input.

EXAMPLES of INPUT Statement:

100 INPUT A
110 INPUT B, C, D
120 INPUT “PROMPT”; E

When this program RUNs,the gquestion mark appecrs to prompt the
aperator that the Commadare 64 is expacting an input for line 100. Any
number typed in gces into A, for later use in the program. If the answer
typed was not a number, the PREDO FROM START messoge appears,
which means that a string wos received when o number was expected.
If the operator just hits without typing anything, the vari-
able’s value doesn’t change.

Now the next question mark, for line 110, appeuars. Il we type only
cne number and hit , the Commodore &4 will now display 2
yuesticn marks (?7?), which means that more input is reguired. You can

54 BASIC LANGUAGE VOCABULARY

just type as many inputs as you need separated by commas, which
prevents the double quastion mark from appearing. If you type mare
data than the INPUT statement requested, the EXTRA IGNORED mes-
sage appears, which means that the extra items you typed were not put
into any variobles.

Line 120 displays the ward PROMPT befare the questian mark ap-
pears. The szericolon is required between the prempt and any list of
variables.

The INPUT statement ccn never be used outside a program. The
Commodore 64 needs space for a huffer for the INPUT variables, the
same space that is used for commands.

INPUT#

TYPE: |/O Statement
FORMAT: INPUT# <file number> , <vaoriable list>

Action: This is usually the fastest and easiest way to retrieve data
stored in o file on disk or tope. The data is in the ferm of whole vari-
nbles of up 1o 80 characters in length, as cpposed to the one-at-a-time
method of CET#. First, the file must have been OPENed, then INPUT#
can fill the variables.

The INPUT# cemmand assumes a variable is finished whan it reads o
RETURN code (CHR$ (13)), a comma (,), semicolen (;), or colon (:].
Quote marks con be used to enclase these characters when writing if
they are needed (see PRINT# statement).

It the variable type used is numeric, and non-numeric characters are
received, o BAD DATA error results. INPUT# can read strings up to 80
characters long, beyond which o STRING TOO LONG error results,

When used with device #3 (the screen), this statement will read an
entire logical line and move the cursor down fo the next line.

EXAMPLES of INPUT# Statement:

10 INPUT# 1, A
20 INPUT# 2, AS, B3

BASIC LANGUAGE VOCAELILARY 55

INT =

TYPE: Integer Function -
FORMAT: INT (<numeric=)

Action: Returns the intager value of the expression. If the expression
is positive, the fractional part is left off. If the expression is negative,
any fraction causes the next lower intager 1o be returned.

EXAMPLES of INT Function:
120 PRINT INT(99.4343), INT(—12.34)
99 —-13

LEFT$

TYPE: String Function
FORMAT: LEFT$ (<string>, <integer>>)

Action: Returns a string comprised of the leftmost <linteger™> char-
acters of the <string™. The integer argument value must be in the
range 0 to 255 If the integer is greater than the length of the string, the
entire string will be returned. If an <integer> veclue of zerc is used,
then a null string {of zere length) is returned.

EXAMPLES of LEFT$ Function:

10 A% = "COMMODORE COMPUTERS"
20 B$ = LEFT$(A$,9): PRINT B$
RUN

COMMODORE

56 BASIC LANGUAGE YOCABULARY

LEN

TYPE: Integer Function
Format: LEN (<string>)

Action: Returns the number of characters in the string expression.
Non-printed characters and blanks are counted.
EXAMPLE of LEN Function:
CCH = "COMMODORE COMPUTER”; PRINT LEN(CC$)
18

LET

TYPE: Statement
FORMAT: [LET]| <variable> = <expression>

Action: The LET statement can be used to assign a value to o vari-
able. But the word LET is optional and therefore most advanced pro-
grammers leave LET out because it's always understood and wastes val-
vable memory. The equal sign (=) alone is sufficient when assigning the
value ot an expression te a variable name.

EXAMPLES of LET Statement:

10 LET D= 12 (This is the same as D = 12)

20 LET E$ = “ABC”

30 F$ = “WORDS"

40 SUMS = E$ + F3 (SUM% would equal ABCWORDS)

BASIC LANGUAGE YOCABULARY 57

LIST

TYPE: Command
FORMAT: LIST [[<first-line>]-[<lasi-line=>]]

Action: The LIST command allows you to look at lines of the BASIC
pregram currently in the memory of your Commodore &4. This lets you
use your computer's powerful screen editor to edit programs which
vou've LISTed beoth quickly and easily.

The LIST system command displays cll or part of the program that is
currently in memory on the dafault ouiput device. The LIST will normally
be directed to the screen and the CMD statement can be used to switch
output to an external device such as a printer or a disk. The LIST com-
mand can appear in a pregram, but BASIC always returns to the system
READY message after a LIST is executed.

When you bring the program LIST onto the screen, the “scrolling” of
the display froam the bottam of the screen to the top can be slowed by
holding down the ConTRol key. LIST is aborted by typing
the key.

If no line-numbers are given the entire program is listed. If enly the
first-line number is specified, and followed by a hyphen (-), that line and
all higher-numkered lines are listed. [f only the last line-numkber is spec-
ified, and it is preceded by o hyphen, then cll lines from the beginning
ot the program through that line are listed. It both numbers are spec-
ified, the entire range, including the line-numbers LISTed, is displayed.

EXAMPLES of LIST Command:

LIST (Lists the program currently in memory.)

LIST 500 (Lists line 500 only.)

LIST 150- (Lists all lines from 150 to the end.)

LIST -1000 (Lists all lines from the lowest through 1000.)

LIST 150-1000 (Lists lines 150 through 1000, inclusive.)
10 PRINT “THIS IS LINE 10"

20 LIST (LIST used in Program Mode)

30 PRINT “THIS IS LINE 30"

58 BASIC LANGUAGE VOCABULARY

LOAD

TYPE: Command
FORMAT: LOAD [“<file-name>"] [,<device>]
[,<address>]

Actlen: The LOAD statement reads the contents of a program file from
tape cr disk into memory. That way you can use the infarmation LOADed
or change the information in some way. The device number is optional,
but when it is left out the computer will automatically default to 1, the
cassette unit. The disk unit is normally device number 8. The LOAD
closes all open files and, it it is used in direct mode, it performs ¢ CLR
(clear) oefore reading the program, If LOAD is exscuted from within @
program, the program is RUN. This mears that you con use LOAD to
"chain™ several programs together. Nene of the variables are cleared
during o chain operntion.

If you are using file-name pattern matching, the first file which
metcnas the pattern is loaded. The asterisk in cuotes by itself (")
causes the first file-name in the disk directory to be loaded. if the file-
name used does nor exist or if it is not o pragram file, the BASIC error
message ?FILE NOT FOUND occurs.

When LOADing programs from tape, the <flle-name>> can he Isft
out, and the next program file on the tape will be read. The Commaodore
64 will blunk the screen to the border color after the PLAY key is
pressed. When the program is found, the screen clears to the back-
vround color and the “FOUND"” message Is displayed. \When the E
key, key, BB key, or is pressed, the file will
be load=d. Procrams will LOAD starting at memory locaticn 2048 unless
o sacondary <address™> ot 1 is used. If you use the secondary address
of 1 this will cause the program 1o LOAD to the memory location fram
which it was saved.

BASIC LANGUAGE VDCABULARY 59

EXAMPLES of LOAD Command:

LOAD

LOAD A3

LOAD “**,8

LOAD ““,1,1

LOAD ""5TAR TREK"
PRESS PLAY ON TAPE
FOUND STAR TREK
LOADING

READY.

LOAD "“FUN",8
SEARCHING FOR FUN
LOADING

READY.

LOAD "GAME ONE",8,1
SEARCHING FOR GAME ONE
LOADING

READY.

BASIC LANGUAGE VOCABLILARY

(Reads the next program on tape)

(Uses the name in A$ to search)

(LOADs first program from disk)

(Looks for the first program on
tape, and LOADs it into the same
part of memery that it came
from)

(LOAD a file from tcpe)

(LOAD a file from disk)

(LOAD a file to the specific
memory locatien from which the
program weas saved on the disk)

LOG

TYPE: Floating-Point Function
FORMAT: LOG (<“numeric>)

Action: Returns the natural logarithm (log to the base of) of the
argument. If the value of the argument is zero or negotive the BASIC
error message PILLEGAL QUANTITY will occur.

EXAMPLES of LOG Function:

25 PRINT LOG(45/7)
1.86075234

10 NUM = LOG(ARG) / LOG(10) (Caleulates the LOG of ARG to the
base 10)

MID$

TYPE: String Function
FORMAT: MID$ (<string>>, <numeric-1> [,<<numeric-
2>])

Action: The MID$ function returns a sub-string which is taken frem
within a larger <string= argument. The siarting position of the sub-
string is defined by the <numeric-1> argument and the length of the
sub-string by the <{numeric-2> argument. Both of the numeric argu-
ments can have values ranging fram 0 to 255.

If the <<numeric-1> value is greater than the lenath of the <Tsiring>,
or if the <<numeric-27> value is zero, then MID$ gives a null string value.
If the <<numeric-2> argument is lell out, then the computer will assume
that a length of the rest of the siring is to be used. And if the source
siring has fewer choracters than <numeric-2>, from the starting posi-
tion to the end of the string argumant, then the whole rest of the string is
used.

EXAMPLE of MID$ Function:

10 A§="GOOD"

20 B$="MORNING EVEMING AFTERNOON"
30 PRINT A% — mID$(BS, 8, 8)

GOOD EVENING

BASIC LANGUAGE YOCABULARY 61

NEW

TYPE: Command
FORMAT: NEW

Action: The NEW command is used to delete the program currently in
memory and clear cll varicbles. Befere typing in o new pragram, NEW
should be used in direct mode to clear memory. NEW can also be used
in a pragram, but you shoule be awars of the facr that it will erase
everything that has gone before and is still in the computer’s memory.
This can be particularly troublesome when you're trying to debug your

program.

BE CAREFLUL: Not clearing out on old program befere typing o new one can result in
o confusing mix of the two programs.

EXAMPLES of NEW Command:

NEW (Clears the program and all variables)
10 NEW (Performs @ MEW operation and STOPs the program.)

NEXT

TYPE: Statement
FORMAT: NEXT [<counter>] [,<counter>]

Action: The NEXT statement is used with FOR ro establish the end of a
FOR. . . NEXT loop. The NEXT need not be physically the last statement
in the loop, but it is always the last starement executed in a lcop. The
<Zcounter™> is the loop index’s varickle name used with FOR to start the
loop. A single NEXT cun stop severol nested loops when it is lollowed by
each FOR's <counter™ variable namels). To dg this each name must
appear in the order of inner-mos! nested loop first, to outer-mas! nested
loop last. When using a single NEXT to increment and stop several vari-
able names, each variable nome must be sepurated by commus, Loops
can be nested to 9 levels. If the counter variable(s) are omitted, the
counter associcted with the FOR of the current level (of the nested lcops)
is incremented.

62 BASIC LANGUAGE VOCABULARY

When the NEXT is reached, the counter value Is Incremented by 1 or
by an aptional STEP value. It is then tested against on end-value to see
if it's time 1o stop the loop. A loop will be siopped when o NEXT is found
which has its eounter value greater than the end-value,

EXAMPLES of NEXT Statement:
1DFORJ=1TOS5. FORK=10TO 20: FORN = 5TO —5 STEP —1

20 NEXT N, K, J (Stopping Nested Loops)

10 FOR L = 1.TO 100
20FORM =1 TO 10

30 MNEXT M

400 NEXT L (Note how the loops do NOT cross cach
dh:er)

10 FORA — 1TO 10

20 FOR B = 1 TO 20

30 MEXT

40 NEXT [Notice that na variahle names are
needed)

NOT

TYPE: Logical Operator
FORMAT: NOT <expression™

Aclion: The NOT logical operator “camplements” the value of each bit
in its single cperand, producing an integer “twos-camplement” result. In
other words, the NOT is reclly saying, “if it isn't. . . . When working
with a floating-point number, the operands are converred to integers
and any fractions are lost. The NOT operator can also be used in a
comparison fo reverse the frue/false value which was the result of a
relationship test and therefore it will reverse the meaning of the com-
parison. In the first example below, if the “twos-complement” of "AA" [s
equal to “BB” and if “BB” is NOI equal to “CC"” then the expression is

true.

BASIC LANGUAGE VOCABULARY &3

EXAMPLES of NOT Operator:
10 IF NOT AA = BB AND NOT(BB = CC) THEN

NN% = NOT 96: PRINT NMN%
=9F

NOTE: To find the value of NOT use the expression X=(—[X+1)). (The two's comple-
ment of ary Integer is the bit complement plus one.) |

ON

TYPE: Statement
FORMAT: ON <variable> GOTO / GOSUB <line-

number> [, <line-number=>-]

Action: The ON statement is used to GOTO one of several given line-
numbers, depending upen the volue of o variable. The value of the
variables can range from zerc through the number of lines given. If the
value is a non-integer, the fractional portion is left off. For example, if
the variable value is 3, ON will GOTO the third line-number in the list,

If the value of the varioble is negative, the BASIC error messoge
?ILLEGAL QUANTITY occurs. If the number is zero, or greater than the
number of items in the list. the program just “ignores’ the statement and
confinues with the statement following the ON statement.

CN is reclly an underused variont of the IF. . .THEN. . . statement.
Instead of using a whcle lot of IF statements each of which sends the
program to 1 specific line, 1 ON statement can replace a list of IF
statements, When you look at the first example you should neotice that
the 1 ON statement repluces 4 IF, . .THEN, . , stalements,

EXAMPLES of ON Statement:
ON —(A=7)—2%(A=3)— 3%(A<3)—4%(A=>7)GOTO 400,900,1000,100

ON X GOTO 100,130,180,220
ON X+3 GOSUB 9000,20,9000

100 ON NUM GOTO 150, 300, 320, 390
500 ON SUM / 2 + 1 GOSUB 50, 80, 20

64 BASIC LANGUAGE VOCABULARY

OPEN

TYPE: I/O Statement
FORMAT: OPEN <file-num>, [<device>] [,<address>]
[“<file-name™> [,<type>>] [,<mode>]"]

Action: This statement OPENs o channel for input and/or output 1o a
peripheral device. However, you may NOT need all those parts for
every OPEN statement. Same OPLCN statements require only 2 codes:

1) LOGICAL FILE NUMBER
2) DEVICE NUMBER

The <Iflle-num>= is the logical file number, which relotes the OPEN,
CLOSE, CMD, GET#, INPUT#, and PRINT# statements to ecch other
and associates them with the file-name and the piece of equipment
being used. The logical file number can ronge from 1 to 255 and you
can assign it any number you want in that range.

NOTE: File numbers aver 128 wers really designed for other vses so it's good practice
1o vse only numbers below 127 for file numbers.

Each peripheral device (printer, disk drive, cassette) in the system has
its own number which it answers to. The <<device> number is used with
OPEN to specify on which device the data file axists. Peripherals like
cassette decks, disk drives or printers also answer to several secondary
cddresses. Think of these as codes which tell each device what opera-
tion to perform. The device logical file number is used with every GET#,
INPUT#, and PRINT#.

If the <device™ number is left out the computer will automatically
assume that you want your information to be sent to and received from
the Datassette™, which iz device number 1. The file-name can also be
left out, but later on in your program, you can NOT call the file by name
if you have not already given it one. When you are storing files on cas-
sefte tape, the computer will assume that the secondary <uddress™> is
zero (0) if you omit the secondary address (o READ operation).

BASIC LANGUAGE YOCABULARY 65

A secondary address value of one (1) OPENs cassette tape files for
writing. A secondary cddress value of two (2) causes an end-of-tape
marker to be written when the file is loter closed. The end-of-tape
marker prevents accidentally reading past the end of data which results
in the BASIC error message ?DEVICE NOT PRESENT.

For disk files, the secondary addresse: 2 thru 14 are available for
data-files, but other numkers have special meanings in DOS commands.
You must use a secondary addrass when using your disk drive(s). (See
vour disk drive manual for DOS5 command details.)

The <file-name™ is o string ot 1-16 characters and is opticnal for
cassette or printer files. [f the file <type> is left out the type of file will
automaticolly default 1o the Progrom file unless the <meode> is given.
Sequential files are OPENed for reading <meode™=R unless you specify
that files should be OPENed for writing <made> =W is specified. A file
<type> can be used to OPEMN an existing Relative file, Use REL for
<type>> with Relative files. Relative and Sequential filas are for disk
only.

If you try to access a file befare it is OPENed the BASIC errcr message
PFILE NOT OPEN will occur. If you try to OPEN a file for reading which
does not exist the BASIC error message TFILE NOT FOUND will occur. If
a file is OPENed to disk fer writing end the file-name clready exists, the
DOS error message FILE EXISTS cccurs. There is no check of this type
available for tape files, so be sure that the tape is properly positioned or
you might accidentally write over some data that had previously ceen
SAVEd. If a file is OPENed that is already OPEN, the BASIC error mes-
sage FILE OPEN occurs. (See Printer Manual for further details.)

(1] BASIC LANGUAGE VOCABULARY

EXAMPLES of OPEN Statements:
10 OPEN 2, 8, 4 “DISK-OQUTPUT,

SEQ, W”

10 OPEN 1, 1, 2, "TAPE-WRITE”

10 OPEN

10 OPEN

10 OPEN

10 OPEN

10 OPEN

10 OPEN

10 OPEN

10 OPEN

10 OPEN

10 OPEN

50, 0
12, 3
130, 4
1,1,0,
L.1.1,
1,2,0,
1,4,0,
1,47,

1)5J7!

1,8,15, "COMMAND"

“NAME"
“NAME"”
CHR$ (10)
“STRING"
"STRING"

“STRING"

(Opens sequential file on disk)
(Write End-of-File on Close)
(Keyboard input)

(Screen output)

(Printer cutput)

(Read from cassete)

(Write to cassette)

(Open channel to RS-232 device)

(S5end upper cuse/graphics to
the printer)

(Send upper/lower case to
printer)

(Send vpper/lower case to
prinfer with device # 5)
(Send o command i disk)

BASIC LAMGUAGE VOCABULARY

&7

OR

TYPE: Logical Operator
FORMAT: <operand> OR <operand>

Action: Just as the relational operarors can be used fo make decisions
egarding program flow, logical operators can connect two or more re-
ations and return a true or false value which can then be used in a
decision. When used in calculations, the logical OR gives you a bit result
of 1 if the corresponding bit of either or both operands Is 1. This will
produce cn integer as a result depending on the values of the operands.
When used in compariscns the logical OR operator is also used to link
two expressions into a single compound exprassicn. |t sither of the ex-
pressions cre true, the combined expression value is true (—1). In the
first example below it AA is equal to BB OR it XX is 20, the expression is
frue.

Logical operators work by converting their operands to 16-bit, signed,
wo's complement integers in the range of —32768 to +32767. If the
operands are not in the range an error message resulis. Fach kit of the
result is determined by the corresponding bits in the two oparands,

EXAMPLES of OR Operator:

100 IF (AA = BB) OR (XX = 20) THEM . . .

230 KK% = 64 OR 32: PRINT KK% (You typed this with a bit
value of 1000000 for 64
and 100000 for 32)

96 (The computer responded

with bit valve 1100000.
1100000=96.)

68 BASIC LANGUAGE VOCABULARY

PEEK

TYPE: Integer Function
FORMAT: PEEK (<numeric>)

Action: Returns an integer in the range of D ro 255, which iz read
from & memory lecation. The <-numeric™> expression is « memery loca-
tion which must be in the range of 0 to $5535. If it isn'r then the BASIC
error message ?ILLEGAL QUANTITY occurs.

EXAMPLES of PEEK Function:

10 PRINT PEEK(532E0) AND 15 (Returns value of screen
border color)
5 A% =PEEK(45)+ PEEK(46)*256 [Returns address of BASIC

variahle table)

POKE

TYPE: Statement
FORMAT: POKE <locotion>>, <value>>

Action: The POKE stctement is used to write a one-byte (8 bits) binary
value into a given memary location or input/outpul register. The
<location> is an arithmetic axpression which must equal a value in the
rangs of 0 to 65535. The <value= is an expression which cun be re-
duced ta an integer value of 0 to 255. If either value is out of its respec-
five range, the BASIC errcr messcge PILLEGAL QUANTITY occurs.

The POKE statement and PEEK sratement (which is a huilt-in function
that locks at a memery location) are useful for data sterage, controlling
graphics displays or sound generation, loading assembly language sub-
roufines, and passing crguments and results to and from assembly lan-
guage subroutines. In addition, Cperuting Syslem purameters can be
examined using PEEK statements or chonged and manipulated using
POKE staternents. A complete memory mag of useful locations is given
in Appendix G.

BASIC LAMGUAGE VOCABULARY 69

EXAMPLES of POKE Statement:

POKE 1024, 1 (Puts-an “A™ at pesition 1 on the screen)
POKE 2040, PTR (Updates Sprite #0 daota pointer)

10 POKE RED, 32

20 POKE 36879, B

2050 FOKE A, B

POS

TYPE: Infeger Function
FORMAT: POS (<dummy>)

Action: Tells you the curreni cursor position which, of course, is in the
range of 0 (leftmost character) though position 79 on an 80-character
logical sereen line. Since the Commodore 64 has a 40-column screen,
any position from 40 through 79 will refer to the second screen line. The
dummy argument is ignored.

EXAMPLE of POS Function:
1000 IF POS(0) > 38 THEN PRINT CHR$(13)

PRINT

TYPE: Statement
FORMAT: PRINT [<variable>] [<<,/;><variable>]

Action: The PRINT statement is normally vsed to write data iteme to
the screen. However, the CMD statement may be used to re-direct that
output to any other device in the system, The <variable(s)™> in the
output-list are expressions of any type. If no output-list is present, a
hlank line is printed. The position af each printed item is detarmined by
the punctuation used to separate items in the aoutput-list.

The punctuation characters that you can use are blanks, commas, or
semicolons. The B0-character logical screen line is divided into 8 print
zones of 10 spaces ecch. In the list of expressions, o comma causes the
next value to be printed at the beginning of the next rone, A semicolon
causes the next value to be printed immediately following the previous
value. However, there are two exceptions to this rule:

70 BASIC LANGUAGE VOCABULARY

1) Numeric items are followed by un cdded space,

2) Positive numbers have o space preceding them.

When you use blenks or no punctuation belween string constants cr
variable names it has the some effect as a semicolon. However, blanks
between o string and a numeric item or between two numeric items will
stop ouiput without printing the second irem.

If @ corma or o semicolon is at the end of the outputlist, the next
PRINT statement begins printing on the same line, and spaced accord-
ingly. If no ounctuation finishes the list, a carrivge-relurn and a line-
feed are printed ot the end of the data. The next PRINT statement will
begin on the next I'me. If your output is directed to the screen and the
data printed is langer than 40 columns, the output is continued on the
next screen line.

There is no statement in BASIC with mare variety than the PRINT
statement. There are se many symbols, functions, ancd parameters
associated with this statement thar it might almast be considered as a
longuage of its own within BASIC; a language specially designed for
writing on the screen.

EXAMPLES of PRINT Statement:

1)

5X =35

10 PRINT —5*X, X—5, X+5, X 1 5
—25 0 10 3125
2)

5 X=¢

10 PRINT X;“SQUARED I1S";X"X;" AND";
20 PRINT X "CUBED 15" X * 3

? SQUARED IS 81 AND 9 CUBED IS 729
3)

20 AAS="ALPHA":BB$="BAKER": CC$="CHARLIE":DD$="DOG""
EE$=“ECH°"
100 PRINT AASBBS;CCS DDS$,EES

ALPHABAKERCHARLIEDOCG ECHO

BASIC LANGUAGE YOCTABULARY |

Qunte Made

Once the quote mark |) is typed, the cursar controls stop
operating and start displaying reversed characters which actually stand
for the cursor contral you are hitting. This allows you to program these
cursor controls, because once the text inside the quotes is PRINTed they
perform their functions. The key is the only cursor control
not affected by “quote mode.”

1. Cursor Movement

The cursor controls which can be “programmed” in quole mode ure:

KEY APPEARS AS

Tl crse ||

If you wanted the word HELLO fc PRINT diogonally from the upper left
corner of the screen, you would fype:

priT - NI + (SN « SN |« D « D o

which would cppear as:
RNT B @ e @ '8 '@ o

2. Reverse Charocters

Helding down the key and hitting g will cause ﬂ to ap-
pear inside the guotes. This will make ull characters starl printing in
reverse video (like a negative of a picture). To end the reverse printing
hit ﬂ , which prints GHOF else PRINT a (CHR$(13)).

(Just ending the PRINT statement without o semicolon or comma will

=E08a0R

take care of this.)

3. Color Controls

Holding down the key or [€] key with any of the 8 color keys
will make a special reversed character appear in the quotes. When the
character is PRINTed, then the colar change will accur.

72 BASIC LANGUAGE YOCABULARY

KEY COLOR APPEARS AS

(1] Black
White
[cTRL f 3] Red
EN 0 Cyan
B Purple
mﬂ Green
Blue
u Yellow
€] QOrange
m Brown
x| Light Red
=0 Grey 1
ﬂ E Grey 2
Ce] B Light Green
Ce Light Blue
H Grey 3

BEEOXNCENESEyREN

If you wanted 1o PRINT the word HELLO in cyan and the word THERE
in white, type:

PRINT “ HELLO THERE"

which would appear as:

PRINT “ . HELLO (B THERE”

4. Insert Mode
The spaces created by using the JLRIDEY key have same of the same
characteristics as quete mode. The cursor centrols and color controls

show up as reversed characters. The only difference is in the clnd
» which performs its normal function even in quote mode, now

BASIC LANGUAGE YOCABULARY 73

creates the . And . which crected a special character in
quote mode, inserts spaces normally.

Because of this, it is possible to create a PRINT statement containing
DELetes, which cannot be PRINTed in quote mode. Here is an example
of how this is done:

10 PRINT“HELLC" [IRIEES Bl SHIFT | NsT/DEL)| INST/DEL
ins1/0eL [l

which displays as

10 PRINT“HELLO P

When the above line is RUN, the word displayed will be HELP, be-
cause the last two letters are deleted and the P is put in their place

WARNING: The DELates will work when LI5Ting as well as PRINTing, so editing o
line with these characrers wil' be difficulr.

The “insert mode’’ conditian is ended when the RETURN
(T SHIFT RETURN) key is hit, or when as many characters have

been typed us spaces were inserted,

5. Other Special Characters

There are some other characters that can be PRINTed for special
functions, although they cre not easily availoble from the keyboard. In
order 1o get these into quates, you must leave empty spoces for them in
the line, hit or , and go back to the
spaces with the cursor controls. Now you must hit RVS/ON
to start typing reversed characters, and type the keys shown below:

]

Function ype Appears As

switch to lower case
switch fo upper case
disakle case-switching keys

enable case-switching keys

IHE 2
[-]=]\[=]/]

74 BASIC LANGUAGE VOCABULARY

The will work in the LISTing as well as PRINT-
ing, so editing will be almos! impossible il this character is used, The
LISTing will alsa lock very strange.

PRINT#

TYPE: VO Statement
FORMAT: PRINT# <file-number> [<variable>]
[<./i><variable>]

Actions: The PRINT# statement is used to write dota items to a logical
file. It must use the same number used to OFEN the file. Outpur gees to
the device-number used in the OPEN statement. The <<variable™ ex-
pressions in the output-list can be of any type. The punctuation char-
acters between items are the saome as with the PRINT statement and
they can be used in the sume ways. The effects of punctuction are
different in bwo significant respects.

When PRINT# is used with tape files, the comma, instead of spacing
by print zones, has the samsa effect as a semicolon. Therefcre, whether
blanks, commas, semicolons ar no punctuation characters are used be-
tween data items, the effect on spacing is the same. The data items are
written as @ continuous stream of characters. Numeric items are fol-
lowed by o space and, if pasitive, cre preceded by a space.

If no punctuation finishes the list, a carriage-return and a line-feed
are writtan at the end of the date. If @ comma or semicolon terminatas
the output-list, the carriage-returm and line-feed ars suppressed, Re-
gardless of the punctuation, the nexr PRINT# statement begins ourput in
the next available character position. The line-feed will cct as a stop
when using the INPUT# stotement, lecving an empty variable when the
next INPUT# is executed. The line-fead can be suppressed cr compen-
sated for os shown in the examples kelow.

The easiest way to write more than one variable to a file on tape or
disk is to set a siring varioble 1o CHR$(13), ond use that string in be-
tween all the other varicbles when writing the file.

BASIC lANGUAGF VOCARLILARY 75

EXAMPLES of PRINT# Statement:

1)

10 OPEN 1,1,1, “TAPE FILE”

20 R$ = CHR$(13) (By Changing the CHR$(13) to
30 PRINT# 1,1;R$;2;RS;3;R$;4;R$;5 CHRS(44) you put a ;" between
40 PRINT# 1,6 each variable. CHR$(59) would
50 PRINT# 1,7 put a “/” between each
variable.)
2)
10 CO$=CHRS$(44): CR$=CHR$(13)
20 PRINT#1, “AAA"CO%""BBB”, AAA BBB CCCDDDEEE
“CCC";"DDD";“EEE"CR% (carriage return)
“FFF“CR$; FFF(carriage return)

30 INPUT#1, A$,BCDES,F$

3)
5 CRS=CHR$(13)
10 PRINT#2, "AAA“;CR$;“BBB" (10 blanks) AAA
20 PRINT#2, "CCC"; BBB

(10 blanks)CCC
30 INPUT#2, A$,B$,DUMMYS,CS

READ

TYPE: Statement
FORMAT: READ <vaoriable>> [,<variable>-]

Action: The READ statement is used 1o flll variable names from con-
stants in DATA statements. The data actually read must agree with the
variable types specified or the BASIC error message ?SYNTAX ERROR
will result. Varicbles in the DATA input-list must be separcted by com-
mas.

A single READ statement can access one or more DATA statements,
which will be accessed in order (see DATA), or severul READ statements
can access the same DATA statement. If more READ statements are exe-
cuted than the number of elements in DATA statements(s) in the pro-

7& BASIC LANGUAGE VOCABULARY

gram, the BASIC error message ?OUT OF DATA is printed. If the
number of variables specified is fewer than the number of slements in
the DATA statement(s), subsequent READ stotements will cantinue read-
ing at the next dara -element. (See RESTORE.)

"MOTE: The TSYNTAX ERRQOR will appear with the line number from the DATA siote- -|

ment, NOT the REALD starement, |
- ——

EXAMPLES of READ Statement:

110 READ A,B,C$
120 DATA 1.2,HELLO

100 FOR X=1 TO 10: READ A(X):NEXT

200 DATA 3.08, 5.19, 3.12, 3.98, 4.24
210 DATA 5.08, 5.55, 4.00, 3.16, 3.37

(Fills array ifems (line 1) in order of constants shown (line 5))
1 READ CITY$, STATES, ZIP

5 DATA DENVER,COLORADQ, 80211

REM

TYPE: Statement
FORMAT: REM | <remark>]

Action: The REM statement makes your programs more easily under-
stood when LISTed. It's a reminder 1o yourself ro tell you whar you had in
mind when you were writing cach section of the grogram. For instance,
you might want to remember what a variable is used far, ar some other
vseful information. The REMark can be any text, werd, or character
including the colon i:) or BASIC keywords.

The REM statement and anything following it on the same line-number
are ignored by BASIC, but REMarks are printed exactly as entered when
the program is listed. A REM statement can be referred te by a GOTO or
GOSUB statement, and the execution of the program will continue with
the next higher pragrem line having executable statements.

BASIC LANGUAGE YOCABULARY 77

EXAMPLES of REM Statement:

10 REM CALCULATE AVERAGE VELOCITY

20 FOR X=1 TO 20 :REM LOOP FOR TWENTY VALUES
30 SUM=SUM -+ VEL(X): NEXT

40 AVG=SUM/20

RESTORE

TYPE: Statement
FORMAT: RESTORE

Action: BASIC mcintains an internal pointer to the next DATA constant
to be READ. This pointer can be reset to the first DATA constant in o
program using the RESTORE sratement. The RESTORE statement cen be
used anywhere in the program to begin re-READing DATA.

EXAMPLES of RESTORE Statement:

100 FOR X=1 TO 10: READ A(X): NEXT
200 RESTORE
300 FOR Y=1 TO 10: READ B(Y): NEXT

4000 DATA 3.08, 5.19, 3.12, 3.98, 4.24
4100 DATA 5.08, 5.55, 4.00, 3.16, 3.37

(Fills the two arrays with identical data)

10 DATA 1,2,3,4
20 DATA 5,6,7,8

30 FORL—1TO 8
40 READ A: PRINT A
50 NEXT

60 RESTORE

70 FOR L—1 TO 8
80 READ A: PRINT A
90 NEXT

78 BASIC LANGUAGE VOCABULARY

RETURN

TYPE: Statement
FORMAT: RETURN

Action: The RETURN statement is used to exit from o subroutine colled
for by a GOSUB statement. RETURN restarts the rest of your program at
the nexr executakle statement following the GOSUB. If you are nesting
subroutines, each GOSUB must be paired with at least one RETURMN
starement. A subroutine can contain any number of RETURN statements,
but the first one encountered will exit the subroutine.

EXAMPLE of RETURN Statement:

10 PRINT “THIS IS THE PROGRAM”

20 GOSUB 1000

30 PRINT “PROGRAM CONTINUES”

40 GOSUB 1000

50 PRINT “MORE PROGRAM"

60 END

1000 PRINT “THIS IS THE GOSUB“:RETURN

RIGHTS

TYPE: String Function
FORMAT: RIGHT$ (<string>, <numeric>)

Action: The RIGHTS function returns a sub-string taken from the right-
most end of the <Istring™ argument. The length of the sub-string is
defined by the <numeriz>> argument which can be any integer in the
range of 0 to 255, I the value of the numeric expression is zero, then @
null string (““) is returned. If the value you give in the <Inumeric==
argument is greater than the length of the <lstring™ then the entire
string is returned.

EXAMPLE of RIGHT$ Function:

10 MSC$ = “COMMODORE COMPUTERS"”
20 PRINT RIGHT${MSG$.,9)
RUN

COMPUTERS

BASIC LANGUAGE YOCABULARY 79

RND

TYPE: Floating-Point Function
FORMAT: RND (<numeric=)

Action: RND crectes a floating-point random from 0.0 te 1.0. The
compuler generates a sequence of random numbers by performing cal-
culations on a starting number, which in computer jargon is called a
seed. The RND function is seeded on system power-up, The <numeric>>
argument is a dummy, except for ite sign (positive, zero, or negative).

If the <numeric> argument is positive, the same “pseudorandom”
sequence of numbers is returned, starting from o given seed valuve. Dif-
ferent number sequences will result from different seeds, bur any se-
quence is repeatable by starting from the same seed number., Having a
known seguence of “random” numbers is useful in festing programs.

If you choose a <numeric> argument of zero, then RND generates o
number directly from a free-running hardware clock (the system “jitfy
clock”). Negative arguments cause the RND function to be re-seeded
with each function coll,

EXAMPLES of RND Function:

220 PRINT INT(RND(Q)*50) (Return random integers
0-49)

100 X=INT(RND(D)*6)+HINT(RND(1)*6)+2 (Simulates 2 dice)

100 X=INT(RND{1)*1000)+1 (Randem integers from
1-1000)

100 X=INT(RND(1)*150)+100 (Random numbers from
100-249)

100 X=RND{M)*(U-1)+L (Random numbers between

uvpper (U) and lower
(L) limits)

80 BASIC LANGUAGE VOCABULARY

RUN

TYPE: Command
FORMAT: RUN [<line-number>]

Action: The system command RUN is used to start the program cur-
rently in memory. The RUN command causes an implied CLR operation
to be performed before starting the program. You can oveid the CleaR-
ing aperation by using CONT ar GOTO to restart a program instecd of
RUN. I @ <Zline-number> is specified, your program will start on that
line. Otherwise, the RUN command starts at first line of the pragram.
The RUN cemmand can also be used within a progrem. If the <<line-
number=> you specify doesn’t exist, the BASIC error message UNDEF'D
STATEMENT occurs.

A RUNning program stops and BASIC raturns to direct made when an
END or STOP statement is reached, when the last line of the program is
finished, or whan a BASIC error occurs during execution,

EXAMPLES of RUN Command:

RLUIN (Starts at first line of program)

RUN 500 (Starts at line-number 500)

RUN X (Starts at line X, or UNDEF'D STATEMENT ERROR
if there is no line X)

SAVE

TYPE: Command
FORMAT: SAVE ["“<flle-name>>"] [,<device-numbher>]
|, <address™|

Action: The SAVE command is used to store the program that is cur-
rently in memaory onto a tape or diskette file. The progrom being SAVEd
is only affected by the command while the SAVE is happening, The pro
gram remains in the current computer memary even after tha SAVE op-
eration is completed until you put something else there by using another
command. The file type will be “prg” (program). If the <device-
number> is left out, then the Cé4 will automatically assume that you
wrnt the pragram saved on cassette, device number 1. If the <<devire-
number> is an <8>, then the program is written onto disk. The SAVE

BASIC LANGUAGE VOCABULARY 81

statement can be used in your programs and execution will continue
with the next statement after the SAVE is completed.

Programs on tape are automatically stored twice, so that your Com-
modore 64 can check for errors when LOADIng the program back in.
When saving programs to tape, the <file-name> and secondary <ad-
dress> are optional. But following o SAVE with a program name in
guotes (“ ') or by a string variable (---$§) helps your Commadore 64 find
each program more easily. If the file-name is laft out it can NOT be
LOADed by name later cn.

A secondary address af 1 will tell the KERNAL ta LOAD the tape ot a
later time, with the program currently in memory instead of the normal
2048 location. A secondary address of 2 will cause an end-of-tape
marker to follow the program. A secondary address of 3 combines both
functions.

When saving programs onto a disk, the <file-name>= must be pre-
sent.

EXAMPLES of SAVE Cammand:

SAVE (Write to tape without a name)

SAYE "ALPHA", 1 (Store on tope as file-name “alphu”)
SAVE “"ALPHA", 1, 2 (Store "alpha” with end-of-tape marker)

SAVE "FUN.DISK",B [SAVES on disk (device B is the disk))
SAVE A$ (Store on tope with the name A$)
10 SAVE "HI" (SAVEs program and then move to next

program line)

SAVE "ME",1,3 (Stores ai same memory location and
puts an end-of—h:!pe marker on)

82 EASIC LANGUAGE VOCABULARY

SGN

TYPE: Integer Function
FORMAT: SGN (<numeric>)

Action: SGN gives you an integer value depending upon the sign of
the <numeric> argument. If the argument is positive the result is 1, if
zero the result is also 0, if negative the result is —1.

EXAMPLE of SGN Function:

20 ON SGN(DV)+2 GOTO 100, 200, 300
(jump to 100 if DY—negative, 200 if DV=0, 300 if DV=positive)

SIN

TYPE: Floating-Point Function
FORMAT: SIN (<numeric>)

Action: SIN gives you the sine of the <numeric> argument, in ro-
dians. The value ot COS(x) is equal to SIN(x+3.14159265/2).

EXAMPLE of SIN Function:

235 AA — SIN(1.3): PRINT AA
.997494087

SPC

TYPE: Special Function
FORMAT: SPC (<numeric_>)

Action: The SPC function is used to control the formatting of data, as
either an output to the screen or into a logical file. The number of
SPaCes given by the <<numeric™> argument are printed, starting at the
first availakle position. For screen or tape files the value of the argument
is in the range of 0 to 255 and for disk files up to 254, For prinfer files,
an automatic carriage-return and line-feed will be performed by the
printer if a SPaCe is printed in the last character position ot a line. No
SFaCes are printed on the following line.

BASIC LANGUAGE YOCABULARY B3

EXAMPLE of SPC Function:

10 PRINT “RIGHT *; “HERE &";
20 PRINT SPC(5) “OVER” SPC(14) “THERE"
RUN

RIGHT HERE & OVER THERE

SQR

TYPE: Floating-Point Function
FORMAT: SQR (<numeric>)

Action: SQR gives you the value of the SQuare Root of the
<Znumeric™> argument. The velue of the argumant must not be negative,

or the BASIC error message 7ILLEGAL QUANTITY will happen.

EXAMPLE of SQR Function;
FOR 1 = 2 TO 5: PRINT J+5, SQR(* 5) NEXT

10 3.16227766
15 3.87298335
20 4.47213595

25 5
READY
STATUS

TYPE: Integer Function
FORMAT; STATUS

Action: Returns a completion STATUS for the last input/output opera
tion which wos performed on an open file. The STATUS can he read
from any peripheral device. The STATUS (or simply ST) keywerd is a

B4 BASIC LANGUAGE VOCABULARY

systern defined variable-ncme into which the KERNAL puts the STATUS of
I/O operations. A takle of STATUS code values for tape, printer, disk

and RS-232 file gperctions is shown below:

| ST Bit | ST Mumerie Cassette Serial Tape Verify
| "
| Position Yalue Read Bus R/W + Lood
| C 1 time out
write
1 2 time out
read
2 4 shart hlack short block
‘3 8 long black long block
4 16 unrecoverabls any mismatch
read error
5 32 checksum checksum
error error
6 64 end of file EQI
7 —128 end of tape device not | end of tope
present

EXAMPLES of STATUS Function:

10 OQPEN 1, 4: OPEN 2, &, 4, "MASTER FILE,SEQ,W"

20 GOSUE 100: REM CHECK STATUS

30 INPUT#2, A$, B, C

40 IF STATUS AMND &4 THEN B80: REM HANDLE END-OF-FILE
50 GOSUB 100: REM CHECK STATUS

60 PRINT#1, A%, B: C
70 GOTO 20

BO CLOSE1: CLOSE2
20 GOSUB 100: END

100 [F ST > 0 THEN 9000: REM HANDLE FILE 1/O ERROR

110 RETURN

BASIC LANGUAGE YOCABULARY 85

STEP

TYPE: Statement
FORMAT: [STEP <expression>>]

Action: The optional STEP keyword follows the <end-value™ expres-
sion in a FOR statement. i defines on increment value for the loop
counter variable. Any velua con bhe used as the STEP increment. Of
course, a STEP value of zero will loop farever. If the STEP keyward is left
out, the increment value will be + 1. When the NEXI statement in a FOR
lcop is reached, the STEP increment hapoens. Then the counter is tested
against the end-value to see if the loop is finished. (See FOR statement
for more information.)

MOTE: The STEP value can NOT be changad once it's in the loop. |

EXAMPLES of STEP Statement:
25 FOR XX

2 TO 20 STEP 2 (Loop repeats 10 times)

35 FOR 727

STOP

TYPE: Stotement
FORMAT: STOFP

Aetian: The STOP statement is used to halt execution of the current
program and return to direct mode. Typing the key on the
keyboard has the saome effect as a STOP stotement. The BASIC error
message PBREAK IN LINE nnnnn is disployed on the screen, followed
by READY. The “nnnnn” is the line-number where the STOP occurs. Any
open files remain. open and all variables are preserved and can be
examined. The program can be restarted by using CONT or GOTO
statements,

EXAMPLES of STOP Statement:

0 TO —20 STEP —2 (Loop repeats 11 times)

10 INPUT#1, AA, BB, CC
20 IF AA = BB AND BB = CC THEN STOP

30 STOP

(if the variable AA is —1 and BB is equcl to CC then:)
BREAK IM LINE 20
BREAK IN LINE 30 (For any other data values)

Bé BASIC LANGUAGE VOCABULARY

STR$

TYPE: String Function
FORMAT: STR$ (<numeric™)

Action: §TR$ gives you the STRing represeniation of the numeric valve
of the argument. When the STRS value is converted to each variable
represented in the <numeric> grgumenl, any number shown is fol-
lowed by a space and, if it's positive, it is also preceded by o space.

EXAMPLE of STR$ Function:

100 FIT = 1.5E4: ALPHA$ = STR$(FIT)
110 PRINT FIT, ALPHAS

15000 15000

SYS

TYPE: Stotement
FORMAT: SYS <<memory-location™>

Action: This is the most common way to mix o BASIC program with a
machine language program. The machine language program begins at
the location given in the SY5 statement. The system command 5YS is
used in either direct or pragram mode to transfer conirol of the micro-
processor fo an existing machine langucge program in memory. The
memaory-location given is by numeric expression and can be anywhere in
memory, RAM or ROM,

When yau’re using the SYS stctement you must end thar section of
machine language code with an RTS (ReTurn from Subrcutine) instructien
so that when the muchine language orogram is finished, the BASIC
execution will resume with the statement following the SYS command.

EXAMPLES of 5YS Statement:

SYS 64738 {Jump to System Cold Start in ROM)

10 POKE 4400,96: SYS 4400 {Goes to machine code location 4400
and returns immadiately)

BASIC LANGUAGE VOCABULARY 87

TAB

TYPE: Special Function
FORMAT: TAB (<numeric>)

Action: The TAB function moves the cursor to a relative SPC move
position an the screen given by the <<numeric> argument, starting with
the left-most position of the current line. The value of the argument can
range from 0 to 255. The TAB function should only be used with the

PRINT statement, since it has no effect if used with PRINT# to a logical
file.

EXAMPLE of TAB Function:

100 PRINT “NAME” TAB(25) “AMOUNT"; PRINT
110 INPUT#1, NAMS, AMTS
120 PRINT NAMS TAB(25) AMTS

NAME AMOUNT

G.T. JONES 25.

TAN

TYPE: Floating-Point Function
FORMAT: TAN (<numeric>)

Action: Returns the tangent of the value of the <numeric> expression
in radians. If the TAN functian overflows, the BASIC error message ?DI-
VISION BY ZERO is displayed.

EXAMPLE of TAN Function:

10 XX = .785398163: YY = TAN(XX): PRINT YY
1

88 BASIC LAMGUAGE YOCABULARY

TIME

TYPE: Numeric Function
FORMAT: TI

Action: The Tl function reads the interval Timer. This type of “clock’ is
called o "jiffy clock.” The “jiffy clock” value is set at zero (initialized)
when you power-up the systern. This 1/60 second imerval timer js Turned
off during tape I/O.

EXAMPLE of Tl Function:
10 PRINT TI/60 “SECONDS SINCE POWER UP”

TIME$

TYPE: String Function
FORMAT: Ti$

Action: The TI$ limer looks and works like o reul clock us long us your
system is powered-on. The hardware interval timer (or jitfy clock) is read
and used to update the value of TI$, which will give you a Tlme $tring of
six characters in hours, minutes and seconds. The TIS timer can also he
assigned an arbitrary starting peint similar to the way you set your
wristwatch. The value of TI$ is nor accurate after tape /0.

EXAMPLE of TI$ Function:
1 TI$ = “000000”: FOR J=1 TO 10000: NEXT: PRINT TI%

000011

BASIC LANGUAGE VOCABULARY B9

USR

TYPE: Floating-Point Function
FORMAT: USR (<numeric>)

Action: The USR function jumps to a User callable machine language
SukRoutine which has its starting address pointed to by the contents of
memory locations 785—786. The starting address is established before
calling the USR function by using POKE statements to set up locations
785—786. Unlass POKE statements are used, lacations 785—786 will give
you an ?ILLEGAL QUANTITY =rror messoge.

The value of the <<numeric> argument is stored in the floating-paoint
accumulator starting af location 97, for access by the Assembler code,
and the result of the USR function is the value which ends up there when
the subroutine returns to BASIC,

EXAMFLES of USR Function:

108 = T * SIN(Y)
20 C = USR (B/2)
30 D = USR (B/3)

VAL

TYPE: Numeric Function
FORMAT: VAL (<string>)

Action: Returns a numeric VAlLue representing the daota in the
=Istring== argument. If the first non-blank character of the string is not a
plus sign (+), minus sign (=), or o digit the VAlLue returned is zero.
String conversion is finished when the end of the string or any non digit
characrer is found (except decimal point or exponential e).

EXAMPLE of VAL Function:

10 INPUT#1, NAMS, ZIP$
20 IF VAL(ZIP$) < 19400 OR VAL(ZIP$) > 26699
THEN PRINT NAMS$ TAB(25) “GREATER PHILADELPHIA“

90 BASIC LANGUAGE VOCABULARY

VERIFY

TYPE: Command
FORMAT: VERIFY [“<file-name>"] [,<device>]

Action: The VERIFY command is used, in direct or program made, to
compare the contents of a BASIC program file on tape or disk with the
program currently in mamory, VERIFY is normally used right after a
SAVE, to make sure that the program was stored correctly on tape or
disk.

If the <device> number is left out, the program is assumed to be on
the Dotassette'™ which is device number 1. For tape files, if the <file-
name> is left out, the next pragram found on the tope will be com-
pared. For disk files (device number 8), the file-name must be present. If
any differences in program text are found, the BASIC error message
PVERIFY ERROR is displayed.

A program name can be given either in guotes (") or as a string
variable. VERIFY is also used to position a tape just past the last pro-
gram, so that o new program can be added to the tape without ccci-
dentally writing over another program.

EXAMPLES of VERIFY Command:

VERIFY (Checks 1st program on tape)
PRESS PLAY ON TAPE

OK

SEARCHING

FOUND ~<FILENAME>

VERIFYING

P000 SAVE “ME”, 8:
2010 VERIFY “ME”,8 (Looks at device 8 for the program)

BASIC LANGUAGE YOCABULARY 21

WAIT

TYPE: Statement
FORMAT: WAIT <location™>, <mask-1> [,<<mask-2>>]

Action: The WAIT srarement causes pragram execution to he sus-
pended until a given memory address reccgnizes a specified Lit patrern.
In other words WAIT can be used to halt the pragram until some sxternal
event has occurrad. This is done by manitoring the status of kits in the
input/outpur registers, The dara Items used with WAIT can be any
numeric expressions, but they will be converted to integer values.

For mest programmers, this statement should never be used. It causes
the program to halt until a specific memery location’s bits change in a
specific way. This is usecd for certain |/O cperctions and almost nothing
else.

The WAIT statement takes the valve in the memory locotion ond per-
forms a logical AND operatfion with the value in mask-1. It there is a
mask-2 in the statement, the result of the first operation is exclusive-
ORed with mask-2_ In other words mask-1 "filters out” any bits that you
don’t want to test. Where the kit is 0 in mask-1, the corresponding bit in
the result will always be 0. The mask-2 value flips any bits, sa that you
cen test for an off condition as well as an on condifion. Any bits being
tested for a 0 should have a 1 in the corresponding position in mask-2.

If corresponding bits of the <<mask 1> ond <Imesk-2>> operands differ,
the exclusiva-OR operation gives a bit result of 1. If corresponding bits get
the same result the bit is C. It ic poesible to enter an infinite pause with the
WAIT statement, in which case the [IBEE und keys
can be used to racover. Hold down the key and then
press . The first example below WAITs until a key is pressed an
the tope unit to continue with the program. The second example will WAIT
untll a sprite collides with the screen background.

EXAMPLES of WAIT Statement;

WAIT 1, 32, 32

WAIT 53273, 6, 6

WAIT 36868, 144, 16 (144 & 16 are masks. 144=10010000 in
binary and 16=10000 in binary. The
WAIT statement will halt the pro-
gram until the 128 hit is on or
until the 16 bit is off)

92 BASIC LANGUAGE YOCABULARY

THE COMMODORE 64 KEYBOARD
AND FEATURES

The Operating Systern hos u ten-character keyboard “buffer” that is
used to hold incoming keystrokes until they can be processed. This buf-
fer, or queuve, holds keystrokes in the order in which they occur so that
the first cne put into the queue is the first cne processed. For example, if
o second keystroke occurs before the first can be processed, the second
cheracter is stored in the bufter, while processing of 1he first character
continues. Affer the program has finished with the first character, the
keyboard buffer is examined for more data, and the second keystroke
processed, Without this buffer, rapid keyboard input would occasionally
arap characters.

In other words, the keyboard buffer allows you to “type-ahead” of
the system, which means it can anticipate responses 1o INPUT prompts
or GET stctements. As you type on the keys their character values are
lined up, single-file (queuved) info the ouffer ro wait for processing in the
order the keys were struck. This type-ahead feature can give you an
occasional problem where an accidental keystroke causes a pragram to
fetch on incorrect character from the buffer,

Normally, incorrect keystrokes present no problem, since they can be
corrected by the CuRSoR-left or DElete [[EBEN keys
and then retyping the character, and the corrections will be processed
before o following carriage-return. However, it you press the
key, rno corrective action is possible, since all characlers in the bulfer up
to and including the carriage-return will be processec betore any cor-
reclions. This situalion can be avcided by using o loop to empty the
keyboord bhuffer befora reading an intended recpanse:

10 GET JUNKS: IF JUNKS <<=>""" THEN 10: REM EMPTY THE
KEYBOARD BUFFER

In addition ta GET and INFUT, the keyboard can also be read using
FEEK 10 ferch from memory location 197 ($00C5) the inleger value of the
key currertly being pressed. If no key is being held when the PEEX is
executed, a value of 64 is refurned. The numeric keyboard values,
keyboard symbels and character equivalents (CHR$) are shown in Ap-
pendix C. The following example loops unfil a key is pressed then con-
verts the integar to a character value.

10 AA = PEEK(197): IF AA = 64 THEN 10
20 BBS = CHRI(AA)

EASIC LAMGUAGE VOCABULARY 53

The keyboard is trected os a set of switches organized into a matrix
of B columns by 8 rows. The keyboard matrix is scanned for key
switch-closures by the KERNAL using the CIA #1 I/O chip (MOS 6526
Complex Interface Adapter). Two CIA registers are used 1o perfarm the
scan: ragister #0 at location 56320 ($DCCQC) for keyboard columns and
register #1 at location 56321 (SDCO1) for keyboard rows.

Bits 0—7 of memory lecation 56320 correspond to the columns 0-7.
Bits 0—7 of memory location 56321 correspond to rows 0—7. By writing
column values in sequence, then reading row values, the KERNAL de-
codes the switch closures intc the CHR$ (N) value of the key pressed.

Eight columns by eight rows yields &4 possible values. However, if you
first sirike the ENED. or [@ keys or hold down
the key and type a second character, additional values are
generated. This is because the KERNAL decodes these keys separately
and “remembers” when one of the control keys was pressed. The rasult
of the keyboard scan is then placed in location 197.

Charocters con also be written directly to the keyboard buffer at leo-
cations 631-640 using o POKE statement. These characters will be
processed whean the POKE is used to set o character count into location
198. These focts can be used to cause a series of direct-mode com-
mands to be executed automatically by printing the stotements anto the
screen, putting carricge returns inte the buffer, end then setting the
character count. In the example below, the program will LIST itself to
the printer and then resume execution.

10 PRINT CHR$(147)"PRINT#1: CLOSE 1: GOTO 50“

20 POKF 631,19: POKE 632,13: POKE £33,13: POKE 198,3
30 OPEN 1,4: CMD1: LIST

40 END

50 REM PROGRAM RE-STARTS HERE

SCREEN EDITOR

The SCREEN EDITOR provides you with powerful and convenient
facilities for editing program fext. Once a section of a program is listed
to the screen, the cursor keys and other special keys are used to move
around the screen so that you can make any appropriate charnges. After
making cll the changes you want to a specific line-number of text, hit-
ting the key anywhere on the line, couses the SCREEN
EDITOR to read the entire 80-character logical screen line.

94 BASIC LANGUAGE VOCABULARY

The text is then passed to the Interpreter 1o be tokenized and stored in
the program. The edited line replaces the old wersion of that line in
memory. An udditional copy of any lire of text can be crected simply by
changing the line-number and pressing [[EEIILE.

If you use keyword abbreviations which cause o program line to ex-
ceed BO characters, the excess characters will be lost when that line is
ediled, becuuse the EDITOR will read only two physical screen lines. This
is also why using INPUT for more than a total ot 80 characters is not
possible. Thus, for all proctical purposes, the length of u line of BASIC
text is limited 1o 80 characters as displayed on the screen.

Under certain conditions the SCREEN EDITOR treats the cursor control
keys differently from their nermal mede ot handling. If the CuRSeR is
positioned 1o the righi of un vdd number of double-quole marks () the
EDITOR operates in what is known as the QUOTE-MODE.

In quote mode data characters are enfered narmally but the cursor
controls no longer move the CuRSeR, instead reversed characters are
disployed which actvally stand for the cursor contral being entered. The
same is true of tha color control keys. This allows you to include cursor
and color controls inside string data items in programs. You will find that
this 1s o very important and powerful feature. That's because when the
text inside the quctes is printed to the screen it performs the cursor
positioning and caolor control functions automotically as part of the
string. An example of using cursor controls in strings is:

You type — 10 PRINT “A[R)R)B(L)(L)(LIC(R)(R)D“:REM(R) =CRSR
RIGHT, (L)=CRSR LEFT

Computer prints — AC BD

The key is the anly curser cenfrol NCT attected by cuote
mode. Therefore, if an error is mude while keying in quote mode,
the key can't be used to back up and sirike over the
error—even the key produces a reverse video character. In-
stead, finish entering the line, and then, after hitting the
key, you con edit the line normolly. Another alternative, if no further
cursor-cantrols are needed in the string, is fo press the
and keys which will cancel QUOTE MODE. The cursor
control keys thot you can use in strings are shown in Table 2-2.

BASIC LANGUAGE VOCABULARY 95

Table 2-2. Cursor Contral Characters in QUOTE MODE

Control Key Appedrance

CRSR up »
CRSR down 0
CRSR left E1S
CRSR right
CLR 9
dove D
INST |]

When you are NOT in guote mode, holding down the key and
then pressing the INSerT key shifts datc to the right of the cur-
sor 0 open up space between Iwo characters for entering dota between
them. The Editor then begins operating in INSER] MODE until all of the
space openead up is filled.

The cursor controls end color controls again show as reversed char-
acters in insert mode. The only difference cccurs on the DEilete and
INSerT key. The instead of operating narma'ly as in
the quote mode, now creates the reversed . The key,
which crectzd a reverse character in quote made, inserts sgpaces nor-
melly.

Ths means that a PRINT statement can be crected, containing DE-
Letes, which can’t be done in quate mode. The insert mode is cancelled
by pressing the , and , or and
keys. Or you con cancel the insert mede by filling all the
inserted spaces. An example of using DEL characters in strings Is:

10 PRINT “HELLO" ESEE ~

(Keystroke sequence shown chove, appearance when listed below)
10 PRINT“HELP”

When the example is RUN, the word displayed will be HELF, because
the lettars LO are deleted hefara the P is printed. The DElLete character
in strings will wark with LIST as well as PRINT. You can use this to “hide"
part or all of a line of text using this technique. However, trying to edit a
line with these characters will be difficult if net impossikle.

-1 BASIC LANGUAGE YOCABULARY

There are some other characters that con be printed fer special func-
tions, although they are not easily available from the keyboard. In order
to get these into quotes, you must leave empty spaces for them in the
ling, press . and go back to edit the line. Now you hold down
the (ConTRol) key and type [ETEIERED (ReVerSe-ON) to start

typing reversed characters. Type the keys as shown below:

Key Function Key Entered Appearance

Shifted RETURN 0 N
[+]

Switch to upper/lower case

[N
Switch to upper/graphics u

Holding down the key and hitting cuuses u
carringe-return and line-feed on the screen but does not end the string.
This works with LIST as well as PRINT, so editing will be almost impossi-
ble if this character is used. When output is switched to the printer via
the CMD statement, the reverse "N character shifts the printer into its
upper-lower case character set and the “N" shifts the prirtar
into the upper-case/graphics character set.

Reverse video characters can be included in strings by holding down
the ConTRol key and preszing ReVerSc , causing © re
versed R to appear inside the guoites. This will make all characters print
in reverse video [like o negafive of a phetograph). To end the reverse
printing, oress ond (ReVerSe OFF) by holding
down the key and typing the key, which prints a
reverse R. Numeric data can be printed in reverse video by first printing
o CHR$(18). Printing o CHR3(146) ar a carriage-return will cancel re-
verse video output.

BASIC LANGUAGE VOCAEBULARY o7

BASIC LANGUAGE VOCAEBULARY

CHAPTER 3

PROGRAMMING
GRAPHICS

ON THE
COMMODORE 64

Graphics Overview

Graphics Locations

Standard Chdracter Mode
Programmable Characters
Multi-Color Mode Graphics
Extended Background Celer Mode
Bit Mapped Graphics
Multi-Color Bit Map Mode
Smooth Screolling

Sprites

Other Graphics Features
Programming Sprites—Another
Look

99

GRAPHICS OVERVIEW

All of the graphics ahilities af the Commaodore 64 come from the 6567
Video Interface Chip (alse known as the VIC-Il chip). This chip gives a
variety of graphies mades, including a 40 calumn by 25 line text display,
o 320 by 200 dot high reselutien display, and SPRITES, small mevable
objects which make writing games simple. And if this weren’t enough,
many of the graghics modes can ke mixed on the same scrzen, It is
possible, for example, to define the top half of tha screen to ke in high
rasolution mode, while the bottam half is in text mode. And SPRITES will
combine with anything! More on sprites larer. First the other graphics
modes.

The VIC-1l chip has the following grophics display modes:

A) CHARACTER DISPLAY MODES

1) Standard Character Mode

a) ROM characters

b) RAM programmable choracters
2) Multi-Color Character Mode

a) ROM characters

b) RAM programmaoble characters
3) Extended Background Color Mode

a) ROM characters

b) RAM programmable characiers

B) BIT MAP MODES
1) Standard Bit Map Mode

2) Multi-Color Bit Map Mode

C) SPRITES

1) Standard Sprites
2) Multi-Color Sprites

100 PROGRAMMING GRAPHICS

GRAPHICS LOCATIONS

Some general informaticn first. There are 1000 possible locations on
the Commodare 64 screen. Normally, the scraen starts of location 1024
($0400 in HEXadecimal nctation) and goes to lecation 2023, Each of
thesa lecations is & hi's wide. This means that it can hold any integer
numker from O to 255. Connected with screen memory is a group of
1000 locations called COLOR MEMORY or COLOR RAM, These siari at
lucalion 55294 ($DBO0 in HEX) and go up to 5£295. Eoch of the color
RAM locations is 4 bits wide, which means that it can hold any integer
numker from 0 to 15. Since there are 16 possible colors that the Com-
modcre 64 can use, this works out well.

In addifion, there are 256 different characters that can be displayed
at any time, For normal screen display, each of the 1000 lacations in
screen memory conlans u code number which tells the VIC-1| chip which
character to display at that screen location.

The wvarious grophics modes are selected by the 47 CONTROL regis-
tars in the VIC-II chip. Many of the graphics funetions can oe controlled
by POKEing the correct value into one of the registers. The VIC [I chip is
located starting at 53248 ($D000 in HEX) through 53294 ($DD2E in HEX).

VIDED BANK SELECTION

The VIC-Il chip can cccess ["see') 16K of memory at a time. Since
there Is 64K of memory in the Commodore 64, you want to be able to
have the VIC-I| chip see cll of it. There is a way. There are 4 possible
BANKS ior sections) of 16K of memory. All that is needed is some means
of contrelling which 18K bank the WIC-II chip looks at. In that way, the
chip cun “see” the entire 64K of memary. The BANK SELECT bits that
allow you cceess te all the different sections of memory are located in
the 6526 COMPLEX INTERFACE ADAPTER CHIF #2 (CIA #2). The POKE
and PEEK BASIC staterments (ar their machine langucge versions) ore
used to select o bank by contrelling bits 0 and 7 of PORT A of CIA#2
{location 56576 (or $D000 HFX)). These 2 bits must be set to ouipuls by
selling bils 0 and 1 of location 56578 ($0D02.HEX) fo change banks. The

following example shows -his:

POKE 56573, PEEK{56578)OR 3 :REM MAKE SURE BITS 0 AND 1 ARE

SET TC OUTPUTS
POKE 56576,(PEEK(56576)AND 252)OR A:REM CHANGE BANKS

& should have one of the following values:

SROGRAMMIMG GRAPHICS 101

‘VALUE BITS | BANK | STARTING

VYIC-1l CHIF RANGE

OF A LOCATION
0 00 | 3 | 49152 [($C000-SFFFF*
| 1 01 | 2 | 32768 |($8000-$BFFF]
2 10 | 1 | 16384 |($4000—$7FFF)
‘ 3 1%l 5 0 |($0000-$3FFF) (DEFAULT VALUL)

This 16K bank concept is parr of everything rhat the VIC-1l chip does.
You should always be aware of which bank the VIC Il chip is pointing
at, since this will affectr where characrer data parterns come from,
where the screen is, where sprites came from, etc. When you turn on the
power of your Commodore 64, bits 0 und 1 of location 56576 are auto-
matically set to BANK 0 ($0000—S3FFF) for all display information.

“MOTE: The Commndore 64 chaoracter set is not avoiloole to the VIC-1I chip in BANKS
1 and 3. (See character memory section.)

SCREEN MEMORY

The location of screen memory can be changed easily by a POKF to
control register 53272 ($D018 HEX). However, this register is alsc used
to control which character set is used, so be careful to avoid disturbing
that part of the cantrol register. The UPPER 4 bits control the location of
screen memory. To mave the screen, the following statement should be
used:

POKES53272,(PEEK(53272)ANDI15)CRA

102 PROGRAMMING GRAFPHICS

Where “A” has one of ihe following values:

LOCATION™
A BITS
DECIMAL HEX
c D000XKAX c $0000
16 000 XXXX 1024 30400 (DEFAULT)
32 0010XXHX 2043 $0800
48 00717 XXXX 3072 $0C00
64 0100X XXX 4096 £1000
80 01071 XXXX 5120 51400
Q6 OTT0XXXX 6144 £1800
112 011TXXKRX 7168 $1C00
128 1000X XXX 8102 %2000
144 10071 XKXKAX 9216 $2400
160 10 710XXXXX 10240 52800
176 10771 XXKXX 11264 $2C00
192 1T00X XXX 12288 $3000
208 11071 XXXX 13312 $3400
224 1110XXxX 14336 $3800
240 | 110 THXXX 15360 $3C00
*Remember thet the BAMK ADDRESS of the VIC:I| chip must be added in.
You musi also rell the KERNAL'S screen edilor where the :creen is as Follows: POKE
648, page (whera pocge — oddresy/256, w.g. 1024/256— 4, s0 POKE 548,4).

COLOR MEMORY

Color memory can NOT move. It is clwayse lecated ot locations 55296
($0800) threugh 56295 (SDBE7). Screer memory (the 1000 locations
starting at 1024) and cclor memery are used differently in the different
graphics modes. A piciure creuled in one mode will often look com-
pletely different when dispiayed in cnother graphics mode.

CHARACTER MEMORY

Exactly where the VIC-II gers it character information is important to
graphic programming. Normally, the chip gets the shapes of the char-
acters you want to be disployad from the CHARACTER GENERATOR
ROM. In this chip are stored the patterns which make up the various
lettars, numbers, punctuction symbols, and the other things that you see

PROGRAMMING GRAPHICS 103

on the keyboard. One of the features of the Commodare 64 is the ability
To use patterns lorated in RAM memory. These RAM pattern: are
created by you, and that means that you can have an almos! infinite set
of symbals for games, business applications, ete.

A nermal character set certains 256 cheracters in which each char-
acter is defined oy 8 bytes of data. Since eaoch character takes up 8
bytes this means that a full character set is 256"8=2K bytes of memory.
Since the VIC-Il chlp looks at 16K of memory ot a time, there are 8
oossible locations for a complete character set. Naturally, you are free
o use less than o full cnaracrer set. However, it must still start at one of
the 8 possible starting locations.

The locaticn of character memory is controlled by 3 bits of the VIC-II
control register located at 53272 ($DO18 in HEX nctation). Bits 3,2, and
1 control where the characters' set is locoted in 2K blocks, Bir 0 is ig-
nored. Remember that this is the same register that determines where
screen memuary is lucuted so avoid disturbing the screen memory bits. To
change the location of character memory, the following BASIC state-

ment can be used:

POKE 53272,(PEEK(53272)AND240)OR A

Where A is one of the following values:

VALUE BITS i~ LEATION OF CHARACTER MEMORY™

of A
DECIMAL HEX
. —

0 | XXXX000X 0 3$0000—-3%C7FF

XXXX00T X 2048 |$0800-$CFFF

4 |XXXX010X | 40956 |31000-317FF ROM IMAGE in BANK
0 & 2 (default)

6 | KXRXX011X 6144 |31800—31FFF ROM IMAGE in BANK

| i

8 XXXX100X 8192 [$2000-3%27FF

10 [XXXX101X 10240 |$2800—%2FFF

12 | XXXX110X| 12288 |$3000-%37FF

14 | XXXX111%| 14336 |$3800—33FFF

%]

Ile:‘!ember to add in the BANK oddress. |

104 PROGRAMMING GRAPHICS

The ROM IMAGE in the above table rafers to the character generator
ROM. It appeurs © place of RAM ot the above locations in bank C. It
clso appears in the corresponding RAM at locctions 36864— 40959
($9000—$9FFF) in bank 2. Since the VIC-I chip can only uccess 16K of
memery at o fime, the ROM character potterns appear in the 16K block
of memory the VIC-I! chip looks at. Therefore, the system wos designed
to make the VIC-1I chip think that the ROM characters cre ar 4096—8191
‘$1000—§1FFF) when your datc is in bank 0, ond 36864—-40959
'$9000—%9FFF) when vour datc is in bhank 2, even though the character
ROM is actually ul location 53248—57343 ($D000—SDFFF). This imaging
anly applies to character dota as seen by the VIC-II chip. It can be used
lur programs, other data, efc., just like any other RAM memory.

MNOTE: If these ROM images get in the way of your own graphics, ther set the BANK |
SELECT BITS to one of the BANKS without the images [EANKS 1 or 3). The ROM
patterns won't be there.

Ihe location and cantents of the character set in ROM are as follows:

ADDRESS vic-1 COMNTENTS
BLOCK | DECIMAL HEX IMAGE
0 53248 DODO-DI1FF [1000—11FF |Upper case characrers
537560 D200—D3FF |1200-13FF |Graphics characters
54272 D400—D5FF |1400—15FF |Reversed uvpper cuse
characters
54784 D600—D7FF | 1600—17FF | Reversed grophics
characters
1 55295 DBOO—D%FF |1800—19FF |Lower case choracters
55808 DADO—DBFF |[1A00— IBFF |Upper case & graphics
characters
56320 DCOO—DOFF |[1CO0—1DFF | Reversed lawer rase
characters
56332 DEOO—DFFF | TEOO—1FFF |Reversed upper case &
graphics characters

Sharn-eyed readars will have jusr noticed something. The locations

occupied by the character ROM are the same os the ones occupied by
the VIC-Il chip control registers. This is possible because they don’t oc-
cupy the same locations at the same fime. When the VIC-Il chip needs to

PROGRAMMING GRAPHICS 105

access character data the ROM is switched in. It becomes an image in
the 16K bonk of memary that the YIC-II chip is lucking at. Otherwise,
the area is occupied by the I/O contral registers, and the character ROM
is only available to the VIC-1I chip.

However, you may need to gat to the character ROM if you are going
to use programmable characters and want to copy scme of the char-
acter ROM for some of your chararcter definitions. In this cose vou must
switch out the I/O register, switch in the character ROM, and do vour
capying. When you're finished, you must switch the I/O registers hack in
again. During the copying process [when /O is switchad out) no inter-
rupts can be allowed to rake place. This is beccuse the I/O registers are
reeded to service the interrupts. If you forget and perform an interrupt,
really strange things happen. The keybocrd should not be read during
the copying process. To turn off the keyboard and other normal inter
rupts that cccur with your Commodore 64, the following POKE should be
used:

POKE 56334,PEEK(56334)AND254 (TURMS INTERRUPTS OFF)

After you are finished getting characters from the character ROM,
and are ready to continue with your progrom, you must turn the
keyboard scen back orn by the following POKE:

POKE 56334,PEEK(56334)OR1 (TURNS INTERRUPTS ON)

The following POKE will switch out /O and switch the CHARACTER
ROM in:

POKE 1,PEEK(1)ANDZ51

The character ROM is now in the lacations from 53248—57343 ($D000-
$DFFF).

To switch /O hack inte $D000 for normal cperation use the following
POKE.

FOKE 1,PEEK(1)OR 4

106 FROGRAMMING GRAFHICS

STANDARD CHARACTER MODE

Standard character made is the mode the Cammaodore 64 is in when
you first turn it on. It is the mode you will generally program in.

Characters can be taken fram ROM or from RAM, but normally they
ore taken from ROM. When you want special graohics characters for o
program. all you have to do is define the new character shapes in RAM,
ond tell the VIC-II chip o get its character information trom there in-
stead of the rharacter ROM. This Is covered in more detail in the next
section.

In order to d'sglay characters on the screen in color. the VIC-II chip
cccesses the screen memory to determine the choracter cede for that
location on the screen. At the some time, it accesses the color memory
to determine what calor you want for the character disployed. The
character code is Iransluted by the VIC-l into the starting address of the
8 byte block holding vour character petterrn. The 8-byte block is loccted
in character memory,

The translation isn’t 0o complizated, but a number of items are com-
bined to gerercie the desired address. First the cha-acter code you use
to POKE screen memaory is multiplied by 8. Next add the start of char-
acter memory (see CHARACTER MEMORY section). Then the Bank Select
Bits are ~aken into decount by adding in the base address (see VIDEO
BAMNK SELECTION section). Below is a simple farmula to illustrate what
happans:

CHARACTER ADDRESS = SCREEN CODE*8+(CHARACTER
SET*2048)+ (BANK*15384)

CHARACTER DEFINITIONS

Fach character s formed in an 8 by 8 grid of dats, where euch dot
may ke either on or off. The Commadore 64 character images cre
stored in the Charucter Generatar ROM chip. The characters are storzd
os o set of 8 bytes far each character, with 2ach byte representing the
cot pottern of a row in tne character, and euch bil representing a do.
A zero bit means that dot is off, and o one bit means the dot is on.

The character memory in ROM begrs at location 53248 (when the IO
is switched off). The first 8 bytes trem locotion 53248 ($0000) to 53255
($D007) contain the paflemn for the (@ sign, which has a charaocter code
value of zete in the screan memacry. The next 8 kytas, from location

PROGRAMMING GRAPHICS 107

53256 ($D008) to 53263 ($DOOF), contain the informarion for forming the
letter A.

IMAGE BINARY PEEK
A 00011000 24
e 00111100 40
o 4 01100110 102
EEIEE O OI11T11C 126
gt D1100711C 102
¥ O®E O 1100110 102
e a a11001 10 102
00000000 0

Each complete character set takes up 2K {2048 bits) of memory, 8
bytes per character and 256 characters. Since thera are tweo cheracter
sets, one for upper case and grophics and the ather with upper and
lower case, the charocrer generctor ROM takes up o total of 4K loca-
tions,

PROGRAMMABLE CHARACTERS

Since the characters are stored in ROM, it would seem that there is no
way to chonge them for customizing characters. However, the mamory
location that tells the VIC-II chip where to fird the characters is a pro-
grammuable regisler which can be changed lo poinl 1o muny seclions of
memary. By chaonging the character memary pointer to point to RAM,
the character set may be programmed for any need.

If you want your character set to be located in RAM, there are o few
VERY IMPORTANT things tc take into account when you decide to actu-
ally program your own charactar sers. In addition, there are twn other
important points you must know to create your own special characters:

1) It is an all er nothing process. Generally, it you use your cwn char-
acter set by telling the VIC-Il chip te get the character information
from the arec you hewe prepared in RAM, the standard Comme-
dore &4 characters cre unavailable te you. To selve this, you must
copy any letters, numbere, or standerd Cammadare 64 graphics
you intend to use intc your cwn character memory in RAM. You can
pick and choose, take enly the cnes you want, and don't svan
hove to keep them in order!

108 PROGRAMMING GRAPHICS

2) Your choracter set takes memory space away trom your BASIC
program. Cf course, with 38K cvailuble for o BASIC progrum,
most applications won't hove problems.

WARNING: You must be careful te protect the charactar et from baing evarwritten
Ly revr BASIC pregram, which alse vse: the RAM,

There are two locations in the Commodcre 64 to start your character
set that should NOT be used with BASIC: location 0 and location
204B. The first should net be used because the system stores imporfant
data on page 0. Tha second can't be vsed because that is where your
BASIC progrem starts! However, there are 6 other starting positions for
your cuslum churacler set.

The best place o put your character set far use wirh BASIC while
experimenting is beginning ot 12288 ($3000 in HEX). This is done ky
POKEing the low £ bits of location 53272 with 12. Try the POKE now, like
this:

POKE 53272,(PEEK({53272)AND240) | 12

Immediately, all the letrers on the screen turn to garbage, This is
because thare are no characters set up at locotion 12288 right now . . .
only random bytes. Set the Commodore 64 back to normal by hitting

the kay and then the key.

Now let's begin creating graphics characters, To protect your char-
acter set from BASIC, yeu should reduce the amcunt of memory BASIC
thinks it has. The emount of memory in your computer stays the
scme. . . it's just that you've tcld BASIC not to use some of it. Type:

PRINT FRE(D)—(SGMN(FRE(0))<<0)"65535

The number displayed is the amount of memory space left unused. Now
type the following:

POKE 52,4B:POKE56,48:CLR
Now type:

PRINT FRE(D)—(SGN(FRE(0)=<0)*65535

PROGRAMMING CRAPHICS 109

See the chonge? BASIC now thinks it has less memory to werk with. The
memory you just claimed from BASIC is where you are going te put your
character set, safe from octions of BASIC.

The next step is to put your characters into RAM, When you begin,
there is random doto beginning at 12288 ($3000 HEX). You must put
character paterns in RAM (in the same style as the ones in ROM) for the
VIC-II chip to use.

The following program moves 64 characters from ROM to your char-
acter set RAM:

S FRINTCHR#C142 ‘REM SWITCH 70
UFFER CASE
18 FOKESZ, 42 POKESS. 48° CLR ‘REM RESERYVE MEMORY

FOR CHARACTERS
24 FOKESAREDS, PEEKCSEZRMIANDZEY (REM TURM OFF
KEYSCAM IMTERRUFT TIMER

30 FOKEL.FEER (L »ANDZSH ‘REM SWITCH INM
CHARACTER

43 FORI=ATOS11 POREI+1 2200, PECKCT4S32400 (HEWT

538 POKEL.PEEKCL20R4 REM SMWITCH IM I.-C
£3 FOKESEZE4, PEERCSE2E400R1 ‘REM RESTERT
KEYSCAN IMTERRUFT TIMER

A EHD

Now POKE location 53272 with (PEEK(53272)ANDZ240)+ 12 Nothing
happens, right? Well, almost nothing. The Commodore 64 is now getting
it's charaocter information from your RAM, instead of from ROM. But
since we copied the characters from ROM exactly, no difference can be
seen. . . . yet.

You can easily change the characters now. Clear the screen and type
an @ sign. Move the cursor down a couple of lines, then rype:

FOR | = 12288 TO 12288+7:POKE |, 255 — PEEK(l) : NEXT

You just created o reversed @ sign!

TIP; Reversec characters are just characters with thair hit patterns in character memery

rﬂ'\fﬂﬂ.d_

Now meve the cursor up to the program ogain ang hit
again to re-reverse the character (bring it back to normal), By lacking at
the table of screen display codes, you can figure out where in RAM each
character is. Just remember that each character takes eight memary

locations to store. Here's a few examples just to get you started.

110 PROGRAMMING GRAPHICS

CHARACTER | DISPLAY CODE | CURRENT STARTING LOCATION IN RAM
@ 0 122688
A 1 12296
! 33 12552
~ 62 12784

Remember that we crly tock the first 64 charactars. Something else
will hove to be done if you want one of the other characters.

What if you wantad character number 154, a reversed Z7 Well, you
cauld make it yourself, by reversing a Z, or you could cooy the set of
reversed characters from the ROM, or just take the one character you
want from ROM and replace one of the churaciers you have in RAM that
you don't need.

Suppase you decids thet you won't need the > sign. Lel's replace the
> sign with the raversed Z. Type this:

FOR |=0 TO 7: POKE 12784 + |, 255 PEEK(I+12498); NEXT

Now type a > sicr. Il comes vp as o reversed Z. No maher how
meny times you type the =, it comes out as o reversed 7. (This change
is reclly un illusion. Though the > sign looks like a reversed Z, it still acts
like @ = in o program. Try something that needs a > sign_ It will sill
work fine, only it will look strangs.)

A guick review: You can now copy characters from ROM into RAM,
You can even pick and choose only the anes you went. There’s anly ane
step left in programmaoble characters (the best step!) . . . making your
own characters.

Remember how characters are stored in ROM? Each character is
stored as a group of eight hytes. The hit patterns of the byres direcily
conlrol the character. If you arrange 8 bytes, one on top of cnother,
and writa out each byte as eight binary digits, it forms an eight by eight
maftrix, looking like the characters. When a bit is a ane, there is o det ot
that 'ocation. Whan a hit is o zero, there is o space at that location,

When creating your own characters, you set up the same kind of table
in memery. Type NEW anc than type this program:

10 FOR | = 12448 TO 12455 : READ A: POKE I, A: NEXT
20 DATA 60, &6, 165, 129, 165, 153, 65, 60

PROGRAMMING GRAFHICS 11

Now type RUN. The program will reploce the letter T with a smile face
character. Type o few T's to see the face. Each of the numbers in the
DATA statement in line 20 is a rew In tha smile face character. The
matrix for the face looks like this:

/7 6 5 4 3210 BINARY DECIMAL
ROW 0 W 00111100 60
1 ” * 01000010 66
2 % * * * 10100101 165
3 & e 10000007 129
4 . . * » 10100107 165
5 * * oM L 10011001 153
é i s 01000010 66
ROW 7 F & E 00111100 60
7 6 5 4 3 2 1 0
0
=
1
2
3
4
5
6
7

Figure 3-1. Programmable Character Worksheet.

112 PROGRAMMING GRAPHICS

The Programmakle Chorocler Worksheer (Figure 3-1) will help you
design your own characters. There is an 8 by B matrix on the sheet, with
row numbers, and numbers at the top of each column. {If you view each
fow as a hinary word, the numbers dre the vrlue of that hif positian.
Each is a power of 2. The leftmost bit iz equal to 128 or 2 to the 7th
power, the next is equal to 64 or 2 ta the 6th, and so on, until you reach
the rightmost bit (bit 0] which is equal tc 1 or 2 to the 0 power.)

Place an X on the matrix ar every locatian where you want a dot to be
in your character. When your character is ready you can create the
DATA staternent for your character.

Begin with the first row. Wherever you placed an X, take the number
ar tha top of the column (the power-of-2 number, as explained above)
and write it down. When you have the numbers for every column of the
first row, add them together. Write this number down, nexl o the row.
This is the number that you will put into the DATA statement to draw this
row.

Do the same thing with all of the other rows (1-7). When you are
finished you should hove 8 numbers between 0 and 255. If any of your
numbers are not within range, recheck your addition. The numhers must
be in this range to be correct! If you have less than 8 numbers, you
missed a row. It's OK if some ars 0. The 0 rows are just as importent as
the cther numbers.

Replace the numbears in the DATA statement in line 20 with the num-
bers yeu just calculated, and RUN the program. Then type a T. Every
1ime you type it, you'll see your own charocter!

If you don't like the way the character turned out, just change the
numbers in the DATA statement and re-RUN the program unfil you are
happy with your character.

That's all there is ta it!

HINT: For best results, alwoys moke any verticu lines in your charocters ot least 2
dets (bits) wide. This helps prevent CHROMA noise (calor disteriicn) on your char-
acters when they are displayed on a TV screen.

PROGRAMMING GRAPHICS 113

Here is an example of a program using standard programmahla
characters:

16 REM # EXAMPLE * #

28 REM CREATIMG PROGRAMMAELE CHARACTERS

31 POCESE234, PEEK (D234 JAND2E5A POKEL, PEEK 1 DAMDIZSL
REM TURM OFF KE ANDT I

33 FORI=ATOSZ-REM CHARARCTER RANGE TO BE COFPIED
FROM ROM

24 FORI=ETOTV:REM COPY ALL £ BYTES PER CHARACTER

37 POKE1Z288+I#E+J. PEEK(T3243+I48+T 2 'REM COFY A
EYTE

39 HEXTJ:HEXTI:REM GOTO MEXT EYTE OR CHARACTER

2% POKEL.FEEKC1>0R4 PORESER24, FEEK (52324 0R1 ' REM

TURMN OH I/0 AMD KE

4E POKESZZTZ. (FEEKISIZFZIANDZ4B1+12:REM SET CHAR

FPOINTER TO MEM. 12288

Al FORCHRR=GBTOES ' REM FROGRAM CHARACTERS &6 THRL B3
=2 FORBYTE=@QTOV-FEM DO ALL & BYTES 0F A CHARACTER
1€2 FEAD HWUMBER:REM REAL IM 1.-8TH OF CHARACTER DATHAH
iZ8 POKE12282+(S%CHAR> +EYTE, HUMBER ' REM STORE THE
DRTA IH MEMORY

148 HEXTEYTE:MEXTCHAR:REM ALSD COULD BE HEXT ENTE.
CHAR

158 PRIMTCHREC147 1 TRBCZSS I CHRECERA)

127 PRIMTCHE®CE1LDTARCSSACHRESC S2 0 CHREEFCED Y

1@ REM LINE 138 PUTS THE HEW_Y DEFINED CHARACTERS
OH THE SCREEM

176 GETAF REM WRIT FOR USER TO PRESS H KEY

120 IFRAE=""THEMGCTOI7O:REM IF MO KEYE WERE FRESSED,
THEY HGHIM!

198 POKES3272: 21 'REM RETURMN TO MORMAL CHARACTERS
208 DATA, 8.7, 5.7.7. 3 3-FEM DATA FOR CHRRACTER &@
218 DRATA F2.36, 234, 160, 284, 224, 138, 132 REM DATH
FOR CHARACTER &1

226 DATAT:7.7.21.21,95,143, (27 'REM DATA FOR
CHFRACTER &2

238 DATA 224, 224,224, 242, 248, 248, 24@ . 224 'FEM DATH
FOR CHARACTER &3

29E END

114 PROGRAMMING GRAPHICS

MULTI-COLOR MODE GRAPHICS

Standard high-resalution graphics give you contrel of very small dote
cn the screen. Each dot in character memory can have 2 possible
values, | for an and 0 for off. When a det is off, the color of the screen
is used in the space ressrved for that dot. If the dot is on, the dol is
cclored with the character color you have chosen for that screen pesi-
tion. When you're vsing standard high-resoluticn graphics, oll the dors
within each 8x8 character can either have bockground calor or fore-
ground caler. In some ways this limits the colo resulution within thai
spoce. For example, problems moy occur when twa different colared
lines cross,

Mulfi-color mode cives you o soluticn to this problem. Each dot in
mu ti-color mode can be one of 4 colors: screen color (background color
register #0), the color in background register #1, the color in back-
ground color register #2, ur choracler volur, The only scerifice is in the
horizontal resclution, becouse each muti-color mode dot is twice as
wide as o kigh-resclution dot. This minimal loss of resolution is more
than compensated for by the sxtra abiities of multi-colar mode.

MULTI-COLOR MQODE BIT

To turn on multi-color character mode, set bit 4 of the VIC-1! control
registar at 53270 ($D016) to a 1 by using the tallowing POXE:

POKE 53270,PEEK(53270)OR 15

To turn off multi-color character mode, set bit 4 of location 53270 10 a
0 by the following POKE:

POKE 53270,PEEK(53270)AND 239

Multi-color mede is set on ar off for each space on the screen, so that
multi-color graphics can oe mixed with high-resolution (hi-res) graphics.
This is controlled by bit 3 in color memory. Color memory begins at
location 55296 ($D800 In HEX). If the number in color memory is less
than 8 (0=7) the corresponding spoce on the video screen will ce
standard hi-res, in the color (0—/) you've chosen. If the numhber locatad
in color memory is greater or equal to & (from 8 to 15), then that space
will oe displayed in multi-cclor mode.

PROGRAMMING GRAFHICS 115

By POKEing a number inta coler memory, you can change the color of
the character in that position on the screen. POKEing © number from 0 to
7 gives the normal character colors. POKEing a numker berween B and
15 puts the spoce into multi-coler mode. In other words, turning BIT 3
ON in color memory, sets MULTI-COLOR MODE, Turning BIT 3 OFF in
cclor memory, sefs the normal, HIGH-RESOLUTION meode.

Once multi-coler mode is set in o space, the bits in the character
determine which cclore are displayed for the dats. For examgle, here is
o piclure of the letter A, ond its bit pattern:

IMAGE BIT PATTERN
e 00011000
gl iy 00111100
T kR 0110011C
RN 01111110
e R 01100110
TE &R 01100110
A 01100110
00000000

In normal or high-resclution mode, the screen color is displayed
everywhere there is a 0 bit, and ths character eolor is displayed whera
the bit is a 1. Multi-color mode uses the bits in pairs, like se:

IMAGE BIT PATTERM
AABDB 00 01 10 00
CCeC oo 11 171 00
AABBAABS 011001 10
AACCCCBB 0111 1710

AABBAABB 0110071 10
AABBAABS 01 10 07 10
AABBAABB 01 1007 10

00 00 00 00

In the image area abeve, the spares morked AA are drawn in the
background #1 color, the spaces marked BB use the background #2
colar, and the spaces marked CC use the chorocter color. The bit pairs
determine this, according to the following chart:

116 PROGRAMMING GRAPHICS

BIT PAIR | COLOR REGISTER LOCATION
00 | Background #0 color (screen color) 53281 ($D021)
01 Bockground #1 color 53282 ($D022)
10 Bockground #2 color 53283 ($D023)
1 Color specified by the color RAM

lower 3 bits in color memory |

NOTE: The sprite fureground czolor is o 10. The charecrer fareground coloris a 11

Type NEW und then type this demonstration program:

15? FOKESZ2E1, 1 REM SET BHCKGREUUND COLOR #8 T0
WHITE

112 FOKESS2EE, 3 REM EET EACKGROUND COLOE #1 TO CYAM
l2a POKES32332,9:'REM SET BACKOROUHD COLOR #2 TO
OREMHGE

JEH POEESZEFE, PEEKCSZZTENORLE FEM TURM 1M
MULTICOLOR MCDE

148 C=12%4A36+8%255 REM SET C TO FOIMT 70O ZOLOR
MEOR"Y

158 FRIMTCHRE: 147 1 "AFRARAATAR "

168 FORL=ATOZ

173 FOKEC+L.2'REM USE MULTI ELRACK

123 MEXT

The screen color is white, the character color is black, cne color regis-
ter Is cyan (greenish blue), the other is arange.

You're not really putting color codes in the space for character coler,
you're octually using references to the registers associated with those
colers. This conserves memory, since 2 bits can ke used to pick 16 colors
(background) or 8 colors {character), This also makes some neal lricks
possikle. Simpely changing one of the indirect registers wil change svery

dot drown in that color. Therefore sverything drawn in the screen and

PROGRAMMING GRAPHICS nur

background colors con be changed on the whole screen instantly, Here
is an example of changing background color register #1:

128 POREIZEVE, FPEEKISIQPL00RLIE "REM TURH OH
MULTICOLOR MODE
118 FRINTCHRECIA? JCHREECIR) S

128 PRINT "Jfﬂt".i REM TYFE C= & 1 FOR ORANGE OR
MULTICCLOR BLACE Bf ROLIMD
122 FORL=1TORE ‘PRINTCERE (S5 tHEKT
125 FORT=1TOE0@:HEXT
7]

148 PRINT @8 REM TYPE CTRL & 7 FOR BLUE COLOR

145 FORT=1TOSEE MEXT
_E30

1598 FRINT"@HIT A KEY"

168 THE [FRF=""THEML1EE

17TE H#=IMTIRNDC1)%l

188 FOKE 53 2 A

138 GOTOD 1&@

By using the E key and the COLOR keys the characters can he
changed to any color, including multi-cclor characters. For example,
type this command:

POKE 53270,PEEK(53270)OR 16:PRINT ~ “: REM LT.RED/
MULTI-COLOR RED

The word READY and anything else you type will be displayed in
multi-color mode. Arnather caler contrel can set you back fo regular text.

118 PROGRAMMING GRAPHICS

Here is an example of a program using multi-colar programmakbls
characters:

Lid REM % EXAMFLE 2 #

2@ REM CEEATING FIULTD COLOR FROGEAMMAELE CHARACTERS
a1l POECSSED34 PEER (S&334ANDESY POKEL FEEK (1 sRMDEST
2E FORT=OTOSN: REM CHARACTER: RANGE TO BE COFIED

FPHM FCIM

35 FORI=ETO7: REM COPY ALL 2 BYTES PER CHARACTEFR

37 POKELIZZSE+I#E+], PEEIS22424+ 182+ T2 FEM COPY A
BYTE

HE HESRTJLI-REFM GUTO MEXT BYTE OR LHHRACTER

3% POKEL.FEEECLIORY POKESEEG, FEEE IS4 00R] FEM
TLRH O T FMD KE

42 POKESEETEZ, (PEER(TIETEZANDEAS+ L2 REN SET CHRAR
“ZIHTER TC MEM. 12206

S8 POKES ?”7U FEEPﬁ’“'”G*UFlJ

5 M SET BACKGRGUMD COLOR +#@ TO BLACK
=1 SET BRCEGREOUND COLIR #1 TO RED
REP SET FRCKGROUMND COLJR &2 T2

d? FOEES
LLOH

'JJ

--'=REr1 FRCGEAM ZHARACTERS &8 THRU &3
M D0 nLL & IYTES OF A CHARACTER
7 rEﬂﬂﬂHMﬁEFf. i READ 1 27H IJF CHARACTER 2JATH
°'H FOKELIZZE88+ B CHAR) +BYTE . MUMEER REM STORE THE
DATA IM MErFORY
L8 HERTEYTE . CHAR
j R] C OME
PRIFT'VINTARC2ES ZHES (SasCHRE S S L b TAR (S Mt kRE CSEYCHRE S ERY
{E6 REM LIME 158 PUTS TAL HEWLY DEFIHCD CHARACTERS
HH THE SCWEER
i GEFERENM WETT FOR JSER 70 BRESS / KKEY
Lﬁw IFFAE=""THEMLTE REF IF MO KE+S WFWRE FRESSED,
TEY AGAIH
1538 PORE

J2LIPCEES EFEERCIBETO I AND238 BEM
AL CHARACTERS
@l @8, 850, 85,85, 85 REN DATH FOR

: Tr;‘.'—'l-l.'lh‘—-.‘.l. JE5,95, 35 REM DATA FOR
S.8,40,0 REN TATH FOR

SERLEZL A0 B REM DATH FOR

o 14| llhl

PROGRAMMIMG GRAPHICS 119

EXTENDED BACKGROUND COLOR MODE

Extended background coler mode gives yeu certrol over the back-
ground color of each individual character, us well as over the fore-
ground color. For example, in this mode you could display a blue char-
acter with o yellow beackground on o white screen.

There are 4 registers available for extended background color mode.
Each of the registers can be set to ary of the 16 colars.

Caolar memary is used to hold the fareground ealor in extended back-
ground mode. It is used the same as in stondard character mode.

Extended character mode places a limit on the numhber of different
choracters you can display, however. When extended color mode is on,
only the first 64 characters in the character ROM (ar the first 64 char-
octers in your programmable character set) can be used. This is be-
couse two of the bits of the character code are used to select the back-
ground color. It might work something like this:

The character code (the number you would POKE to the screen) af the
letter "A' is o 1. When extended color mode is on, if you POKEd a 1 to
the screen, cn “A" would appear. If you POKEd a &5 to the screen
narmally, you would expect the charocter with character code (CHRS)
129 to appear, which is u reversed “A." This does NOT happen in ex-
tended color maode. Instead you get the same unreverzed "A” e before,
bul on o different background color. The following chart gives the
codes:

CHARACTER CODE BACKGROUND COLOR REGISTER
RANGE BIT 7 BIT6 NUMBER ADDRESS
0-&3 o] 0 0 53281 ($D021)
64— |27 0 I 1 53282 ($D022)
128-191 1 0 2 53283 ($D0D23)
192-255 1 1 3 53284 ($D024)

Extendad coler mede is turned ON by setting bit & of the VIC-II regis-
ter fo @ 1 af location 53265 ($D011 in HEX). The following POKE does ir:

POKE 53265, PEEK(53265)OR 64

120 PROGRAMMING GRAPHICS

Extended color mode is turned OFF by setting bit 6 of the VIC-II regis-
ter to a 0 at location 53265 ($0011). The following statement will do this:

POKE 53265, PEEK(53265)AND 191

BIT MAPPED GRAPHICS

When writing games, plotting charts for business applications, or
cther types of programs, sconer or later you get fo the pcint where you
want high-resclution displays,

The Commodore 64 has been designed to do just that: high resolution
is availoble through bit mapping of the scresn. Bit mapping is the
method in which each possible dot (pixel) of resolution on the screen is
assigned its own hit (lacation) in memory. I¥ that memary kit is ¢ ene,
the dot it iz assigned ta is on. If the bit is sel v zero, the dot is off.

High-resolution graphic design hos a couple of drawbacks, which is
why it is not used cll the time. First of all, it tukes lots of memory to bit
map the entira screen. This is because every pixel must have a memary
bit to control it. You are going te need une bit of memory for each pixel
(or one hyte far B pixels). Since each character is B by 8, and there ars
40 lines with 25 characters in 2ach line, the resolution is 320 pixels (dots)
by 200 pixels for the whole screen. That gives you 64000 separate dots,
each of which requires a bit in memory. In other words, BO0O bytes of
memery dare needed to map the whole screan.

Generaly, high-resolution operations are made of many shert, sim-
ple, repetitive routines. Unfortunarely, this kind of thing is usually rother
slow if you are frying to write high-resolution routines in BASIC. How-
ever, shori, simple, repefitive rourines ara axactly what machine lan-
guage does best. The solutien is to either write your pregrams entirely in
machine longuage, or call machine longuage, high-resalution sub-
routines from your BASIC program wsing the 5YS commanc fram BASIC.
Thal way you get both the ease of writing in BASIC, and the spead of
machine language for graphics, The VSP cartridge is also ovailable to
add hign-resolution commands to COMMODORE 64 BASIC.

All of the excmples given in this section will be in BASIC o make them

clear. Now to the lechnical delails.
BIT MAPPING is one of the most popular grophics techniques in the
computer world. It is used o create highly detailed pictures. Basically,

wher the Commudore 64 yees into bit map mode, it directly displays an

PROGRAMMING GRAFHICS 121

8K section of memory on the TV screen. When in bit mop mode, you can
directly control whether an individual dot on the screen is on or off.

There ars two types of kit mapping available on the Commodore 64.
They are:

1) Standard (high-resalution) bit mapped mode (320-dat by 200-dot
resolution)
2) Multi-color bit mapped mode [160-dot oy 200-dot reselution)

Each is very similar 1o the character wype it is named for: siendard hes
greater resolution, but fewer cclor selections. On the other hand, multi
color bit mapping trades harizontal resolution for a greater number of
colors in an 8 dot by B8-dot squere.

STANDARD HIGH-RESOLUTION BIT MAP MODE

Standard bit map mode gives you a 320 horizontal dot by 200 vertical
dot resolution, with o choice of 2 calars in each B-dot hy 8-dat section.
Bit map mode is selected (turned ON) by setting bit 5 of the VIC-II
control register to o | of location 53265 ($D011 in HEX). The following
POKE will do this:

POKE 53265,PEEK(53265)OR 32

Bit mup mode is lurmed OFF by sefling bt 5 of the VIC-Il conirol
register to 0 at location 53265 ($D011), like this:

POKE 53265,PEEK(53265)AND 223

Before we get into the details of the bit map mode, there is one more
issue 1o rackle, and that is where to locare the bit map area.

HOW IT WORKS

if you remember the PROGRAMMABLE CHARACTERS section you will
recall that you were able to set the bit pattern of a character stored in

RAM to almost anything you wanted. If af the same time you change the
character that is displayed on the screen, you would be able to change
a single dot, and watch it happen. This is the basis of bit-mapping. The

122 FPROGRAMMING GRAFHICS

entire screen is filled with programmable characters, and yoeu make
your changes directly into the memory that the programmable char-
arcters gef their patterns from.

Each of the locations in screen memory that were used to contrel whas
character was displayed, are now used far calor information. For
example, instead of POKEing o 1 in location 1024 tc make an “A” ap-
pear in the top left hand corner of the screen, location 1024 now con-
trols the colors of the bits in that top left space.

Colors of squares in kit map mode do net come fram coler memory,
as they do in the choracter maodes. Instead, cclors are taken from
screen memory, The upper 4 bits of screen memory hecome the color of
any bit that is set to 1 in the 8 by B area contrclled by that screen
memory location. The lower 4 hiis become the color of any bit that is set
o a 0,

EXAMPLE: Type the following:

5 BRSE=2N4086 ! POKES3ETE, PEEK{SIEFRI0RG: REM PUT EIT
HAP AT £122
LB FPOKES325S . PEEK (2266 0R32 REM EMTER EBIT MAF MODE

Mow RUN the program.

Garbage appears on the screen, right? Just like the normol screen
mede, you have to clear the HIGH-RESOLUTION (HI-RES) screen before
you use It. Unfortunarely, grinfing @ CLR won'l work in this case. Instead
you have to clear out the section of memory that you're using for your
programmable characters, Hit the (LR cnd keys, ther
add the following lines o your program to clear the HI-RES screen:

28 FORI=DNSETOBASE+TS9%:POKED, @ NEXT REM CLERR EIT
AR

3@ FORT=1@24TO2H22 POKEL, 3 HEXT (REM SET COLOR TC
“wEH AND BLFCK

MNow RUN the pregrem again. You should see the screen clearing, then
the greenish blue color, cyun, should cover the whole screen. What we
want to do now is ta turn the dots an and off on the HI-RES screen.

PROGRAMMING GRAPHICS 123

To SET a dot (turn a dot ON) or UNSET a dot (turn @ dot OFF) you must
know how to find the correct bit in the choracter memory that you have
to set to a 1. In other words, you have to find the character you need fo
change, the row of the characrer, and which bit of the row that vou
have to change. You need o formula to caleulate this.

We will use X and Y 1c stund for the horizontal and vertical positions
of a dot. The dot where X=0 end Y=0 is ot the upper-left of the dis-
play. Dots to the right have higher X values, und the dots toward the
bottom have higher Y values. The beast way te use bit mapping is to
arrange the bit map display something like this:

) [RN s RS, SIS B Y -]

Each dot will have an X and a ¥ coordinate. With this farmat it is easy
to control any dot on the screen.

124 PROGRAMMING GRAPHICS

Howevar, what you actually have is something like this:

_BYTEO BYTE8 BYTE 16 BYIE 24BYTE 312

BYTE1 BYIE® . ; BYTE 313

.- BYTE 2 BYTE 10 . : BYTE 314
z35 BYTE 3 BYTE 11 . . BYTE 315
. BYTE 4 BYTE12 . : BYTE 316
O® 3YTE 5 BYTE 13 . ; BYTE 317
BYTE 6 BYTE 14 . : BYTE 318

______ BYTE 7 BYTE15 . . BYTE 319
______ BYTE 320 BYTE 328 BYTE 336 BYTE 344BYTE 632

BYTE 321 BYTE 329 . : BYTE 633

= BYTE 322 BYTE 330 .] BYTE 634
20 BYTE 323 BYTE 331 . : BYTE 635
S % BYTE 324 BYTE 332 . ; BYTE 436
g2 BYTE 325 BYTE 333 . : BYTE 637
5 BYTE 326 BYTE 334 . : BYTE 438
______ BYTE 327 BYTE 335 . : BYTE 639

The programmakle characters which make vp the kit map cre ar-
ranged in 25 rows of 40 columns each. While this is o good method of
organization for text, it mckes bit mapping somewhct difficult. (There is
a good reason for this method. See the section on MIXED MODES.)

The following formula will make it easier to control a dot on the bit

map screen:

The start of the display memary area is known as the BASE. The row
number (frem 0 to 24) of your dot is:

ROW = INT(¥/8) (There ure 320 bytes per line.)
The character position on that line (from 0 to 39) is:

CHAR = INT(X/8) (There are 8 bytes per character.)

The line of that character pasition (from 0 to 7) is:

LINE = Y AND 7

PROGRAMMING GRAPHICS 125

The bit of that bytc is:

BIT = 7- (X AND 7)

Now we put these formulas together. The byte in which character
memory dot (X,Y) is located is calculated bys:

BYTE = BASE + ROW*320+ CHAR"8 + LINE

To turn on any bit on the grid with coordinates (X,Y), use this line.

POKE BYTE, PEEK(BYTE) OR 27BIT

Let's odd these calculations to the program. In the following exampla,
the COMMODORE &4 will plot o sine curve:

FORA=ATOZI33TEF.T EEM WAYE WILL FILL THE SCREEM
W IMTCIR+3EII WS LD
CH=THT RS0
RO=THT o4 &)
LH=YAND7
BEY=RASE+RO¥ 2@ CHA- LM
Bl=7—CARANDT 2 =
PO BEY s FEEKTEYIORCZTET 2
HEWT =
POKELRZ4, 1a
GOTOL2E

o L

e

2 Rt |
i

e il el 3 B 1 W 53

LI L L e O 5
TN EE

The caleulation in line 60 wil change the values for the sine function
from o range of +1 to —1 to o range of 10 to 170. Lines 70 to 100
calculate the character, row, byte, and bit being affected, using the
formulae as shown above. line 125 signals the program is finished by
changing the color of the top left corner of the screen. Line 130 freezes
the program oy putting it into an infinite loop. When you have finished

looking at the disglay, just hold down and hit [EEEGE-

126 PROGRAMMING GRAPHICS

As a further example, you can modify the sine curve program to dis-
pluy a semicircle. Here are the lines to type to make the changes:

SEFORN=ATOLSE REM D0 HALS THE SIRECH
5 W1 BEE

SE ¥ TS 10050 1R -
£0 FORY=Y1TOYESTEFY1~"2
78 CH=INTX
80 RO=IRTYY,

95 | H=YRHDT

P B BRSEROFZ0-E90H+H_H
~ £ AN

116
11

This will create a semicircle in the HI-RES area of the screen.

WARNING: EASIC variobles con owveroy your high-resolution screen. If you need |
more memory space you mist move the hattam af BASIC above the high-resolution]
screen nren Or, you muss move yeur nigh-resclution sereen area. This problem will
NOT ocecur in meching language. It ONLY happens when you're writng programs in ’
BASIC

MULTI-COLOR BIT MAP MODE

Like multi-color mode characters, multi-color bit mep mode allows you
1o display up fo four different colors in each 8 by 8 seclion of bit map.
And s in multi-character mode, there is o sacrifice of horizontal resolu
tion (from 320 dots to 150 dots).

Multi-color bit map made uses an BK section of memory for the bit
map. You select your colors for multi-color bit map mode from (1) the
background color register 0, ithe screen background colar), (2) the video
maotrix (the upper 4 kits give onc possible color, the lower 4 bits an-
other), and (3) color memory.

Multi-color bit mapped mcde is turned TN by sefting bit 5 of 53245
($D011) and bit 4 ot location 53270 ($C016) o a 1. The fallowing POKE
does this:

POKE 53265,PEEK(53625)0R 32: POKE 53270,PEEK(53270)OR 14

PROGRAMMING GRAPHICS 127

Multi-color bit mapped mede is turned OFF by setting bit 5 of 53265
(3DO11) and bit 4 at location 53270 ($D016) to a 0. The following POKE
does this:

POKE 53265 PEEK(53265)AND 223: POKE 53270, PEEK(52270)AND 239

As in standard (HI-RES) bit mappad mode, there is a one ta one eor-
respordence between the 8K section of memory being used for the dis-
play, and what is shown an the screen. However, the harizontal dots are
two bits wide, Each 2 bits in the display memory area form a dot, which
cun huve one of 4 colars.

BITS COLOR INFORMATICN COMES FROM

00 Background color #0 (screen color)

a1 Upper 4 bits of screen memory

10 Lower 4 hits of screen memory

11 Color nybble (nybble = 1/2 byte = 4 biis)

SMOOTH SCROLLING

The VIC-II chip supports smooth scrolling in both the horizontal and
vertical directions, Smooth scrolling is a one pixel movemen: of the
entire screen in one direction. It can move either up, ar down, or lett, or
right. It is used to move new information smacthly onto the screen, whils
smoothly removing chcoracters from the other side.

While the VIC-Il chip does much of the task for you, the actual scroll-
ing must be done by a machine language praogram. The VIC-II chip
features the akility to place the video screen in any of 8 horizontal posi-
tions, and & veriical positions. Positianing is controlled by the VIC-II
scrolling registers. The VIC-II chip also has o 38 eslumn mode, and a 24
row mode. the smaller screen sizes are used to give you 1 place for your
naw date te scroll on from.

The followirg are Ihe steps for SMOOTH 3CROLLING:

128 PROGRAMMING GRAPHICS

1) Shrink the screen (the border will expand).

2) Set the scrolling register to meximum for minimum value depend-
ing upon the direction of your scroll).

3) Place the new data on the proper (covered) porticr of the screen.

4) Increment (or decrement) the scrolling register until it reaches the
maximum (or minimum) value.

5) At this point, use your machine language roufine to shift the entire
screen one entire character in the directior of the scroll,

6) Go back to step 2.

To go into 38 column mode, bit 3 of location 53270 ($D0716) must be
set o a 0. The tollowing POKE does this:

FOKE 53270,PEEK{53270)AND 247

To return to 40 column mode, set bit 3 of location 53270 ($D016) to u
1. The following POKE does this:

POKE 53270,PEEK(53270)OR 8

Ta go intn 74 row mode, hit 3 of location 53265 (300171) must be sat to
a 0. The following POKE will da this:

POKE 53265,PEEK(53245)AND 247

To return to 25 row mode, set bit 3 of location 53265 (3DC11) 10 o 1.
The tollowing POKE doee this:

POKE 53265,PEEK(53265)OR 8

Whe= ccrolling in the X dirzction, it is necessary to place the VIC-I|
chip into 38 column mode. This gives new data a place to seroll fram.,
When scrolling LEFT, the new data should be placed on the right. When
scrolling RIGHT the new data should be placed on the left. Please nate
that there are sfill 40 columns tc screen memory, but only 38 are visible.

‘When scrolling in the Y direction, it is necessary to place the VIC-11 chip
into 24 row mode. When scrolling UP, place the new data in the LAST
row, When scroliing DOWN, place the new date on the FIRST raw. Un-
like X scrolling, where there are covered creas on each side of the
screen, there is only one covered ursu in Y scrolling. When the Y scroll-

PROGRAMMING GRAFHICS 129

ing register is set 1o 0, the first line is covered, ready for new dora.
When the Y scrolling register is set to 7 the lasr row is covered.

For scrolling in the X direction, the scroll recister is located in bits 2 to
D of the VIC-Il control register at location 53270 ($D016 in HEX). As
always, it is important to affect anly those bits, The following POKE does
this:

POKE 53270, (PEEK(53270)AND 248)+X

where X is the X position of the screen from 0 to 7,

For scrolling in the Y direction, the scroll register is locared in bits 2 to
D of the VIC Il control register at location 53265 ($D011 in HEX). As
always, it is important 1¢ affect only those bits, The following POKE does
this:

POKE 53265, (PEEK(53265)AND 248)+Y

where Y is the Y position of the screen from 0 to 7.

To scroll text onto the screen from the bottom, you would step the
low-order 3 bits of location 53265 from 0—7, put more data on the
covered line at the bottam of the sereen, and then repeat the process.
To scroll characters onto the screen from left to right, you would step the
low-order 3 bits of |ocarion 53270 from 0 to 7, print or POKE anather
column of new data inte column 0 of the screen, then repesat the pro-
cess.

It you step the screll bits by —1, your text will move in the apposite
direction.

EXAMPLE: Text scrolling onto the bottom of the screen:

18 FOKESIZES, FEER (TIZ6T0ANIZY T REM G0
INTDO 24 FOW MODE

28 PRIMTCHRS(147> RE™M
CLEAR THE SCREEM

260 FORE=1TOZ24: PRIMTCHESC1T), | HEST REM MOWE

THE CURSCR TO THE BOTTONM

i FORESIZST, (PEEK TH2ET ANDESAS»+T FRINT REM
FC3ITION FOR 15T SCROLL

SiE PRIMTY HELLOY

EE€ FORP=ETOASTER-1

VE POKESIQEE, (PEEK (S22ET0AND2480+P

£2E€ FORM=1TOSH MEHT REY
DELA- LO0OP

SE HEXT :GOTO40

130 PROGRAMMING GRAPHICS

SPRITES

A SPRITE is o special *ype of user definable choracter which can be
displayed anywhere on the screen. Sprites are mainfained directly by
the VIC-Il chip. And cll you have to do is tell a sprite “what to lock like,”
“what color to be,” and “where o appear.” The VIC-II chip will do the
rest! Sprites can be any of the 16 cclors ovailable,

Sprites can oe used with ANY of the orher graphics modes, bit
mapped, character, multi-color, etc., and they’ll keep their shape in all
of them. The sprite carries its own color cefinition, its own mode (HI-RES
or multi-colored), and its own shape.

Up to 8 sprites at o time cun be maintained by the VIC-II chip aute-
matically. More sprites can se displayed using RASTER INTERRUPT
technigues.

The featires of SPRITES include:

1) 24 horizontal dot by 21 vertical dot size.

2) Individual color contral for each sprite.

3) Sprite multi-calor mode.

4) Magnification (2x) in herizontal, vertical, or both directions.
5) Selectable sprite ro background priarity.

6) Fixed sprite to sprite priorities.

7) Sprite to sprite collision detection,

8) Sprite to background collision detection.

These specinl sprite abilities make it simple to program many arcade
style games. Because the sprites are maintained by hardware, it is even
possible to write a gaed quality gamea in BASICI

Therz are 8 sprites supperted directly by the VIC-II chip. They are
numbered from 0 1¢ 7. Ecch of the sprites has it awn definition location,
positien registers and co or register, and has its own bits for enable and
collision detection.

DEFINING A SPRITE

Spriles cre defined like programmable characters are defined. How-
ever, since the size of the sprite is lorger, mare oytes are neeced. A
sprile is 24 by 21 dais, or 504 dors. This works out to 63 byres (504/8

PROGRAMMING GRAPHICS 131

TE

SOIHIYYO DHNIWWYEDONd

“po|g uoipjuyaq ajudg z-¢ 2unbiy

COoLUMN
NUMBER

m

a2

03

4

[o]:3

07

n

BIT

£

14

Z1

2

BIT CATA
VALUES
ON = 1xVAL}

16

128

G4

a2

16

ROW O
ROW 1

32

ROW 2

ROW 3

"A0W 4

ROW 5

ROWE

ROW 7

ROW R

ROW 9

ROW 10

ROW 11

ROW 12

ROW 13

ROW 11

ROW 15

ROW 16

ROW 1T

ROVF 18

ROV 19

now 2o

bits) needed to define o sprite. The &2 bytes are arranged in 21 rows of
3 bytes each. A sprite definition looks like this:

BYTE O BYTE 1 BYTE 2
BYTE 3 BYTE 4 BYTE 5
BYTE & BYTE 7 BYTE &
BYTE 60 BYTE 61 BYTE 62

Another way to view how a sprite is created is to take o look at the
sprite definition block on the bit level. It would luok sumething like Figure
3-2.

In a standard (HI-RES) sprite, each bit set to 1 is displayed in that
sprite’s foreground color. Each bit set to 0 is transporent and will display
whatever data is behind it. This is similar to a standard character,

Multi-color sprites are similar to multi-colar characters, Horizontal
resalution is traded for extra color resolution. The resolution of the sprite
becomes 12 harizontal dots by 21 vertical dots. Eoch dot n the sprite
becomes twice as wids, but the number of calors displayable in the
sprite is increased fo 4.

SPRITE POINTERS

Even though each sprite tokes only 63 bytes to define, one mora byre
is needed as a place holder at the enc of each sprite. Ecch sprite, then,
takes up 64 bytes. This makes it easy to calculate where in memaory your
sprite definition is, since 64 byles is un even number und in binary it's on
even power

Ecch of the 8 sprites has a byte associated with it called the SPRITE
POINTER. The sprite painters control where each sprite definition is lo-
cated in memory. These 8 bytes are alwaoys located s the last B bytes
of the 1K chunk of screen memory. Normally, on the Commodore 64,
this means they bagin at location 2040 ($07F8 in HEX). However, if you
move the screen, the acation of your sprite pointers will also move.

Each sprite peinter can hold a pnumber from € to 255. This number
paints to the definition for that sprite. Since each sprite definition tckes
&4 bytes, that means that the pointer can “see’ anywhere in the 16K
block of memary that the VIC-Il chip can access (since 256%64=16K).

PROGRAMMING GRAPHICS 133

If sprite pointer #0, at location 2040, contains the number 14, for
example, this means that sprite 0 will be displayed using the &4 bytes
beginning ct location 14¥64 = 895 which is in the cossette buffer. The
following fermule makes this clear:

LOCATION = (BANK ™ 16384) + (SPRITE POINTER VALUE * 64)

Where BANK is the 16K segment of memory that the VIC-Il chip is lock-
ing at ond is from 0 to 3.

The above formula gives the start of the 64 bytes of the sprite
definition block.

When the VIC-Il chip is looking at BANK 0 or BANK 2, there is a ROM
IMAGE of the character sel presenl in cerlain locotions, as mentioned
before. Sprite definitions can NOT be placed there. If for some reason
vou need more than 128 differsnt sprite definitions, you should use one
of the banks without the ROM IMAGE, 1 or 3.

TURNING SPRITES ON

The VIC-Il control register at location 53269 (30015 in HEX) is known
as the SPRITE ENABLE rcgister. Each of the sprites has a bit in this
register which controls whether that sprite is ON or OFF. The register
looks like this:

$D01S 76543210

To turn on sprite 1, for example, it is neceszary to turn that kit te a 1.
The following POKE does +his:

POKE 53269, PEEK(53269)OR 2

A more general statement would be the following:

POKE 53269,PEEK(53269)OR (21SN)

where SN is the sprite number, from 0 1o 7.

MNOTE: A sprite must be turned ON before it can ke seen. —‘

134 PROGRAMMING GRAPHICS

TURNING SPRITES OFF

A sprite is turned off by sefting its bit in the VIC-Il control register at
53269 (SDO15 in HEX) to a 0. The following POKE will do this:

POKE 53269, PEEK(53269)AND (255—215N)

where SN is the sprite number from 0 ta 7.

COLORS

A sprite can be any of the 16 colors generated by the VIC-1| chip.
Each of the sprites has its own sprite color register. These are the mem-
ory locations of the color registers:

ADDRESS DESCRIPTION
53287 (3D027) SPRITE 0 COLCR REGISTER
53288 ($D028) 3PRITE 1 COLOR REGISTER
53289 (3D029) SPRITE 2 COLOR REGISTER
53290 ($D024) SPRITE 3 COLOCR REGISTER
53291 (5D0OZR) SPRITE 4 COLOR REGISTER
53292 ($D02C) SPRITE 5 COLOR REGISTER
53293 (3D020) SPRITE 6 COLOR REGISTER
53294 ($D0O2E) SPRITE 7 COLOR REGISTER

All dots in the sprite will be disgplayed in the color contained in the
sprite color register. The rest of tha sprite will be rrensparent, and will
show whatever is behind the sprite.

MULTI-COLOR MODE

Multi-color mode allows you to have up 1o 4 differen! colors in each
sprite. However, just like other multi-calor modes, horizental resolution is
cut in half. In cther words, when you're working with sprite multi-color
mode (like in multi-color character mode), instead of 24 dets across the
sprite, there are 12 pairs of dots. Each pair of dots is called a BIT PAIR.
Think of each bit pair (pair of dots) as a single dot in your overall sprite
when it comes to choosing colors for the dots in your sprites. Tha table

PROGRAMMING GRAPHICS 135

below gives you the kit pair values needed to turn ON each of the four
colors you've chosen for your sprite:

BIT PAIR DESCRIPTION

ao TRANSPARENT, SCREEN CCLOR

Q1 SPRITE MULTI-COLOR REGISTER #0 (53285) ($DD25)
10 SFRITE COLOR REGISTER

11 SPRITE MULTI-COLOR REGISTER #1 (53286) (SDD26)

MOTE: The sprite foreground celor is @ 10. The character foregreund is a 11.

SETTING A SPRITE TO MULTI-COLOR MODE

To swilch u sprite into multi-calor mode you must turn ON the VIC-II
control register at location 53276 (SDO1C). The following POKE does this:

POKE 53276, PEEK(53276) OR (2]SM)

where SN is the sprite number (0 to 7).
To switch a sprite out of multi-color mode you must turn OFF the VIC-II
control register at location 53276 ($D01C), The following FOKE does this:

POKE 53276,PEEK(53276) AND [255—2T5N)
where SN is the sprite number (0 to 7).
EXPANDED SPRITES

The VIC-II chip has the ahility to expand a sprite in the vertical direc-
tion, the harizontal directian, or both at once. When expandad, each dot
in the sprite is twice os wide or twice as tall, Resolution doesn’t actually
increase . . . the sprite just gets bigger.

To expand a sprite in the horizontal direction, the corresponding bit in
the VIC-ll control register al lucolion 53277 ($D01D in HEX) must be
turned ON (set to a 1). The following POKE expands o sprite in the X
direction:

POKE 53277,PEEK(53277)OR (2T5M)

where SN is the sprite number from 0 to 7.

136 PROGRAMMING GRAPHICS

To unexpund o sprite in the horizontal direction, the corresponding bit
in the VIC-II control register at location 53277 (SDD1D in HEX) rnust be
turned OFF (sel lo a 0). The following POKE “unexpands” a sprite in the
X dirsction:

POKE 53277 ,PEEK(53277)AND (255—215N)

where SN is the sprite humber from O to 7.

Ta expand a sprite in the vertical direction, the corresponding bit in
the VIC-Il control register al location 53271 ($D017 in HEX) must he
turned CN (sat to a 1). The following POKE expands a sprite in the ¥
direction:

POKE 53271,PEEK(53271)OR (27 SN)

where SN is the sprita numher from O to 7.

To unexpand a sprite in the vertical direction, the correspunding bit in
the VIC-Il contrel register at location 53271 (§D017 in HEX) must be
turned OFF (set to a 0)., The following POKE “unexpunds” a sprite in the
Y direction:

POKE 53271,PEEK(53271)AND (255—2[SN)
where SN is the sprita number from 0 to 7.

SPRITE POSITIONING

Once you've made a sprite you want to ke able to maove It around the
screen. Te do this, your Commodore é4 uses three positioning registers:

1) SPRITE X POSITION REGISTER
2) SPRITE Y POSITION REGISTER
3) MOST SIGNIFICANT BIT X POSITION REGISTER

Each sprite has an X positien register, a Y position register, and o bit
in the X most significant bit regisrer. This lets you position your sgrites
very accurately. You can place your sprite in 512 poszible X positions
and 256 possible Y positions.

The X and Y position registers work together, in pairs, as a team. The
ucalinns of the X and Y registers oppear in the memory map as follows:
First is the X register for sprite O, then the Y register tor sprite 0. Next

PROGRAMMING GRAPHICS 137

comes the X register for sprite 1, the Y register for sprite 1, and sa on.
After all 16 X and Y registers comes the most significant bit in the X
position (X MSB) located in its own register.

The chart below lists the locations of each sprite position register. You
use the locafions of their appropriate time through POKE statemenrs:

LOCATION
DESCRIPFTION
DECIMAL HEX

53248 ($D000) SPRITE 0 X POSITION REGISTER
53249 ($D0O01) SPRITE O Y POSITION REGISTER
53250 ($D002) SPRITE 1 X POSITION REGISTER
53251 (3D003) SPRITE 1 ¥ POSITION REGISTER
53252 (3D004) SPRITE 2 X POSITION REGISTER
53253 ($D0O05) SPRITE 2 ¥ POSITION REGISTER
53254 ($D006) SPRITE 3 X POSITION REGISTER
53255 ($DDO7) SPRITE 3 Y POSITION REGISTER
53256 ($D008) SPRITE £ X POSITION RECISTER
53257 ($D0O0Y) SPRITE &4 ¥ FOSITION RFGISTFR
53258 ($D00A) SPRITE 5 X POSITION REGISTER
53259 ($D00B) SPRITE 5 ¥ POSITION REGISTER
53260 ($D00C) SPRITE 6 X POSITION REGISTER
53261 ($D00D) SPRITE 6 Y FOSITION REGISTER
53262 ($DOOE] SPRITE 7 X POSITION REGISTER
53263 (3DOOF) SPRITE 7 ¥ POSITION REGISTER
53264 {$D010) SPRITE X MSE REGISTER

The position of a sprite is calculated from the TOP LEFT corner of the
24 dot by 21 dot arza that your sprite can be designee in. It does NOT
matter how many or how few dots you use to make up a sprite. Even if
only one deot is used as a sprite, and you happen to want it in the middle
of the screen, you must still calculate the exact positioning by starting at
the top left cerner location.

VERTICAL POSITIONING

Sefting up positions in the horizontal direction is a little more difficult
than vertical positioning, so we'll discuss vertical (Y) positioning first.

There are 200 different dot positions thot can ne individually nro-
grammed onto your TV screen in the Y direction. The sprite Y position
registers can handle numbers up 1o 255. This means that you have maore

138 PROGRAMMING GRAPHICS

than enough register locations to handle moving o sgrite up and down.
You also want to be able to smoothly move a sprite on and off the
screen. More than 200 vclues are needed for this.

The first on-screen value from the too of the screen, and in the ¥
direction for an unexpanded sprite is 30. For a sprite expanded in the Y
direction it would ba 9. (Since each dot is twice as tall, this mckes a
certain amount of sense, cs the initial position is STILL caleulated from
the top left corner of the sprite.)

The first Y value in which a sprite (expanded or not) is fully on the
screen (cll 21 pessible lines displayed) is 50,

The last ¥ velue in which an unexpanded sprite is fully on the screen is
229, The last ¥ value in which an expanded sprire is fully on the screen
is 208.

The first ¥ value in which a sprite is fully off the screen is 250,

EXAMPLE:
B Jous e

12 FRINT"I"
0 POSESO40,

-REM CLEAFR SCREEM
TREM CET SPRITE @

TATA =ROM BL 13

ZE FORT=@ATO FOFKES324 1. PEEM POKE SFRITE
ODATE IMNTO BLOCK 13 ClIAE4-

G e o ik SET BESIMMIMG
OF YIDEC CHI™

=0 POEV+21 L REM ENAZLE SPRITE
1

el FOCEW+29, 1 TREM SET SPRITE @
COLIR

78 FOKEW+1, 108 TREM SE™ BERITE 0
¥ OFOSITION

30 POKEZ+1S, B:POKEY, 180 ‘REM SE™ SPRITE @

W OPOSITION

HORIZONTAL POSITIONING

Fesitioning in the horizontal direction is more complicated because
there arc more than 256 positions. Thiz mecns that an extra kit, or 9th
bit Is used ta control the X position. By adding the extra bit when neces-
sary o sprite naw has 512 possible pesitions in the lefi/right, X, direc-
tion. This makes more possible combinations than can be seen on the
visible pert of the screen. Each sprite can have a position trom O to 511,
However, only those values between 24 and 343 are visible on the
screen. If the X position of a sprite is greater than 255 (on the right side
of the screen), the bit in the X MOST SIGNIFICANT BIT POSITION register
must be set 10 a 1 {turned ONJ. If the X pesition of a sprite is less than

PROGRAMMING GRAPHICS 139

oL

SOIHdYYED DHIWWYHEDOUd

24uds ‘g-g sanbiy

50 |s39)

208 (spo)—

250 (57A)—

[
1
!
1
|
|

]
I
|
488 S1EE) 249 (518)

0 (sony 24 318
] 1

29 810) -— —— —

206 (3128) 344 (5158
|

VISIBLE VIEWING AREA

NTSC*
40 COLUMNS
25 ROWS

| |
| |
| I
[
320 (s1a0) 344 [57458)

50 is32)

—— — 229 (s€5)

-— — 260 ($FA)

*North American television transmission stancards for your vome TV

SOIHAYAD DNIWWYED0Ud

841

‘sppyy Buluoiyisod

7 (soir: 3|1 ($1F) 287 (311F) 3?5 ($14F)
| |
: { —————— 12 (500}
33 (s2m) : !
54 (s36) —— — — | — — 53 (538
VISIBLE VIEWING AREA
NTSGC*
38 COLUMNS
204 (scoy) — — 24 ROWS
— ——-—225 @Y
245 (sF6} — = = — — -246 5¢6)
| £
| I I
! | I
| : [
I I I
| l i |
ABO (s1ED) 3 (sF 311 (g1a7; 335 (s1sF)

*MNorth American e evision fransmission stendards Tur your homa TV,

256 (on the left side of the screen), then the X MSB of that sprite must
be O (turned OFF]. Bits U to 7 of the X MSB register correspond to sprifes
0 to 7, respectively.

The following program moves o sprite across the screen:

EXAMPLE:

Hmﬁl 3Lﬂ /HOME
1@ FRINT T

20 FPOFEZG4E, 13
AT DE: POKESE2+ 1, 129 HEST

FOEEY 421 4
68 FOKEY+33. 1
78 PCKEY+1, 160
&0 FORJ=GTOE4T
DB Hie=THT
186 POKE', L9 :

P L -2 S G

EV416, Ho - MER™

When moving expanded sprites onto the left sida of the screen in the
X diraction, you have to start the sprite OFF SCREEN on the RIGHT SIDE,
This is because an expanded sprite is larger than the amount of space
available on the left side of the screen.

EXAMPLE:

D TS
18 PRINT I
20 POKEDE40, 13
20 FORT=GTOSR FOKEGSE4], L2 HERT
Al
bl
£ F

i

e, FROREY2E 1 PURE 429, 1
pel L

198 POKEY, LY
116 T=Tai: FIHE1
Lk L IZaRg0R T30 T
The charts in Figure 3-3 explain sprite pasitioning.

By using these values, you can position each sprite anywherc. By mov-
ing the sprite a single dot pesition al u lime, very smooth movement is
easy ta achieve.

142 FROGRAMMING GRAPHICS

SPRITE POSITIONING SUMMARY

Unexpcnded sprites are at lecst partially visible in the 40 column, by
25 row made within the following parameters:

1< =

X < = 343
30 < =Y < = 249
In the 38 column mode, the X parameters change to the following:

B< =

X << = 334

In the 24 row mode, the Y pcrameters change to the following:

34 < =

Y < = 245

Expanded sprites are at leasr partially visible in the 40 column, by 25
row mode within the following parameters:

189 > =

X < = 343

In the 38 column mode, the X paramerers change to the following:

496 > = X <L = 334

In the 24 row meode, the Y parameters change to the following:

18 < = ¥ < =245

PROGRAMMING GRAPHICS 143

SPRITE DISPLAY PRIORITIES

Sprites have the obility to cross sach other’s poths, as well as eross in
front of, or behind other objects on the screen. This can give you a truly
three dimensional effact for games.

Sprite to sprite priority is fixed. That means that sgrite 0 has the high-
est priority, sprita 1 has the next priority, and so on, unfil we get to
sprite 7, which hos the lowest priority. In other words, if sprite 1 and
sprite & are positioned so thar they cross each other, sprite 1 will be in
front of sprite 6.

Sa when you’re planning which sprites will appear 1o be in the fare-
ground of the picture, they must be assigned lower sprite numbers than
those sprites you want to put fowcrds the back of the scene. Those
sprites will be given higher sprite numbers.

MNOTE: A “window’ effarct is pmsih!p If & sprite with higher priarity hns “heoles’ in it

(areos where the dots are not set to 1 and thus turned ON), the sprite with the lower

priority will show through. This also heppens with sprite and background data.

Sprite to bockgrourd priority is cantrollable by the SPRITE BACK-
GROUND priority register located at 53275 ($3D01B). Euch sprite has a
bit in this register. It that kit is O, thet sprite has a higher priority than
the background on the screen. In other words, the sprite uppears in
front of bockground data. If that bit is a 1, that sprite has a lower
pricrity than the background. Then the sprite appears behind the back-
ground data.

COLLISION DETECTS

One of the maore interesting aspects of the VIC-Il chip is its collision
detection abilities. Collisions can be detected between sprites, or be-
rween sprites and background dara. A collision occurs when o non-zero
part of o sprite everlaps @ non-zerc portion of another sprite er chor-
ucters on the screen.

144 PROGRAMMING GRAFHICS

SPRITE TO SPRITE COLLISIONS

Sprite to sprite collisions are recognized by the computer, or flagged,
in the spite to sprite collision ragister af location 53278 (FDO1E in HEX) in
the VIC-Il chip control register. Each sprite has a bit in this register. If
thar bir is a 1, then that sprite is invalved in a cellision. The bits in this
register will remain set until read (PEEKed). Once read, the register is
automatically cleared, so it is a good idec to save the value in a vari-
able until you are finished with it.

MNOTE: Collisons can take placs evan when the sprites are off screen.

SPRITE TO DATA COLLISIONS

Sprite to data ceollisions are detected in the sprite to data collision
register at location 53279 ($D0TF in HEX) of the VIC-II chip contral regis-
ter.

Each sprite has a bit in thiz register. If that bit is a 7, then that sprite
is involved in a eollision. The bits in this register remain set until read
(PEEKed). Once read, the register is automatically cleared, so it is o
good idec to save the value in o variable until you are finished with ir.

NOTE: MULTI-COLCR data 01 is considared transparent for ccllisiens, sven though it
shows up on the screen. When setfing up © background screen, it is ¢ good iden to
make sverything that sheuld no* cause a eollisian Q1 in multi color mode.

PROGRAMMING GRAPHICS 145

18 REM SPRITE EXAMPLE l...

28 REM THE HOT AIK BALLOOR

ggc¥;E=13ﬂﬂBBEiREm THI= 15 WHERE THE YIC REGISTERS
37 POKEYIC+21,l'REM ENABLE SFRITE B
EELEOKEVIC+33414:QEH SET EACKGRIUMD COLOR TO LIGHT
37 POEEVIC+22,1:REM EXFAME SFRITE B IM Y

38 FOKEVIC+23, 1 :REM EXFAND SFRITE B8 IM X

468 POKEZR4B . 192 KEM SET SFRITE A5 FOIMTEE

188 FOKEWIC+@, 12@:REM SET SFRITE 873 ¥ POSITION
198 POKEVIC+1,198:REM SET SPRITE 875 Y POSITION
228 POKEVIC+33,1:REM SET SPRITE 875 COLOR

2568 FORY=ETO&2:REM BYTE COUNTER WITH SFRITE LOOF
288 RERDA-RENM RERLD IWM A EYTE

318 POKE1S2#64+Y.F REM STORE HE OHTH IN SFRLTE
AREA

328 NEATY:REM CLOSE LOOP

338 Dix=1:IY=1

348 K=PEEK(YIC):REM LOOK AT SPRITE 875 » POSITION
ZEQ Y=PEEK:YIC+1):REM LOCK AT SPRITE @875 Y POSITIOHN
2e@ IFY=SE60RY=28ETHENDY=-DY REM IF %Y IS ON THE
EDGE DOF THE. ...

378 REM SCREEM. THEM REVERSE DELTA Y

JEB IFH=24AND(PEEK<YICH+1SANDL »=EBTHEHDH=-"D¥ 'REM IF
SFRITE ISs..s

358 EEM TOUCHIMWG THE LEFT EIGE rik=24 AWL THE YSE
FOR SFRITE A IS ©23, EEVERSE [T

480 IFH=94BAND (PEEK(WIC+18)ANDL »=1THENDX=-D% EZM IF
EFRITE 1ISaiss

418 REM TOUCHING THE RIGHT EDGE (k=48 AND THE MSB
FOR SPRITE @ IS 1), REVERSE IT

4208 IFK=255ANDD:=1THENA=-1 ! S[DE=1

438 REM SWITCH TO OTHER SIDE OF THE SCEEEN

dd4f TFH=PANDIk==1THEMX=25%& S IDE=A

458 REM SWITCH TO OTHER S1DE JF THE SCREEN

468 H=K+Dx 'REM ADD DELTR ¥ TO ¥

478 ¥A=HAND2S5S:REM MAKE SURE ¥ IS IH ALLOWED RAMGE
486 Y=Y+IY:'REM ADD DELTE % TO ¥

445 FPOREVIC+16,S10E

498 POKEWIC.X-REM PUT HEW % YWALUE IMTO SPRITE A5
X POSITION

Z18@ FOKEYIC~+L,Y'REM PUT HEMW ¥ YALUE IWTO SPRITE
85 ¥ POSITION

£330 GOTOZ44@

=l EEM #¥%sE SPRL[E DHTH #kEss

E1@8 TATAA, 127,8.,1.,255,152,3,235,224, 3,231, 229

E2B TRATAT 217, 248,7, 223,290, 7,217, 240, 2,231, 224
630 DATR3,255, 224,353, 235,224, 2,225, 160, 1,127, &4

g<@ DATA1.62.64.8,136,128,8,158,128,8,73.,8,8,72.8
608 DATRE.&62.8.6,62,0,8.62.8,3,28,8,8

146 PROGRAMMING GRAPHICS

18 BEM SFRITE ExAMPLE 2. ..

28 REM THE HOT FIR BALLOOM RAGRIM
ggr¥é8=13*4896=REH THIZ 15 WHERE THE WIC REGISTERS
2T POKEVIC421.5Z REM EMAELE SPRITES B THRU B

& POREWIC+323,14:REM SET BRCKGROUND PELGF TQ LIGHT
ELUE

7 FOKEVICHEE) ZREM E<FAND SPRITES B AMD 1 IN Y
48 FOKEVIC+23 REM EXFRND SPRITES @ AND I IM ¥
48 FOREZE4E. L32:REM SET SFRITE 873 FOIMTER

TE POKEZE41,123°REM SET SFRITE 1°S POINTER

SE POKC2842, 192 REM SET SPRITE 275 POINTER

FE POKEZD432, 192°'REM SET SFRITE 375 PROINTER

25 POKEZE44 . 192:FEM SET SPRITE 4% PIIMTER

S8 FPOEEZEAS, 192 REM SET SFRITE 5 9 FOIMTER

158 PCKEWIC+4, 3@ REFM SET SFRITE 2 W FOSITION
1181 FOEKEYWICHD, 58 KEM SET SFRITE T FOSITION
128 POREVICHS, 55 REM SET SFRITE # FOSITION
138 FPOREVICHT, 35'REM 32T 3FRITE Y FOSITION
14€ FORKEVICH2. TUB REM SET SPRITE 4G W POSITIOH
122 FOKEVIC+S, SRREM S2T SPRITE «7% % FOSITIOM
16€ FOKEVICH1@, {90 :REM SET SPRITE &2 K POSITION
IFE FUKEVIC411, 38:REM SET SPRITE 378 Y FPOSITION

«‘.-) f_l ['-J T'
.r;,; r_rl m l_.u'_!

175 FEINT “TRRC 152 "THIS IS THO HIRES SFRITES"
" (0 T

{76 FRIMTTABCSS)'0H TOF OF EACH OTHER"

198 FOCENIC-D, 160 :REN SET SPRITE B°S ¥ FOSITION

190 FPOCEYIC+1, 1M REM SET EII*"'."H TE B85 % POSLTION

0B FOSEWIC+2:1880-REM SET SFRITE 175 » POSITION
218 FOREYIC~3.120-REM SET SFPRITE 172 Y POSITION
228 FORKEYIC-27.1:REM SET SFRITE B3 COLOR
230 POKENVIC-41.1:REM SET SPRITE 276 COLOR
248 FROEEVIC-42.1:REM SET SFRITE 478 CCOLOR
200 POCENIC+48. 5 ' REM BET SFRITE .76 CCOLOE
ZEE PO 1C~q4z, £ REM SET SFRITE 375 COLOR
Z2v@ FOSEVIC+44,8:REM SET SPRITE 5°8 CCLOR

288 FORA=192T2133:REM THE START OF THE LOCP THAT
DCFIHES THE SPRITES

DeE FORY-ETOEE REM EYTE COUNTER WITH SPRITE LOOR
2@8 READR:REM RERD IN R BYTE

316 PUORE=#AGEY H I REM STORE THE DATHA I SFEITE HREREA
20 MEXTY,¥ REM CLOSE LOOPS

2@ D=1 DY=1

346G W=PEEK(YICY:REM LOOK AT SPRITE 3-5 ¥ POSITION
asE Pe=PEEKVICH Y (REM LOOK AT SPRITE 2/ % PCSITION
60 IFY=SO0RY=203THEMDY=-0%:REM IF ¥ IS ON THE

EIGE OF THE...

378 REM SCREEN, THEN REVERSE DELTA ¥

BEQ TFR=24ANDCEEK (VICHIEIAND d=0THENDX==D¥ REM IF
SPRITE IS...

498 REM TOUCHING THE LEFT EDGE: THEM REWVERS= IT

PROGRAMMING GRAPHICS 147

488 TFR=4CAHTCPEEN (Y IO+ 16 ANDL b= 1 THEND =~ 0 REM [F

SPRITE 1S...

418 REM TCOUCHIMNG THE RIGHT EDGE. THEM REVERSE IT

420 IFR=ZSSANDDN=1THEM=—1 SIDE=2

338 REM SHITCH TO O7-E S10E UF THE SCREEM

348 IFR=ORHIDK==1THEN#=256 STNF=@

450 REM SWITCH TO OTHER SIDE OF THE SCREEN

60 P REM AED DELTF W TO %

478 W=MAHD2S5:REM MAKE SURE W IS IM ALLOWED REMGE

4808 Y=\"+I%/:REM ATD DELTA ¥ TO &

405 POEEVICHLG, SIDE

452 POKEVIC.X:FEM PUT MEW ¥ VALUE IMTO SPRITE 8°S

= POSITLION

S5E POKEVICHZ. ¥:REM PUT NEW

172 % POSITION

518 POKEWICHD YiREM PUT MEW Y VALUE INTO SPRITE

p’s v POSITION

526 POKEVWICH2.Y:REM PUT HEW ¥ VALUE INTO SPRITE

198 % POSITION

E2E (O0T0340

B REN ¥s%% SCRLITE DATH sk

618 TATAB, 295, 0, 5, 153, 192.7, 24,224, 7. 56,224, 14, 126,

112,14, 126.1:2, 14,126,112

620 DATAG. 126,96, 7,56, 224,756,224, 1, 56,126, 8, 153,
@

% WALUE IMTO SPRITE

3

@03, 8, 0,86, 0

63 THTHA. 56 BLEALEL A BLE R, LPE. 0. B 42,0, A, 3,
48,8,8

53 DATAZ.E.0, 0. 182,80, 8,221 .0, A, 195, 8, 1.,129,128.1,
125,188, 1,125, L28

o DATAL, 129, 122,0.,125,8,0. 185, 8.4, 132,322, 2, 1€2,
G4.2.26,54,1 0,128

GEE IATAL.E.129,.8, 1592 8.8, 152, 0.0.8, 0, 38,24, 8.8, 42,
(o P] v P v R |

L8,

194 REM SFRITE E¥AMFLE 3...

=8 REM THE HOT AIR GORF

3@ WIC=33243 REM THIS I3 MHERE THE VIC REGISTERS
BECIH

25 POKEVMICHZ21, 1 REM EHABLE SPRITE @

148 PROGRAMMING GRAPHICS

36 FOCEVIC+23,14:REM SET BACKGROUMD COLOR TO LIGHT
BLUE

37 POEEVICHZ3E.1:REM =ZXFAND SFRITE # IM Y

36 POKEWIC+23.1:RENM EAFAND SPRITE @ Ik %

48 FOKEZE40. 132 REM SET SPRITE B'S POINTER

@ POKEYIC-28,1'REM TURH ON MULTICOLOR

€0 POKEVIC+37,7:REM SCT MULTICOLOR @

7@ POKEVIC+39.4 REM SET MULTICOLOR 1

130 POKEVIC+@,18@:REM SET SPRITE 8’ X POSITION
198 FOSEYIC+HL 1EW:HEM SET SFRITE A°S % POSITION
ZER FOREWIC+EI.Z IREM SET SPREITE 875 CULOR

259 FORY=ETOS3 REM BYTE COUNTER WITH SPRITE LOOF
300 READA:REM READ IN A BYTE

510 POKE122G8+7,f:REM STORE THE DATA IN SPRITE ARERA
Z2@ MEXT Y:REM CLOSE LOCP

230 [id=1:Iy=1

240 N=PZEK(VICH (REM LOOK AT SFRITE 875 X POSITION
350 M=PEEKOTCH D CREN LOOK HI SPRTTE B°5 % FOS1T10M
360 IFY=S00RY=2OSTHENDY=-TY-REM IF ¥ IS ON THE
EDGE OF THE...

I7@ FEM SCREEM. THEN REVERSE DELTA ¥

3EE IF M24ANDCPEEK (' IC+16) AMDL D =@THEMDH =11 REM
IF SFRITE 15...

90 REM TOUCHING THE LEFT EDGE, THEW REVERSE IT
AUE T RSSERNTCEEK (W [C+16 IRNDT =1 THENDR=-TIX REM |F
SFRITE IS5.s.

418 REM TOUCHING THE RIGHT EDCE, THEM RENVERSE 1T
428 I R=2S5AND0N=1THENH=-1 "SI[E=1

420 REM SWITCH TCO OTHER SIDE OF THE SCREEH

440 IFN=EANDDY=-1THENK=2S6 ' SIDE=0

4%5@ REM SWITCH TC OTHER SI1DE OF THE SCREEN

468 F=r+DnREM ADD DELTA ¥ TO &

470 K=WAMD2SE: AP MAKE SURE K IS IN ALLOWCD RAHOE
488 Y=v'+DY - REM ALD DELTA Y TO ¥

425 POKEVIC+1S, SIDE

45@ POKEVIC,X:REM PUT NEL ¥ VALUE INTOD SPRITE G
£ POSTT LM

S1@ FOREVIC+L, Y REN PUT REW ¥ WFLUE [4TC SPRITE
3°s ¥ POSITION

Se¢ GETA$:REM GET A KEY FROM THE KEYEOARD

521 IFA$="M"THEMFOKEYIC+28, 1 REM USER SELECTED
MULT 1COLOR

S22 IFA$="H"THENPOKEYIC+22. 8 REM USER SELECTED
WIGH RESOLLT 0N

S5HE GOTOZ4E

SPE RENM k= SORITE DIATH #kiie

G1E DATAS4.8. 1,16, 170, 4,6, 170, 144,10, 178, 168, 42,
178, 168,41, 105,104 162, 235, 185

628 DATALES.225. 186, 169,535, LDE. 170, 174, 178, 176,
176, 170, 170, 170, L70. L 7. 170, 170

&30 DATALEG: L7A 154, 169,835, 186,178 B35, 17K 42, 171
1668168, 174,168, 1. €.64, 1,68, 64

640 DATHS, 8, 80,0

1%

S

PROGRAMMING GRAPHICS

149

OTHER GRAPHICS FEATURES
SCREEN BLANKING

Bit 4 of the VIC-Il contral register controls the screen klanking func-
tion. It is found in the control register af location 53265 (3D011). When it
is turned ON (in other werds, set to a 1) the screen is nermal. When bit 4
is set to 0 (turned OFF), the entire screen changes to border color.

The following POKE blanks the screen. No data is lost, it just ien't
displayed.

POKE 53265 PEEK(53265)AND 239

To bring back the screen, use the POKE shown helow:

POKE 532565 ,PEEK(53265)0R 16

MOTE: Turning off the scresn wil speed up the processar slightly. This means that
program RUNning is aleo spad up.

RASTER REGISTER

The raster register is found in the VIC-Il chip at location 53266
(5D012). The rusler register is o dual purpose register. When you read
this register it returns the lower E hits of the current raster position. The
ruster position of the most significant bit is in register location 53265
($D011). You use the raster register to set up timing changes in your
display so that you can get rid of screen flicker. The changes ar your
screen shauld he maode when tha raster is not in the visible display area,
which is when your dot positicns fall between 51 and 251,

When the rasrer register is written to (including the MSB) the number
written to is soved for use with the raster compare function. When the
actuaol raster value becomes the same as the number written 1o the
raster register, a bit in the VIC-Il chip interrupt register 53273 ($0019) is
turned ON by setting it ta 1.

NOTE: If the proper interrupt kit is enabled (turred on), an nterrupt (IKQ) will occur.

150 PROGRAMMING GRAPHICS

INTERRUPT STATUS REGISTER

The interrupt status register shows the current sictus ot ony interrup:
source. The current status of bit 2 of the interrupt register will be a 1
when *wo sprites hit each other. The same is frue, in a cerresponding 1
to 1 relationship, for kits 03 listed in the charl below. Bil 7 is also sef
with o 1, wnenever an inferrupt occurs.

The interrupt status register is lucated ot 53273 (5D019) and is s
tollows:

LATCH BIT # DESCRIPTION

IRST Q Set when current raster count = stored raster count

IMDC [Set by SPRITE-DATA collision (1st nne only, until reset)
IMMC 2 Set by SPRITE-SPRITE collision (1s* one only, until reset)
ILP 3 Set by nagative transition of light pen (1 per frame)

IRQ@ 7 Set by latch set and enabled

Once an interrupt bit has been set, it's "letchad” in and must ke
cleared by writing @ | to that hit in the interrupt ragister when you're -
ready to handle it. This allows selective interrupt handling, without hav-
ing to store the other interrupt bits.

The INTERRUPT ENABLE REGISTER is located ot 53274 (3DO1A). It has
the same format as the interrupt siatus register. Unless the correspond-
ing bit in the intorrupt enable register iz set to a 1, no interrupt from that
source will take place. The interrupt status register can still be polled for
information, but no interrupts will be generated.

To enakle an interrupl request the carresponding interrupt encble kit
(og shown in the chart above) must ba set to a 1.

This powerful inter-upt structure lets you use split screen modes. For
instance you can have half of the screen hit mapped, half text, more
than B sprites at o time, etc. The secret is to use interrupts properly. For
exampgle, if you want the top hal? of the screen 1o be bit mapped wnd
the bottomn to be text, just set the raster compare register (os explainec
previously) for halfway down the screen. When the interrupt occurs, tell
the VIC-II chip to get cheracters from RCM, then set the raster compare
register 1 inter-up” ot the top of the screen. When the inferrupt occurs
ot +he top of the screen, tell the VIC-II chip to get characters from RAM
(bit map made).

FROGRAMMING GRAFHICS 151

You caon alse display more than 8 sprites in the same way. Unfortu-
nately BASIC isn’t fast enough to do this very well. So if you want to start
using display interrupts, you should werk in machine language.

SUGGESTED SCREEN AND CHARACTER
COLOR COMBINATIONS

Color TV sets are limited In their ability to place certain colors next to
each other on the same lire. Certain combinations ot screen and char-
acter colors produce blurred images. This chart shows which color com-
binctions to aveid, and which work especially well tagether.

CHARACTER COLOR

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Olx|® | X|® | ® | a|X|®|®|X|e o|s|eo|e
1.}(.){...){.....){..
2Ix|® | X|[x|o|x|x|®|®|[x|®|Xx|X|X|X|®
3le|[X | X|X[X|o|®|X|X[X[X|@]X|X|®]X
Ale e | XX X[X]|X|X[X|X]|X]|X]|X|X|X|®
Sle e | X|®| XX X|X[X|X]|X|e|X|e]|X|e

Es-oxoxxxxxxxxxo-o

S?OK'xxxix.-ooo}(}(}(

uzuja-ooxxxx-x-xxxxxo

S olx|e|X|X|X|X|X|®|e|X|e|X|X|X|X]|e

w10---xxxx-x-xxxxxo
MMl || X[XIX[X|®|X|X|X|X|eo|eo|eo|e
12|e|e|le(X| X|X|®|X|x|o|X|e[X|X|X]|e®
13 X[X[X|X|o|@|X|X|X|X|[®]|X|X]|X]|X
Yle o |X|o|X|X|®|X|X|X|X[®|X[X[X]|e®
16[e|o|o|x|o|e|le|x|x|[e]o|e|e|x]e]x
® = EXCELLENT
® = FAIR
X = POOR

152 PROGRAMMING GRAPHICS

PROGRAMMING SPRITES—ANOTHER LOOK

For those of you having troukle with graphics, this section has been
designed as ¢ more elementary tutorial approach to sprites.

MAKING SPRITES IN BASIC—A SHORT PROGRAM

There are at least three different BASIC programming tschniques
which let you create graphic images and carfoen animations on the
Commudore 64, You can use the computer's buili-in graphics charocter
set (see Page 376). You can program your own characters (see Page
108) wr . . . best of all . . . you can use the computer’s built-in “sprite
graphics./ To illustrate how easy it is, nere's one of the shorfest
spritemaoking programs you can write in BASIC:

I E' - -
2
SQ
X Y] 43
58 FOKEW+2L,1
&l FUOKEW 245001
TE FOKEY., 24
S8 FUOREYL . LED

FEHCE T POKES 255 HERT

This orogram incluces the key “ingredients” you need ta create any
sprite. The POKE numbers come from the SFRITEMAKING CHART on
Puge 176. This program defires the first spritc . . . sprite 0 . . . as a
solid white square on the screen. Here's o line-by-line explanarion of the
program:

LINE 10 clears the screen.

LIME 20 sets the “sprite pointar’ to where the Cammodore 64 will
read its sprite daic from. Sprite O is set at 2040, sprite 1 at 2041, sprite
2 at 2042, and so on up to sprite / ot 2047. You can set all 8§ sprite
pointers to 13 by using this line in place of line 20:

20 FOR SP=2040T02047:POKE 5P,13:NEXT SP

LINE 20 puts the first sprite (sprite 0) into 43 hytes of the Commedore
64's RAM memory starting ot location 832 (each sprite requires 63 bytes
of memaory). The first sprita (sprite 0) is "addressed” at memory locations

832 1c 894.

FROGRAMMING GRAFHICS 153

LINE 40 sets the variable V" equol to 53248, the starting address of
the VIDEQ CHIP. This entry lets us use the form (V+number) for sprite
seftings. We're using the form (V+number) when POKEing sprite settings
because this format conserves memory and lets us work with smaller
numbers. For example, in line 50 ws typed POKE V+21. This is the same
as typing POKE 53248+21 or POKE 53269 . . . but V+21 requires less
space than 53269, and is easier te remember.

LIME 50 enables or “turns on” sprite 0. There cre 8 sprites, numberad
from O to 7. To turn on an individual sprite, or a combination of sprites,
all you have to do s POKE V+21 followed by o number from 0 (turn all
sprites off) o 255 (turn all 8 sprites on). You con turn on one or more
sprites by POKEing the following numbers:

AlL QN |SPRITED | SPRITET | SPRITE2 | SPRITES | SPRITE4 | SPRITES | SPRITES | SPRITET | ALL OFF
V421,255| V+21,1 | V4+21,2 | V+21,4 | V421,8 | V421,18 | V21,32 V4+21,64|V+21,128| V+21,0

POKE V+21,1 turns on sprite 0. POKE V+21,128 turns on sprite 7. You
can also turn on combinarions of sprites. For example, POKE V+21,129
turns on both sprite 0 and sprite 7 by adding the twe “turn on” numbers
{1+128) together, (See SPRITEMAKING CHART, Page 176.)

LINE 60 sets the COLOR of sprite 0. There ure 16 possible sprite
colors, numbered from O (black) to 15 (grey). Eoch sgrite requires a
different POKE to set its color, lrom V—39 to V+46. POKE V+39,1
colors sprite 0 white. POKE V—46,15 colors sprite 7 grey. (See the
SPRITEMAKING CHART for more information.)

When you create o sprite, as you just did, the sprite will STAY IN
MEMORY until you POKE it off, redefine it, or turn off your computer.
This lets you change the colar, positian and even shape of the spritz in
DIRECT or IMMEDIATE mode, which is useful for editing purposes. As an
example, RUN the program above, then type this line in DIRECT mnde
(without @ line number) and hit the key:

POKE V+39,8

The sprite on the screen is now ORANGE. Try POKEing scme other num-
bers fram 0 to 15 to see the other sorite colors. Because you did this in
DIRECT mode, if you RUN your program the sprite will return to its origi-
nal color [white).

154 PROGRAMMING GRAPHICS

LINE 70 determines the HORIZONTAL or “X” POSITION of the sprite
on the screen. This number represents the location of the UPPER LEFT
CORNER of the sprite. The farthest left horizontal (X) position which you
can see on your television screen is pasition number 24, although you
can move the sprite OFF THE SCREEN to pasition number 0.

LINE 80 determines the VERTICAL or “Y" POSITION of the sprite. In
thie program, we placed the sprite at X (horizontal) position 24, and Y
(vertical) position 100. To try anather lacation, type this POKE in DIRECT

mode and hit _-

POKE V,24:POKE V+1,50

This places the sprite at the upper lefi corner of the screen. To move the
sprite to the lower left corner, type this:

POKE V,24:POKE V+1,229

Coch number from 6832 to 895 in our sprite D address represenis one
black of B pixels, with three B-pixel blacks in each horizontal row of the
sprite. The loog in line 80 tells the computer to POKE 832,255 which
makeas the first 8 pixels scolid then POKE 833,245 ta moke the second
8 pixels solid, and so on to location 894 which is the last group of 8
pixels in the battom right corner of the sprite. To better see how this
works, try typing the following in DIRECT mode, and notice that the
second group of 8 pixels is erased:

POKE 833,0 (to put it hack type POKE 833,255 or RUN your program)

The following line, which you can add fo your program, erases the
klocks in the MIDDLE of the sprite you created:

90 FOR A=836 TO 891 STEP 3:FPOKE A,0:NEXT A

Remember, the pixsls that make up the sprite are grouped in klocks of
eight. This line erases the 5th group of eight pixels (block 836) and every
third block up “o block 890. Try POKEing any of the other numbers fram
832 to 894 with either c¢ 255 to make them solid or 0 to make them
blank,

PROGRAMMING GRAFHICS 155

CRUNCHING YOUR SPRITE PROGRAMS

Here's a helpful “crunching” 1ip: The prograom described above is already short, but it
ccn be made even shorter by “crunching”™ it smaller. In our example we list the key
sprite seftings on separate program lines so you can tee what's happening ir the
program. In actual practice, o gead pragrammear would probahly write this program
| asa TWO LINE PROGRAM by “crunching” it os follows:

TOPRINTC HR$(147):V=53248:POKEV +21,1:POKE2040,13:
POKEV +39,1

20FORS=832TOBY4:POKES,255:NEXT:POKEY, 24:POKEV+1,100

For more tips on how 1o crunch your programs so they fit in less memory and run maoe
efficiently, see the “crunching cuide™ on Page 24,

TV SCREEN

X POSITION = HORIZONTAL
i |
<
Q
=
o
(1§}
~
I
=
o
o
n /.v
-

f

A Sprite located here must have both its
X-position (horizontal) and Y-position (vertical)
set so it can be displayed on the screen.

Figure 3-4, The display screen is divided into a grid of X and Y coor-
dinotes,

156 PROGRAMMING GRAPHICS

POSITIONING SPRITES ON THE SCREEN

The entire display screen is dividad into o grid of X and Y coordi-
nates, like ¢ graph. The X COORDINATE is the HORIZONTAL position
across the screen and the Y COORDINATE is the VERTICAL position up
and down {see Figure 3-4).

To position ony sprite on the screen, you must POKE TWO SETTINGS
. . . the X position and the Y position . . . these tell the computer where
to display the UPPER LEFT HAND CORNER of the spritz. Remember thot
a sprite consists of 504 individual pixels, 24 across by 21 down . . . so if
you PCKE o sprite onto the upper left carner of your screen, the sorite
will be displayed as a graphic image 24 pixels ACROSS and 21 pixels
DOWN starling at the X-Y position you defined. The sprite will be dis-
played based on the upper left corner of the entire sprite, even if you
define the sprite using only a small part of the 24X 21-pixel sprite area.

To understand how X-Y pesifioning works, study the following dia-
gram (Figure 3-5), which shows the X and Y numbers in relation o your
display screen. Mote that the GREY AREA in the diagram shows your
relevision viewing area . . . the white area represents positions which
are OFF your viewing screen . .

X POSITIONS RUN FROM 0 TC 255,

g 2¢ THEN YOU MUST POKE V416, 1 255 |
+———AND START OVFR AT U 10091 —'1;'-——3-1
]
) P : : ;
: _ X = 265, Y = 50 | POKE V+18 1 AND
: ;’:9.4_\'_50 \:x:&s.v:m
o N K— 201 = 50, '\ %
= |
Q I
o
L VIEWING SCREEN AREA
20
Y !
[4)]
ze |
On |
= |
w0 . e i |
o X =24 1 = 220 X=20Y=20 |
A5 |
! i
=N J/
X _ 24 ¥ = 250 FOKE V=16, 1 AND

X = 65 Y = 229

Figure 3-5. Determining X-Y sprite positions,

FRCGRAMMING GRAPHICS 157

To display a sprite in a given location, you must POKE the X and ¥
seftings for each SPRITE . . . remembering that avery sprite has its own
unique X POKE and Y POKE. The X and Y settings for all 8 sprites are
shown here:

POKE THESE VALUES TO SET X-Y SPRITE POSITIONS

T "
SPRITED I SPRITEY | SPRITE2 | SPRITE3 | SPRITE4 | SPRITES | SPRITES SPRITET

T
SETX |V.X VY+2.X VA4.X V+é.% V+8.X V+10,X | V+I12,X | V+14.X
SETY |[viny |‘.|'|;],f VISY | vizY | VoY vy [vy | Virsy
RIGHTIX | V161 | V+16,2 V+16.4 V+156.8 V+16,15 | V416,32 | V—14,64 | V+I14,128

POKEING AN X POSITION: The possible values of X are 0 ta 255,
counting from left to right. Velucs 0 to 23 place all or port of the sprite
OUT OF THE VIEWING AREA off the l=ft side of the screen . . . volues 24
to 255 place the sprite IN THE VIEWING AREA up to the 255th position
(see next paragraph for settings beyond the 255th X position). To place
the sprite at one of these postitions, just type the X-POSITION POKE for
the sprite you're using. For examnple, 1o POKE sprite 1 al the furthest lefi
¥ peosition IN THE VIEWING AREA, type: POKE V+2,24,

X VALUES BEYOND THE 255TH POSITION: Tn get beyond the 255th
position gcross the screen, you need to moke o SECOND POKE using the
numbears in the “"RIGHT X" row of the chart (Figure 3-5). Normally, the
horizantal (X) numbering would continue past the 255th position to 256,
257, etc., but because registers only contain 8 bits we must use a “sec-
ond register” to occess the RIGHT SIDE of the screen and start our X
numbering over again atr 0. 5o to get beyond X position 255, you must
POKE V+16 and a number (depending on the sprite). This gives you 55
additional X positions (renumbered from 0 to 65) in the viewing orea on
the RIGHT side of the viewing screen. (You can actually POKE the right
side X vulue us high us 255, which 1akes you off the right edge of the
viewing scraen.)

POKEING A Y POSITION: [he possible values of Y are 0 to 255, count-
ing from lop 1o bottom, Vulues 0 lv 49 place all or purt of the sprite QUT
OF THE VIEWING AREA off the TCP of the screen. Values 50 to 229 place
the sprite IN THE VIEWING AREA. Vulues 2530 1o 255 place ull or part of
the sprite OUT OF THE VIEWING AREA off the BOTIOM of the scraen.

158 PROGRAMMING GRAPHICS

Let’s see how this X-Y pusitioning works, using sprite 1. Type this pro-
gram:

18 PRINT :ves CENAE1, 2 FOKEZO4L, 10
A TOSES S 25%:NEXT

20 POKEY+
a0 PORENE . 24

4@ FOREM -2, D0

This simple program estaolishes sprite 1 as a sclid box and paositions ir
af the upper left corner of the scrzen. Now change line 40 fo read,

40 POKE V3,229

This moves the sprite 1o the boftom left corner of the screen. Mow let's
test the RIGHT X LIMIT ot the sprite. Change line 30 as shown:

30 POKE V+2,255

This moves the sprite to the RIGHT bui reaches the RIGHT X LIMIT, which
is 255. At this point, the “most significant bit” in register 16 must be SET.
In other words, you must type POKE V416 and the number shown in the
“RIGHT X" coalumn in the X-¥ POKE CHART above to RESTART the X

position counter at the 256th pixel/pasition on the screen. Change line 30
cs follows:

30 POKE V+ 16, PEEK(V-+16)0R 2:POKE V+2,0

POKE V+16,2 sets the most significant bit of the X position for sprite 1
and restarts it at the 256th pixel/position on the screen. POKE V+2,0
displeys the sprite at the NEW POSITION ZEROQ, which is now resat to the
256th pixel,

To get back to the left side of the screen, you must reset the most
significant bit of the X position counter to O by typing (for sprite 1);

POKE ¥+ 16, FEEK(V—16)AND 253

TO SUMMARIZE how the X positioning warks = . . POKE the X POSI-
TION for any sprite with @ number from 0 to 255. To access o position
beyond the 255th position/pixel acrass the screen, you must use an ad-
ditiona! POKE (V' +16) which sets the most significan! bit of the X position
and start counting frem 0 again at the 256th pixel acress the screen.

PROGRAMMING GRAPHICS 159

This POKE starts the X numbering over again from 0 at the 256th posi-
tion (Example: POKE V+16, PEEK(V+16)OR 1 and POKE V,1 must be
included to olace sprite 0 at the 257th pixel ccross the screen.) To get
back to the l2ft side X positions you have to TURN OFF the contral serting
by typing POKE V416, PEEK(V+16)AND 254,

POSITIONING MULTIPLE SPRITES ON THE SCREEN

Hare’s a program which defines THREE DIFFERENT SPRITES (0, 1, and
2) in different colors and places them in different positions on the
scraan:

18 PRIMTYAY ! V=E00240° FORS=022TO02S POXES, 255 HEWT
20 FORM=2040TIS642 POKEM, 13 MEMT
S POKEW+2L, T
4 PLOEEY3S, | FOKEY+4E., 7 FOKEY+41, 8
T8 FOREW.Z<4 FOKEW+1,32
68 POKEY+2, L2:POKEY+3, 229
7O POEN+4. 255 FOKEY+HS, 50

For convenience, cll 3 sprites have been defined as solid squares,
getting thair deta from the same place. The important lesson here is
how the 3 sprites are pesitioned, The while sprite € is uf the top lefthand
cerner. The yellow sprite 1 is at the bottem lefthand corner but HALF the
sprite is OFF THE SCREEN (remember, 24 is the leftmost X position in the
viewing area . . . an X position less than 24 puts cll or part of the sprita
off the screen and we used an X position 12 here which put the sprits
halfway off the screen). Finally, the arange sprite 2 is at the RIGHT X
LIMIT {(position 255) . . . but what if you want to display a sprite in the
area to the RIGHT of X position 2557

DISPLAYING A SPRITE BEYOND THE 255TH X-POSITION

Displaying a sprite beyond the 255th X position requires o speclal
POKE which SETS the most significant it ot the X position ond starts over
al the 256th pixel position across the screen, Here's how it works .

First, you POKE V+16 with the number tor the sprite you're using
{check the "RIGHT X row in the X-Y chort . . . we'll use sprite Q). Now
we assign an X position, keeping in mind that the X counter starts over
from O ot the 256th positicn on the screen. Change line 50 o read as
follows:

50 POKE V+16,1:POKE V,24:POKE V+1,75

160 PROGRAMMING GRAPHICS

This line POKEs V+ 16 with the numker required to “open up” the right
side of the screen. . .the new X position 24 lor sprite 0 now begins 24
pixels to the RIGHT of position 255. To check the right edge of the
screen, change line 60 ta:

60 POKE V+16,1:POKE V,65:POKE V+1,75

Some experimentation with the sertings in the sprite chart will give you
the settings you need to position and move sprites on the left and right
sides of the screen. The section on “moving sprires” will alsa increase
your understanding of how sprite positioning works.

SPRITE PRIORITIES

You can actually make different sprites seem to move IN FRONT OF or
BEHIND each other on the screen. This incredible three dimensional illu-
sion is uchieved by the built-in SPRITE FRIORITIES which delermine which
sprites have priority over the others when 2 or more sprites OVERLAP on
the screen.

The rule is “first come, first served” which means lower-numbkered
sprites AUTOMATICALLY have priority over higher-numbered sprites. For
example, if you display sprite 0 and sprite | so they overlap on the
screen, spritze 0 will appear to be IN FRONT OF sprite 1. Actually, sprite
0 clways supersedes all the other sprites bacause it's the [owest num-
bered sprite. In comparisan, sprite 1 has priority over sprites 2-7; sprite
2 haos priority over sprites 3—7, etc. Sprite 7 (the last sprite) has LESS
FRIORITY than any of the other sprites, and will always appear to be
displayed “BEHIND"” any other sorites which cverlap its position,

To illustrate hew priorities werk, change linas 50, 60, and 70 in the
program above to the following:

1@ FRINT "fﬁ/' W=0R24 8 FORG=222TO85S PUORES, 255 MEXMT
DE FOEMEs LR ETORAG D PORENM 12 HEST

gl 2L T

dll FOREV+IS 1 POREY+4E, 7 FOEE Y +4 |, &

S8 PACEN) 24 POKEY+ L 58 POKEY+16, 8

&6 POREW-2, 34 POREV+R. €0

TE POREWAd . 44 POKEVSS, 70

You should see u white sprite on lop of a yellow sprite on lop of un
orange sprite. Ot course, now that you see how priorities work, you can
also MOVE SPRITES ond toke advantuge of these priorities in your ani-
mation.

PROGRAMMING GRAPHICS 161

DRAWING A SPRITE

Drawing a Commodore sprite is like coloring the empry spaces in a
colaring hook. Every sprite consists of tiny dots called pixels. To draw a
sprite, all you have tc do is “color in” some of the pixels. =
Look at the spritemaking grid in Figure 3-6. This is what a blank sprite
locks like:

Figure 3-6. Spritemaking grid.

Each little “square” represents ane pixel in the sprite. Thera are 24 pixels
across and 21 pixels up and down, or 504 pixels in the entire sprite. To
make the sprite look like something, you hove to color in these pixels
using o special PROGRAM . . . but how can you control cver 500 indi-
vidual pixels? That's where computer programming can help you. In-
stead of typing 504 separate numbers, you only have to type 63 num-
oers for each sprite. Here's how it works . . .

162 PROGRAMMING GRAFHICS

CREATING A SPRITE . . . STEP BY STEP

To make this as easy as possible for you, we've put together this
simple step by step guide to help you draw your own sprites.

STEP 1:

Write the spritemaking program shown here ON A PIFCF OF FAPER . _ .
note that line 100 starts a special DATA section of your program which
will contain the 63 numbers you need fo create your sprite.

_-ElE
L8 FRINT o' FO
20 ¥
30 FORES.
40 FORM=BTOSE 'R

HEHT

i] | Z 20 O ﬂ:l 10| & |4 | 2|1 |eo3|32{1afals|e|
LB JATRESS 255, e — BT @ e ok i i
Ll ATNI20.E, 1 — = | : B
Lag e ' | | [
L83 i -
Lid ik |
1 | | | =
DATRL<A 1 | :
HF IHTHISg k) : 11 3
P ODNTAL44.E, 1 | T
TATAT4G . 5,1 ['
L1a PAThAL4d @01
114 TRTAI44 71
112 DRTHIAE 8,1 # | %
{13 z | .
|3 | | £
i 5l
" |
o e

v POKESZESS Y

STEP 2:

Coler in ~he pixels on the spritemaking grid on Page 162 (or use a plece
of graph paper . . . remember, a sprite nas 24 squares across ard 21
scuares down). We suggest you use o pencil and drow lightly so you con
reuse this grid, You can creale uny imuge you like, bul Tor our example
we'll draw a simple box.

STEP 3;

Lock ot the first EIGHT pixels. Each column of pixels hus o number (128,
64, 32, 16, 8, 4, 2, 1). The special type of addition we are going tc
shuw you is © 1ype of BINARY ARITHMETIC which is used by most com-

PROGRAMMING GRAPHICS 163

puters as o special way of counling. Here's a close-up view of the first
eight pixels in tha top left hand corner of the sprite:

128|6432(16| 8 |4 | 2| 1

STEP 4:

Add up the numbers ot the SOLID pixels. This first group of sight pixels
is completely solid, so the fotal number is 255,

STEP 5:

Enter that numhber as the FIRST DATA STATEMENT in line 100 of the

Spritemaking Program below. Enter 255 for the second ond third groups
of eighr.

STEP &:

Look at the FIRST EIGHT PIXELS IN THE SECOND ROW cf the sorite. Add
up the values of the solid pixels, Since only one of these pixels is solid,
the total volue is 128. Enter th's as the first DATA number in line 101,

168 (421

STEP 7:

Add up the values of the next group of eight pixels (which is 0 because
they're all BLANK) and enter in line 101 Now move to the next group of
pixels end repeat the process for each GROUP OF EIGHT PIXLLS (there
are 3 groups ocross each row, and 21 rows). This will give yau a total of
63 numbers. Each number rapresents ONE grous of 8 pixels, and 63
groups of eight equals 504 roial individual pixe's. Perhaps ¢ better way
of looking at the program is like this . . . each line in the program
represents ONE ROW in the sprite. Each of the 3 numbers in each row
represents ONE GROUP OF EIGHT PIXELS. And each number tells the
compute: which pixels fo make SOLID and which pixels 1a leave hlank.

164 PROGRAMMING GRAFHICS

STEP 8:

CRUNCH YOUR PROGRAM INTO A SMALLER SPACFE BY RUNNING TO-
GETHER ALL THE DATA STATEMENTS, AS SHOWN IN THE SAMPLE PRO-
GRAM BELOW. Note that we asked you to write your sprite program on
a piece of paper. We did this for a good reaseon. The DATA STATEMENT
LINES 100120 in the program in 3TEP 1 are only there to help you see
which numbers relate to which groups of pixels in your sprite. Your final
pregram should be “crunched” like this:

i oz, vow]

18 FRINT' v POKESZZ2E0, = FOKESI291 . 6

FOREN+34, &

.4 :POKESD42, 17

b FORM=ETOES RERDR POKESI2FH, O HEXT

188 TRTHEE . 255,255, 128,81, 122,060, 1, 1295, 6.1, 144. 0
Taddebs €151 144, 0,1, 144, 8,1

1B1 DATAL44,8, 1,144, 8, 1, 14, 8. 1, 144,02, 1. 144, 8, 1
144,08, 1,128, 0, 1, 126,0, 1

132 DATAL29,0,1,128,.0, 1,128, 8,1, 128,08, 1,095, 255, o=
00 X=300: Y=100 POKESSZS2, ¥ POMESIZES, 4

MOVING YOUR SPRITE ON THE SCREEN

Now that you've created your sprite, let’s do samea intaresting things
with it. To move your sprite smecthly across the screen, odd these two
lines to your progrom:

50 POKE V+5,100:FOR X=24T0O255:POKE V+4,X:NEXT:POKE
V+16,4
55 FOR X=0TO&4:POKE V+4,X:NEXT X:POKE V+16,0:GOTO 50

LINE 50 POKEs the Y POSITION ar 100 (iry 50 or 229 Instead for
variety). Then it sets up a FOR , . . NEXT loop which POKEs the sprite
into X position 0 fo X posilion 255, in order. When it reaches the 255th
position, it POKEs the RIGHT X FOSITICN (POKE V+16,4) which 's re-
quired fo cruss lu the right side of the screen.

LINE 55 ko= a FOR . . , NEXT loop which continues to POKE the sprite
in the last 65 positions on the screen. Note that the X value was reset <o
zero but because you used the RIGHT X serting (POKE V+16,2) X starts
over on the right side of the screen.

Thic line keeps going back to itsclf (GOTO 50). If you just want the
sprite to move ONCE across the screen and disappear, then rake out
GOTO50.

PROGRAMMING GRAPHICS 165

Here's a line which moves the sprite BACK AND FORTH:

50 POKE V+5,100:FOR X=24TO255:POKF V-4, ,X:NEXT: POKE
V+1&,4.FOR X=0TO&S: POKE V +4,X; NEXT X

55 FOR X=65TQ0 STEP—1:POKE V+4 X:NEXT:POKE V+16,0: FOR
X—=255TO24 STEP—1: POKE V+4,XNEXT

60 GOTO 50

Do you see how these programs work? This progrem is the same as the
previous one, except when it reaches the end of the right side of the
screen, it REVERSES |TSELF and goes back in the other direction. That is
what the STEP—1 accomplishes; . . . it tells the program 1o POKE the
sprite inte X values fram 65 to O on the right side of the screen, then
frem 255 to 0 on the left side of the screen, 5TEPping backwards
minus— 1 paosition at a time.

VERTICAL SCROLLING

This type cf sprite movement |s called “scrolling” To scroll your sprite
up or down in the Y position, you only have to use ONE LINE. ERASE
LINES 50 and 55 by typing the line numbers by themselves and

hitting lke. this:

50 (EEIIE)
55 (G)

Now enter LINE 50 again as tollows:

50 POKE V+4,24:FOR Y=0TO255:POKE V+5,Y:NEXT

THE DANCING MOUSE —A SPRITE PROGRAM EXAMPLE

Sometimes the techniques described in o programmer's reference
manual are difficult to understand, so we've put tagether a fun sprite

program called “Michael’s Dancing Mcuse.” This program uses three
different sprites in a cute animation with sound effects—and to help
you understand how it works we’ve included an explanation of EACH
COMMAND so you can see exactly how the program is constructed:

166 PROGRAMMING GRAPHICS

S G042V PORES+24, 1T FOKES, 228 FOKSS+1, 68 FUKESHS,

15 FOKES+S. 215

18 POKES+F . 126 POKES+E. 189 POSES+LD, 15 POEES+H1S, 215
-

15 PRINT" - W=53242 POKEN+D:, 1

W FORS =1 282TOIS3568 RERDD L POKES , 01 TRERT

T FORSZ=1Z22T2TO12414 RFEATR S ROK D2 RERT
38 RSE=1ZALATOLZdTE BRERFDRS POKFSH, 03 REXT
fii CEWEEE . LD FOREY -1, 68

a _éall
43 PRINTTREC 1A &I HPM THE TAMTIHG MOJSE T
40 P=15Z
S50 FORH=ATOZ47STERS
55 RHE=IHTOHA206) | sk -Rad2Ss
G0 FOEEY, L FOKEY+16, R
TE IFF=L92THENGOS Bomn
TE IFFP=l22TRFENGOSUE3RE
BA FOFEEZRIELF FORT=1THARA RER]
25 P=F+1 0 IFF LP4THEMF= 122

tad
36 HEHT
G5 ERD

‘60 TATAZE.8. 120, 63,0, 255, 127, 125,554, 127, 129, 254,
.'.2_' 189. 254, 157V, 855, 254

"Bl TATHES o 1ET L 199, 1,255, 122,

1B 182,

182 TATAZL 0, 1,188, 52,3, i3}
224.7.1. 192, 1,192, 0. 3.192
102 DATAZE. @, 120, €2. 8,252, 127, 125,254, 127,

127, 18925
184 DFETHAGE
3,200.1825 1,
ltJ.u DETASL

Bea@a. .

PG PP MRS T o B

Joma (e

187 9,
]iﬁr’ I'IF TiHF: !
S 13, cD‘i--L-l:-'
183 DRTAL 235,
tee DETAT, 14,8,

.lEll-...'lJﬂ" ik 1
249,55 B L1201 2.08,.8, 08,8,

-1
2R 'RETUEREM
S ._9 TRETURM

PROGRAMMING GRAPHICS

167

LINE 5:

§=54272

POKES+24,15

POKES, 220

POKES+ 1,68

POKES+5,15

POKES +6,215

LINE 10:
POKES+7,120
POKES +8,100
POKES+12,15

POKES+13,215

LINE 15:

PRINT"
z

V=53248

POKEV+121,1

Sets the variakle § equal to 54272, which is the
beginning memory location of the SOUND CHIP.
From now on, instead of poking a direct memory
location, we will POKE 3 plus a value.

Same as POKE 54296,15 which sets YVOLUME to
highest level.

Same as POKE 54272,220 which sets Low Fre-
quency in Yoice 1 for o note which approximates
high C in Octave 6.

Same as POKE 54273,68 which sets High Fre-
guency in Voice 1 for o note which approximates
high € in Octave 6,

Same as POKE 54277,15 which sets Attack/Decay
for Voice 1 and: in this case consists of the
maximum DECAY level with no attack, which pro-
duces the "echo” effect.

Some as POKE 54278,215 which sets Sustain/ Re-
lease for Yoice 1 (215 represents a combination
of sustain and release values).

Same as POKE 54279,120 which sets the Low Fre-
guency for Voice 2.

Same as POKE 54280,100 which sets the High
Frequency for Yoice 2.

Same as POKE 54284,15 which sets AftackiDecay
for Yoice 2 to same level as Voice 1 above.
Same cs POKE 54285,215 which sets Sustain/ Re-

lease for Voice 2 to same level as Voice 1 above.

Clears the screen when the program begins.
Defines the variable “V* s the starting lecation
of the VIC chip which controls sprites. From now
on we will define sprite locatiens as V plus o
valuve,

Turns on (enables) sprite number 1.

168 PROGRAMMING GRAPHICS

LINE 20:

FORS1=12288
TO 12350

READ Q1

POKES1,Q1

NEXT

We dre going te use ONE SPRITE (sprite 0) in this
animation, but we are going lo use THREE sets of
sprite data to define three separcte shapes. Te
gel our animution, we will swilch the POINTERS
for sprite 0 to the three places in memory where
we have stored the data which defines our three
different shapes. The same sprite will he rede-
fined ropidly over und over again os 3 different
shapes to produce the dancing mouse animation.
You can define dozens of sprite shapes in DATA
STATEMENTS, and rotate those shapes through
one or more sprites. So you see, you dont have to
limit one sprite to one shape or vice-versa, One
sprite can have many different shapes, simply by
changing the POINTER SETTING FOR THAT
SPRITE to different places in memory where the
sprite data for different shapes is stored. This
line means we have put the DATA for “sprite
shape 1" at memory locations 12288 to 12350.

Reads 63 numbers in order from the DATA state-
ments which begin at line 100. Q1 is an arbitrary
variable name. It could just us eusily be A, ZI or
another numeric variable.

Pokes the first numker from the DATA statements
(the first “Q1” is 30) into the first memory location
(the firet memory location is 12288). This is the
scme as POKE12288,30.

This tells the computer to lock BETWEEN the FOR
und NEXT parts of the loop and perform those
in-batwaan commands (READQ1 and POKESI, @1
using the NEXT numbers in order). In other words,
the NEXT statement makes the computer READ the
MEXT Q1 from the DATA STATEMENTS, which is O,
and also increments S1 by 1 1o the next value,
which is 12289, The result is POKE12289,0 . . .
the NEXT command makes the loop keep gaing
back until the last values in the ceries, which cre
POKE 12350.0.

PROGRAMMING GRAPHICS 169

LINE 25:

FORS2=12352
TO 12414

READQZ2

POKESZ, @2

NEXT
LINE 30:

FORS3=12416
TO 12478
READQ3
POKES3,Q3

NEXT

LINE 35:

POKEV+39,15
POKEVH+1,68

The second shape of sprite zero is defined by the
DATA which is located at locations 12352 to
12414. NOTE that lacation 12351 is SKIPPED . . .
this is the é4th location which is used in the
definition of the first sprite group but deoes not
contain any of the sprite data numbers. Just re-
member when defining sprites in cansecutive lo-
cations that you will use 64 locations, but only
POKE sprite data into the first 63 locations.
Reads the 63 numbers which follow the numbers
we used for the first sprite shope. This READ sim-
ply lecks for the very next number in the DATA
area and starts reading 63 numbers, one at o
time.

Pokes the data (Q2) into the memory locations
($2) For our second sprite shepe, which begins at
location 12352,

Same use as line 20 above.

The third shape of sprite zero is defined by the
DATA to be located at locations 12416 to 12478,
Reads last 63 numbers in order as Q3.

Pokes those numbers into locations 124146 to
12478.

Same as lines 20 and 25.

Sets color for sprite 0 1o light grey.

Sets the upper right hand corner of the sprite
square to vertical (Y) position 68. For the sake of
comparison, position 50 is the top lefthand corner
Y position en the viewing screen.

170 PROGRAMMING GRAPHICS

LINE 40:

PRINTTAB(160)

g cTR

I AM THE
DANCING
MOUSE!

Ea’

LINE 45:

P=192

LINE 50:

FORX=0TO347
STEP3

Tobs 160 spaces from the top lefthand CHAR-
ACTER SPACE on the screen, which is the same as
4 rows beneath the clear command . . . this starts
your PRINT message on the 6th line down on the
screen.

Hold down the key and press the key
marked at the same time. If you do this
inside quotation morks, a “reversed E will ap-
pear. This sets the calor to everything PRINTed
from then on ta WHITE,

This is a simple PRINT statement.

This sets the celer back to light blue when the
PRINT statement ends. Holding down [& and
at the same time inside quoiation marks

causes a “reversed diamond symbol” ic appear.

Sets the variable P equal ta 192. This number 192
is the pointer you must use, in this case to “point”
sprife O to the memory lacations that begin at lo-
cation 12288, Changing this pointer to the leca-
tions of the other two sprite shapes is the secret of
using one sprite to crecte on conimation thot is
actually three different shapes.

Steps the movementi of your sprite 3 X positions at
a time (to provide fast movement) from position Q
to position 347.

PROGRANMING CRAPHICS 171

LINE 55:

RK=INT(X/256)

LX=X—RX"256

LINE &60:

POKEV,LX

POKEV+ 16, RX

LINE 70:

IFP=172THEN
GOSUB200

RX is the integer of X/256 which means that RX is
rounded off to O when X is less than 256, and RX
becomes 1 when X reaches position 256. We will
use RX in @ moment tc POKE V+16 with a 0 or 1
to turn on the “RIGHT SIDE"” of the screen.

When the sprite is at X peosition 0, the formula
looks like this: IX = 0 — (0 times 256) or 0. When
the sprite is at X position 1 the formula locks like
this: LX = 1 (0 times 256) or 1. When the sprite
is at X position 256 the formula lecks like this: LX
= 258 — (1 times 256) or 0 which reseis X back to
0 which must be dene when you start over on the

RIGHT SIDE of the screen (POKEV+16,1).

You POKE V by itself with a value to set the Hori-
zontal (X) Position of sprite O on the screen. (See
SPRITEMAKING CHART on Page 176). As shown
above, the value of LX, which is the horizental
position of the sprite, changes frem 0 te 255 end
when it reaches 255 it avtomatically resets back
ic zero because of the LX equatien set up in line
55,

POKEV +16 always turns on the “right side” of
the sereen beyond pesition 256, and resets the
harizontal positioning coordinates to zero. RX is
either @ 0 or @ 1 based on the position of the
sprite os determined by the RX formula in line 55.

If the sprite pointer is set to 192 (the first sprite
shape) the wavetorm control for the first sound ef-
fect is set to 129 and 128 per line 200.

172 PROGRAMMING GRAPHICS

LINE 75:

IFP=193THEN
GOSUB300

LINE 80:

POKE2040,P

FORT=1TO60:
NEXT

LINE 85:

P=P+1

IFF=>194THEN
P=192

if the sprite pointer is set to 193 (the second
sprite shape) the waveform control for the second
sound effect (Voice 2) is set to 129 and 128 per
line 300.

Sets the SPRITE POINTER to leocation 192 (re-
member P=192 in line 45? Here's where we use
the P).

A simple time delay loop which sets the speed at

which the mouse dances. (Try a faster or slower

speed by increasing/decreasing the number 60.)

MNow we increase the value of the pointer by add-
ing 1 to the original value of P.

We only want to point the sprite 1o 3 memory lo-
cations. 192 peints to locations 12288 1o 12350,
193 points to locations 12352 to 12414, and 194
points to locations 124168 to 12478, This line tells
the computer to reset P back to 192 as soon as P
hecomes 195 so P never really becomes 195. P is
192, 193, 194 and then resets back to 192 and
the pointer winds up pointing consecutively to the
three sprite shapes in the three &4-byte groups of
memory locations containing the DATA.

PROGRAMMING GRAFPHICS 173

LINE 90:

NEXTX

LINE 95

END

LINES 100-109

DATA

After the sprite has become one of the 3 different
shapes defined by the DATA, only then is it
allowed to meve across the screen. It will jump 3
X positiens at a time (instecd of serolling smoothly
one pesition at a time, which is also possible).
STEPping 3 pesiticns at a time mckes the mouse
“dance’ faster ccross the screen. NEXT X matches
the FOR. . . X posifion leop in line 50.

ENDs the program, which occurs when the sprite

moves off the screen,

The sprite shapes cre read from the date num-
bers, in order. First the 63 numbers which com-
prise sprite shape 1 are read, then the 63 num
bers for sprite shape 2, ond then sprite shape 3.
This data is permanently read into the 3 memory
locations and after it is read into these locations,
all the program hes to de is peint sprite 0 at the
3 memory locations and the sprite automatically
takes the shape of the datea in those lacations
We are pointing the sprite at 3 locations ane at a
time which preduces the “animation” etfect. If
you want to see how these numbers affect each
sprite, try changing the first 3 numbers in LINE
100 1o 255, 255, 255. See the section on defining
sprite shapes for more information.

174 PROGRAMMING GRAFPHICS

LINE 200:
POKES 44,129
POKES+4,128

RETURN

LINE 300:
POKES+11,129
POKES+11,128

RETURN

Waveform control set to 129 furns on the sound
effect.
Waveform control set to 128 turns off the sound

effect.
Sends program back to end of line 70 after

waveform control settings are changed, to resume

program.

Wavefsrm control set te 129 iurns on the sound

effect.
Waveform contrel set te 128 turns off the sound

effect.
Sends program back te end of line 75 to resume.

PROGRAMMING GRAPHICS 175

EASY SPRITEMAKING CHART

SPRITE | SPRITE | SPRITE | SPRITE | SPRITE | SPRITE [SPRITE SPRITE
0 1 2 3 4 5 & 7

Turn cn Sprite V421,01 |V421,2 |V+21,4 |V+2T 8 |V+H2116|V+21,52| V121,64 |V 121,128
Pul in Memary 2040, 2041, 2042, 2043, 2044, 2045, 2046, 2047,
(Set Pointers) 192 193 194 193 194 177 198 199
Locarions for 12288 [12352 (12416 (12480 - (12544 12508 12672 12736
Sprite Pixel to to to to to to to o
(12288—12Z7VE) 12350 12414 12478 12542 12606 12570 12734 12798
Sprite Calor V+39,C |V+40,C [V+41,C |V+42 C 'V+43 C (V+24,C |V+45.0 (V+26,C
Sat LEFT X V40X |VH2ZX (V4 X (VA X (VHBX (VHI0X [VHIZLK (V114X
Posifien (0-255)
Set RIGHT X V16,1 |V+15,2 [W+15,4 (V4168 (WH16 16 V+H16,32 (V416,64 (V16,128
Pocition (0—255) V40X [V42.X (V4 X |[Vs X (W+B X (V410X | VHI12,0 (V414X
Let ¥ Position V1Y (VHRY (V4HEY (VHZY (V4RY IVHILY |[VHI3Y (V+HI15Y
Expond Sprite Vi291 [VI222 (V224 (V+228 (V42916 |V+29.52 | V29,64 |V+29,128
Harizontally/X
Expond Sprite V+23,1 |V+23,2 |V+23.4 (V+238 V42316 |V+E3,32|V+23.64 |V+23,128
vertically'y
Tum On (Ser) V+28,1 (V+23,2 |V+28;4 |V+288 |V+28,16|V+28,32|vV+28,64 |V+28,128
Multi-Color Mode
Multi-Color | V+37,C | V+37T.C (VH3IT,C |V+3F C |V+3I7 C |V+37.C | V3T, V+a37,C
(First Color)
Multi-Color 2 V+38:C |V+33.C (V+38,C |V+3B.C ([V+38 C |V+38,C |v+38,0C |V+38,C

(Sacand Calar)

Set Pricrity
of Sorites

Tha rule is that lower numbered sprifes always have disploy pricrity over higher
rumbzrad sprites. Fer example, sprite-0 has priority over ALL other sprites, sprite

7 has last priarty. Thie rmanns lawar numbered sprites always cppear to move
IN FRONT QF ar ON TOF OF higher numhared spritas.

Collision {Sprite

fo Sprite) V430 IF PEEK(V+30)JANDX =X THEN [action]
Collision {(Sprite
Io Buckgiound) |V 131 IF PEEK(V +31JANDX =X THEN [action]

176 PROGRAMMING GRAPHICS

SPRITEMAKING NOTES

Altemative Sprite Memory Pointers and Memory Locations
Using Cassette Buffer

Fut in Memory SPRITE O SPRITE | SPRITE 2 | If you're veing 1 to 3 eprites
(Set pointers) 204013 2041,14 2042,15 you ean use these memory
locations in the cossette

Sprite Pisel 832 894 9260 Luffer (832 to 1023) but
Lovalions fer o 894 to 958 lo 1022 for more then 3 sprites we
Blocks 13-15 suggest wsing locations from

12288 1o 12798 {see chart).

TURNING ON SPRITES:

You can turn on any individual sprite by using POKE V—21 and the
number from the chart . . . BUT . . . turning on just ONE sprite will turn
OFF any others. To turn on TWC OR MORE sprites, ADD TOGETHER the
numbers of the sprites you want to turn on (Example: POKE V+21, 6 turns
on spriles 1 and 2). Here is a method you can use 1o turn one sprile ol
and on without offecting any of the others (useful for animation).

EXAMPLE:

To turn off just sprite O type: POKE V+21,PEEK V+21AND(255-1).
Change the number 1 in (755-1) ta 1,2,4,8,16,32,64, or 123 (for sprites
0-7). Te re-enable the sprite and net effect the other sprites currently
turned on, POKE V+21, PEEK(V+21)OR 1 and change the OR 110 OR 2
(sprite 2), OR 4 (sprite 3], stc.

X POSITION VALUES BEYOND 255:

X positions run from 0 to 255 . . . and then START OVER from Q fo
255. To put a sprite beyond X position 255 on the far right side of the
screen, you must first POKE V 1 16 as shown, THEN POKE a new X value
fram 0 to 63, which will place ~he sprite in nn2 of the X positinns at the
right side of the screen. To get back tc positions 0—255, POKE V+ 16,0
and POKE in an X value from 0 ro 255.

Y POSITION VALUES:

¥ positions run from 0 te 255, including 0 to 49 off the TOP of the
viewing arer, 50 to 229 IN the viewing crea, and 230 to 255 off the
30TTOM of the viewing area.

PROGRAMMING GRAPHICS 177

SPRITE COLORS:

Tc make sprite O WHITE, rype: POKE V+39,1 (use COLOR POKE SET-
TING shown in chart, and INCIVIDUAL COLOR CODES shown below):

0—BLACK 4—PURPLE 8 - ORANGE 12 —MED. GREY
I —WHITE 5—GREEN ?—BROWN 13—LT. GREEN
2—RED 6—BLUE 10—IT. RED 14—1LT. BLUE
3—CYAN 7—YELLOW I1—DARK GREY 15—1LT. GREY

MEMORY LOCATION:

You must “rescrve” a separate 64 BYTE BLOCK of numbers in the
computer's memory for each sprite of which 63 BYTES will be used for
sprite data. The memery settings shown kelow are recommended for
the “sprite pointer” settings in the chart above. Each sprite will be
unique ond yau'll have te defina it as you wish. To make cll sprites
exactly the same, point the sprites you want to look the same to the
saome register for sprites

DIFFERENT SPRITE POINTER SETTINGS:

These sprite pointer settings are RECOMMENDATIONS ONLY.

Caution: you can set your sprita painters anywhere in RAM memory
but if you set them too “low” in memory a long BASIC program may
overwrite your sprite data, or vice verso. To protect an especially LONG
BASIC PROGRAM frem overwriting zprite date, you may want tc set the
sprites at a higher area of memory (for example, 2040,192 for sprite 0
at locations 12288 o 12350 . . . 2041,193 at locations 12352 to 12414
for sorite 1 and so on . . . by adjusting the memory locations from which
sprites get their “datc,” you can define as many as é4 ditferent sprites
plus a sizable BASIC progrom. To do this, define several sprite “shapes”
in your DATA statements and then redefine o particular sprite by chang-
ing the “pcinter” so the sprite you are using is “pointed” at different
areas of memory containing different sprite piciure data. See the “Danc-
ing Mouse” to see how this works. If you wont two or more sprites to
have THE SAMF SHAPF (you can still change pasition and ecalar of each
sprite], use the same sprite pointer and memory location for the sprites
you want to match (for examgle, you can peint sprites 0 and 1 1o the
same location by using POKE 2040,192 and POKE 2041, 192).

178 PROGRAMMING GRAPHICS

PRIORITY:

)

Priority maans one sprite will cppear to mova “'in frant of” or “behind”
another sprite on the disploy screen. Sprites with more priority always
aupear to move “in front of” or “on top of" sprites with less priority. The
rulz is that lewer numbered sprites have priority over higher numbered
sprives, Sprile O nas priorily over ull other sprites, Sprite 7 bus no priorily
in relation to the other sprites. Sprite 1 has priority over sprites 2—7, etfc,
Il you pul Iwo spriles in the same position, the sprite with the higher
priority will appear IN FRONT OF -he sprite with the lower priority. The
sprite with lower priority will either be obscured, or will “show through”

(from “"behind”} the sprite with higher prority.
USING MULTI-COLOR:

You can create multi-colored sprites although using multi-color mede
requires that yau use PAIRS of pixels instead of ndividual pixels in vour
sprite picturs (in other words each calored “dot” or “block” in the sprite
will consist of twn pixels side by side). Yau have 4 colors 1o choase from:
Sprite Color (chars akove), Multi-Colar 1, Multi-Color 2 and “Backgrourd
Color” (background is achieved by using zero settings which let the
background color “show througn”). Consider ona horizontal 8-pixal block
in o sprite picture. The color of each PAIR of pixels is delermined uccord-
ing fo whether the left, right, or keth pixels are solid, like this:

[T] BACKGROUND (Making BOTH PIXELS BLANK [zerc) lefs the
INMER SCREEN COLOR (background)shcow
through.)

MULTI-COLOR 1 (Making the RIGHT PIXEL SOLID in a pair of
pixels sers BOTH PIXELS to Multi-Color 1.]

SPRITE COLOR (Making the LEFT PIXEL SOLID in a pair of pixels
sets BOTH PIXELS to Sprite Color.)

% MULTI-COLOR 2 (Making BOTH PIXELS SOLID in a puair of pixels
sets BOTH PIXELS t¢ Multi-Color 2.)

PROGRAMMING GRAPHICS 179

Look af the horizontal &-pixel row shown below. This block sets the
first two pixels to background color, the second two pixels 1o Multi-Color
1, the third two pixels to Sprite Color and the fourth twe pixels to Multi-
Color 2. The caolor of cach PAIR of pixels depends on which biis in
each pair are solid and which ara blank, eccarding ta the illustration
above. Affer you determine which colors you want in sach pair of pixels,
the nexl step is 1o add the values of the solid pixels in the B-pixel block,
and POKE that number inte the proper memory location. For example, if
the B-pixel row shown below is the first block in a sprite which begins at
memory location 832, the value of the solid pixels is 16—84+24+71 — 27,
so you would POKE 832,27.

27
——ee,
1B -8+24+1
28 | 84 | 32| B | 8 | 4| 2| 1|

LOOKS LIKE THIS IN SPIITE

BACKGRMLIND MULTICCL DR S2RITE MULTICOLOR
COLOR 1 COeR 2

COLLISION:

You can derect whether a sprite bas collided with another sprite by
using this line: IF PEEK(V+30)ANDX=XTHEN [insert ciction hare]. This line
checks to see if a particular sprite has collided with ANY OTHER SPRITE,
where X equals | for sprite 0, 2 for sprite 1, 4 for sprite 2, 8 for sprite 3,
16 for sprite 4, 32 for sprite 5, &4 for sprite &6, and 128 for sprite 7. To
check to sez if rhe sprite has eolided with a “BACKGROUND CHAR-
ACTER" use tnis line: I[F PEEK(V+31)ANDX=XTHEN [insert action here].

180 PROGRAMMING GRAPHICS

USING GRAPHIC CHARACTERS IN DATA STATEMENTS

The following program allows you 1o create a sprite using blarks and
solid circles { ' E) in DATA statements. The sprite and the num-
bers POKEd into the sprite data registers are disployed.

W i1 Lo voue

1@ PRINT S FORI=BTDE3 : POKES32+1, 0 HERT
26 GOsUBS@EED
S22 EHD

e
EEEEL
SIS
HIdEE S
GEIEDG
SHE0a5
GRS
EEEET
Hoaas
EEHE S
@A
BEIELL
Lol e
SR
S
GEHELS
GBS
AEALT
Gl E
SRl
GEEEE
SELEE

POKE Y+

GELLES
mELlE
aln BRC A

DATA" T T
LATAH" A0 - 5 o e
LATH" o ol o)
TATAH" S & 5
IATAR" GEELE BEE BEE
ILATA" HadEs ddé SBdBE
LATA" HEGAE BOE SRR
LATA" DEBE S i
LATA" IR & E BB
TATH" SEESERODE LD EE
TATA" & WRBBHHELE &
TATA" (T BT T
LATA" W eeseE B
LDATA" 4 ad4@ B
DATA" W AnE W
LATA" 4 ® @
THTH" & 8 W
IATR" LT
IATA" il e e
LATA" [TT11]
oATA" e

WeEnode POREY. 2008 PORKEY+1 ., 10@ : POKEW+21, L

BE. L FOKEZDAE, 132
FOKENM+23, 1 POKEY+23, 1

FORI=ATOZ0 RERDAS FORK=0TOZ: T=0: FORJ=0707 : E=@
L JH<HE+1, L o="8" THIHE =

[FMIDETH

COLED TeT+BE2T7-T0 HENT PRINTT POKESIZ4+IR3-K, T
MERT - FRINT - HE

EELEE

RETLIRH

FROGRAMMING GHAFHICS

181

FROGRAMMING GHRAFHICS

CHAPTER I

PROGRAMMING
SOUND AND
MUSIC ON YOUR
COMMODORE 64

® [ntroduction
Volume Control
Frequencies of Sound Waves
Using Multiple Voices
® Changing Wavefarms
® The Envelope Generator
® Filtering

® Advanced Technigues
® Synchronization and Ring
Modulation

183

INTRODUCTION

Your Commodore computer is equipped with one of the most sophisti-
cated electronic music synthesizers availahle on any computer. It comes
complete with three voices, totaly addressable, ATTACK/DECAY/
SUSTAIN/RELEASE (ADSR), filtering, modulation, and “white noise” Al
of these capabilities are directly availoble for you through a few easy to
use BASIC and/or assembly language statements and functions. This
means that you can make very complex scunds and songs using pro-
grams that are relatively simple to design.

This section of your Programmer’s Reference Guide has been created
10 nalp you explore all the capabilities of the 6581 “SID” chip, the sound
and music syrthesizer inside your Commodore computer. We'll explain
both the theary behind musical ideas and the proctical aspects of turn-
ing those ideas into real finished songs en your Commodore computer,

You need not be an experienced programmer nor a music expert 1o
achieve exciting results from the music synthesizer. This section is full of
programming examples with complete explanations to get you started.

You get to the sound generator by POKEing into specified memory
locations. A full list of the locatians used is provided in Appendix ©. We
will go through ench concept, srap by step. By the end vou should be
able to create an almost infinite variety of sounds, and be ready to
perform experiments with sound on your awn.

Each section of this chapter begins by giving you an example and a
full line-by-line description of each program, which will show you how 1o
use the characteristic being discussed. The technical explanation is for
you fu read whenever you are curious aboul whal is actually going on.

The workhorse of your sound programs is the POKE statement. POKE
sets the indicated memory location (MEM) equal to a specified value
(NLIAM).

POKE MEM,NUM

The memeory locations (MEM} used for music synthesis start or 54272
(3D400) in the Commodore 64, The memory locetions 54272 to 54296
inclusive are the POKE locations you need fo remember when you're
using the 6581 (SID) chip register mop. Another way to use the locations
above is to remember only location 54272 and then add a number frem
0 through 24 to it. By doing this you can POKE all the locations from
54272 to 54296 that you need from the SID chip, The numbers (NUM)

184 PROCRAMMIMNG SCUND AND MUSIC

thar you use In your POKE sratement must be berween 0 and 255,
inclusive.

When you've had @ little mare practice with making music, then you
can get a litle mecre involved, by using the PEEK function, PEEK is o
functian thar is equal 1o the value currently in the indicated memory
location,

X =PEEK(MEM)

The value of the varicble X is set equal to the current contents of mem-
ory location MEM.

Of course, your programs include other BASIC commands, but for o
full explenation of them, refer to the BASIC Statements section of rhis
manual.,

Let’s jump right in and try a simple pregram using enly one of the
thrée voices. Computer ready? Type NEW, then type in this program,
and save it en your Commodore DATASSETTE™ or disk. Then, RUN it.

EXAMPLE PROGRAM 1:

"va+ 24 POKEL , B MEXT | REM CLEAS SOUND CHIP
D 9 ROKER+S |

; {REM SET YOLUME TO
MRS TFLIA

48 READHF. LF, IR

5@ IFHFCETHEMEHD

68 POKES+1, HF {PIKES LF

‘HEXT
FORT=1TOSE PEST
LA CIOTOSE
LLd DRATAZS. 177, 398,26

'.':-.“-- I‘ﬁTH 90177
Y ; J-i'F’T'_-
14FI IIHTH 2,94, !
156 N7 .5.-.1%5@ 19, 83
160 TATALS. 43,250, 12,82,
1768 DATAZL.19 26

189 DRTRZT,

1268 DATHIZ. 63,250, —1.—1.-1

Here's a line-by-line description of the precarom you've jusl typed in,
Refer to it whenever you feel the need to invesfigate parts of the pro-
gram that you don’t understand complelely.

PROGRAMMING S5OUND AND MUSIC 185

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 1:

Line(s) Description

5 Sct § to stert of sound chip.

10 Clear all sound chip registers.

20 Set Artack/Decay for voice 1 (A=0,D=9).
Ser Sustain/Releass for waice 1 (5=0,R=0).

30 Set velume ot maximum.

40 Read high frequency, low frequency, duration of note.

50 When high frequency loss than zero, song is over,

&0 Poke high and low frequancy of vaice 1.

70 Cate sawtooth waveform for veice 1.

80 Timing loop for duratian of note

0 Release sawtccth wavetarm for voice 1,

100 Return for next note.

110180 | Dota tor seng: high frequency, low frequency, duration
{nurmber of counis) lor each rote.

190 last note of song ond negotive Ts signaling end of song.

VOLUME CONTROL

Chip register 24 contains the overall velume control. The volume con
be set anywhere between 0 and 15. The other four hits are used for
purposes we'll get info latar, For new it is enough to know volume is O to
15. Look af line 30 to see how it’s set In Example Pragram 1

FREQUENCIES OF SOUND WAVES

Sound is creatzd by the movemen! of air in waves, Think of throwing
d stone into a pool ond seeing the wawes radicte outward, When similar
waves are created in air, we hecr il Il we measure the time between
ane peak of o wave and the next, we find the number ot seconds for
ane cycle of the wave in = number of seconds). The reciprocal of this
rumber [1/n) gives you the cycles per secard. Cycles per second are
more commonly known as the frequency. The highness or lowness of o
sound (pitch) is defermined by the frequency of the sound waves pro-
duced.

The sound generater 'n your Commodors computer uses two locations
to determine the fregquency. Apoendix E gives you the frequency values
you nzed to reproduca a full eight actaves of musical notes. To create o

186 FROGRAMMING SQOLIND AND MUSIC

frequency other than the ones listed in the note table use “Fy" (fre-
quency output) and tke following farmula to represent the frequency (F,)
cof the sound you want to create. Remember tha: each note reguires
both u high and a low frequency number.

Fr = Foui/.06097

Once you've figured out what Fy, is far your “new’ note the next step is
to crecte the high and low frequency values tor that note. To do this you
must first round off F, so that any numbers to the right of the decimal
point are left off. You are now lett with an integer value. Now you can
set the high frequency location (F;) by using the formula Fri=INT(F,/256)
ond the ow frecuency location (F,) shoule ke k =F,—(256"F,).

Al this point you have clready played with one voice of your compu-
ter. If you wanred to step here you could find a cepy of your favarite
tune and become the maestro conducting your own computer orchestra
in your “at home™ concert hell.

USING MULTIPLE VOICES

Your Commedore computer has thres independently controlled voices
{oscillators). Our first example program used only one of them. Later an,
you'll learn how 1o change the quality of the sound made by the voices,
But right now, let's get all three voicas singing.

This example program shows you one way to rranslate sheet music for
your computer erchestre. Try typing it in, and then SAVE it on your
DATASSETTE™ or disk. Con't forget fo type NEW before tyoing in this
program.

EXAMPLE PROGRAM 2:

1€ 5=54272 FORL=3T0Z-24 FLKEL.B:REXT

2@ DIMHC2. 208y, LOZ, 2865, COZ, 2080

@ DIMFaC1L)

a4 WiBi=17 V(L r=eT W {Zn=53

58 FOKES+18,8: POKES+22, 128 POKES+2Y, 244
&8 FORI=ETO11:RERDFACTN HERT

180 FOR<=ETO

118 I=8

129 FERDMM

138 TFMM=BTHEMZDE

148 WH=Y (KD WE=bFE=1 TFHMCETHEMMIM=-HIT- HA=8 WE=1
158 DRM=M 128 0CH= 0 HN-123%DIRE 115

166 MT=HM-125%0R%-16%00H

178 FR=FRCHT

PROGRAMMING 50UND AND MUSIC 187

182
138
=86
2li

IFOCH=7 THEM2aE
FORJ=ETOOCKSTER -1« FR=FR/Z: NaK]

HF i=FRA/256 : LF=FR-2364HF ¥
IFDRM=1THEHACK, Tr=HFH LAk, [a=LFR Cok To=pA:

I=I+1 GOTO128

L2

FORI=1TODRM-1 tHOK, TasHFR Lok, To=L P CoK L T rslp:

I=I+1 MNEXT

238
248
256
288
e
516
520
538
S4E

Mokl Io=HFZ: Lok, TISLFR I COK . =g
I=I1+1:00TO1E8
IFI>IMTHENIM=I
HEAT
FOKES+S. B PO<ES+6, 248
POKES+1Z, 25 FOKES+12, 133
FOKES+1S. 10 POKES-+21, 1=/
FOKES+24, 31
FORI=ATCIM
FOKES, <8, I PORES+7,Led, I FORES+14,Lc2, 12
FOKES+1, HO@, 10 POKESHE, HO L, T2 POKES+HIE, H2, 10
POKES+4, Co@, [PORKES+L1,C01, I PORES+LIE.CCE. I
FORT=1TCE@ HEXT 'NEXT
FORT=1TO2G00: HEXT :POKES+24 . 1
DATH34334, 36376, 35533, 46530
DATA4E259 ., 45856, 48556, 31443
DATAS4SE2. 57F4a. 61176, 548 14
DRTAZRG, 594, 524,558, 35E
TATH1IE18, 387, 552,587, 585, 231, 336
DATALESY . 583, 580,555, U802 . 587, 567
DATALEES, D80, 331 337, 054 . 534, 993
IATALE1G, 594, 556,594, 532 , 387
IARTHLE1E, DE7, B3, 201, 226, 041, 227
IATRLSEY
LiH H#
IATAISS. 585, 353,583, 327 ., 323
DRTALS11,583, 585,378, 578,575
DATALZE, 190,302, 325 578
DATHZ2E, 327, 3289, 227, 329, 326, 578,592
DHTHLERE , 582, 222,324, 582,587

A58 DATAZRES. 327, 1edE , S
2860 DATAZZT. 329, 587,331, 529
A73 DATAZZD, 328, 1685,572, B34
=883 DATAJE4. D22, 3E7. 585, 1 a6e
2983 THTAA

TRTHSE . DER, 557 . 384, 206, 308, 316
TATALSF1. 567, 511 0318, 567
CATAZAS, 204, 229, 20

TATRZE4 ., 171, L7E. 206, 291,551, 3668, 368
TATAZLE, 288, 313, 206, 285, 257, 299, 304
DATHISEE. 562, 567,318, 215,31
LRTH3R2, 315, 297

3078 DATHISE:E. 567, 520,311, 369
ARER DATAZAE, 2W% ., 266, 1Y

DATARIGYF, 739, 235, 306, 211,31 . , 254

3186 DATASGE, 346, 1575

188

DHTAR@

PROGRAMMING SOUND AND MUSIC

Here iz a line-by-line explanation of Example Program 2. For now, we
are interested in how the three voices are controlled.

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 2:

Line(s) Description

10 Ser S equal to start of sound chip and clear all sound
chip registars.

20 Dimension arrays to contain activity of scrng, 1/167h of a
measure per locatior.

30 Dimensicn array to contain base frequency for each note.

40 Stare waveform cantrol byte for each voice.

50 Set high pulse width tor voice 2.
Set high frequency for filter cuoff,
Set resonance far filter and filter vaice 3.

&0 Read ir base frequency for sach note.

100 Begin decoding loop for each voce.

110 Initialize pointer to activity array.

120 Read coded note,

130 If coded note is zero, then next voice.

140 Set waveform controls to proper voice.
If cilence, set waveform controls to 0.

150 Decode duration and octave.

160 Decode note.

170 Get base frequancy for this note.

180 If highest octave, skip divizien leop.

120 Divide base frequency by 2 appropricts number of times,

200 at high and low Trequency bytes,

210 If sixteenth nore, set aciivity crray: high frequency, low
frequency, and weoveform control [voize on).

220 For all but last beat of note, set activity ar-ay: high l
frequency, low frequency, woveform contral (vaice an)

230 For last baot ef note, set activity array: high frequency,
low frequency, waveform contral (voice off].

240 Increment pointer to cctivity array. Get next note.

250 If longer than befare, reset number of activities.

260 Go bock tor nsxt voice.

500 Set Artack/Decay for voice 1 (A=0, D=0).

Set Sustain/Release for veice 1 (815, R—0).

PROGRAMMING SOUND AND MUSIC 189

Line(s)

Description

510

520

530
540
350
560
570
580

590

600-620
10001999 |
2000-2999
30003999

Set Attack/Decoy for voice 2 (A=5, D=5),

Set Sustain/Release for wuice 2 (5—8, R=5),

Set Artack/Decay far vaice 3 (A=D, D=10).

Set Sustain/Release for voice 3 (S=12, R=5).

Ser volume 13, low-poss fitering.

Start loop for every 1/16th of o measure.

FOKE low frequeney fram activity array for all veices.
POKE high frequzncy from activity array for all voices.
POKE wavefarm cantral from activity arrav for all voices.
Timing loop for 1/16th of o measure and back for next
1/14th mansure.

Pause, then turn off volume,

Bcse frequency data.

Voice 1 data.

Voice 2 data.

Voice 3 data.

The values used in the data statements were found by using the note
table in Appendix E and the chart below:

190

NOTE TYPE | DURATION
1/16 128
1/8 256
DOTTED 1/8 384
1/4 512
1/44+116 640
DOTTED 1/4 758
1/2 1024
1/2+116 1152
1/2+1/8 1280
DOTTED 1/2 1536
WHOLE 2048

PROGRAMMING SOUND AND MUSIC

The nete number from the note 1oble is added to the duration above.
Then each note can be entered using only one number which is decoded
by your program. This is only one method of coding note values. You
may be oble to come up with one with which you are more comfortable.
The formulo used here for encoding a note is as follows:

1} The duration (number of 1/16ths of a measure) is multiplied by 8.

2) The result of step 1 is added to the octave you've chosen (0—7).

3} The result of step 2 is then multiplied by 16.

4) Add your note choice (0—11) to the result of the operation in step
3.

In other words:
((ID*8)+0) *16)+N)

Where D = duration, O = cctave, and N = note
A silence is obtained by using the negative of the duration number
(number of 1/16ths of a measure * 12B).

CONTROLLING MULTIPLE VOICES

Once you have gotten used to using more thon one veice, you will fine
that the timing of the three voices needs to be coordinated. This is ac-
compliched in this program by:

1) Divide each musical measure inta 16 parts.
2) Store the events that occur in each 1/16th measure interval in three
separate arrays.

The high anc low frequency bytes are calculated by dividing the fre-
quencizs of the highest octave by two (lines 180 and 190]. The
wavelorm control byle is a siarl signal for beainning o nole or continu-
ing o note that is already playing. It is o stop cignal to end a note. The
wavefarm choice is made once for each voice in line 40.

Again, this is only one way to control multiple voices. You may come

up with your own methads. However, you should now be able to take
any piece of sheet music and figure out the notes for all three voices.

PROGRAMMING SOUND AMD MUSIC 191

CHANGING WAVEFORMS

The tonal quality of a sound is called the timbre. The timbre of o
scund is determined primarily by its “waveform.” If you remember the
example of throwing a pebble into the woter you know that the waves
tipple evenly across the pond. These waves almnst lonk like the first
sound wove we're going to talk akout, the sinusoidal wave, or sire
wove for short (shown below).

Tn make what we're talking about a kit mare practical, let’s go back
to the first example gprogram to investigate different waveorms. The
reason for this s that you can hear the changes more aosily using only
one voice. LOAD the first music pregram that you typec in earlier, from
your DATASSETTE™ or disk, and RUN it again. That program is using the
sowtooth waveform (shown here)

from the 6581 SID chip’s sound generating device. Try changing the note
start number in line 70 from 33 to 17 and the note stop number in line 90
from 32 to 16. Your program should now lock like this:

192 PROGRAMMING SOUND AND MUSIC

EXAMPLE PROGRAM 3 (EXAMPLE 1 MODIFIED):

A REWT

1 REATHF, LF . IR
IFHFCETHENERND
FOKEZ+1 HF POSESLF
POKES-4. 17
SO FORT=LTODR HEST
26 FOKES+4, 16 FORT=1TOSH HEXT
fE GOTO43

DATAZS, 177, 27,
(g [H e YR

; ; 4 iy 2

DFTH [T S. 177250

TRATRZE, E] 4,286, 15, ¢ ;
2 INTNLE € _.“":'Ei.- 19,0

LRTR2S., : -
LATHLS &2, 258, -J.,-—l.-ml

New RUN the program.
Notice how the sound quclity is different, less twangy, more hellow.
That's becouse we changed the sowtooth woveform into o triangular

wavefarm (show below).

The third musical wavaform is colled o variable pulse wave (shown

below).

|-— PULSE WIDTH =

PROGRAMMING SOUND AND MUSIC 193

It iz o rectangular wave and you deiermine the length of the pulse =
cycle by defining the propartion of the wave which will be kigh. This is
accomplished for veice 1 by using registers 2 und 3: Register 2 is the low
byre of the pulse width (1., = 0 thraugh 255). Register 3 is the high 4
bits (Hpw = 0 through 15).

Together these registers specify a 1 2-bit number for your pulse width,
which you can determine by using the fallowing formula:

PWp = How 256 + Loy
The pulse width is determinec by the fcllowirg equation:
PWyyt — (PW,/40.95) %

When PW,, has a volue of 2048, it wil give you a square waove. That
mecns thal register 2 (L.,] = 0 and register 3 {H,,) = 8.
Now fry adding this line to your program:

15 POKES +3,8:POKES +2,0

Then change the start number in line 70 to 65 and the stop numker in
line 90 to 84, ond RUN the program. Mew change the high pulse width
(register 3 in line 15) from on 8 tu 1. Nolice how dramartic the differ-
ence in sound quality is?

The last waveform available 1o you is white noise (shown here).

It is used mostly for sound effects and such, To hear how it sounds, Iy
changing the start number in line 70 to 129 and the stop number in line
Q0 to 128,

UNDERSTANDING WAVEFORMS

When a note is played, it consists of @ sine wove oscillating ot the
fundemental frequency and the harmonics of that wave.

194 PROGRAMMING SOUND AND MUSIC

The fundamental frequency defines the overall pitch of the note.
Harmonics are sine waves having frequencies which are integer multi
ples of the fundamental frequency. A sound wave is the fundamental
frequency and all of the harmonics it takes to make up that sound.

RESULTANT WAVFE

—FUNDAMENTAL (18T HARMONIC!

2ND HARMCONIC ~ 3RD HARMONIC

In musical theory let's say that the lundamental frequency is harmonic
number 1. The second harmonic has a trequency twice the fundamental
frequency, the third harmonic is three times the fundamental frequency,
and so on. The amounts of each harmonic present in o note give it its
timkre.

An acoustic instrument, like o guitar or o violin, hos a very compli-
cated harmonic structure. In fact, the harmonic structure may vary as o
single note is played. You have already ployed with the waveferms
available in your Commadore music synthesizer. Now let's talk about
how the harmonics work with the triangular, sawtaath, and rectangular
weves,

A triangulor wave contains only edd harmonics. The amaurt of each
harmonic present is proportional to the reciprocal of the sguare of the
harmonic number. In other words harmonic number 3 is 1/8 quieter than
harmonic number 1, because the harmonic 3 squared s 2 (2 X 3) and
the reciprocal of 9 is 1/9.

As you can see, there is a similarity in shape of a triangular weve to @
sine wave oscilloting ot the fundamental frequency.

Sawtooth wawves contain all the harmonics. The omount ef each har
monic present is propartionc! to the reciprocal of the harmonic number.
For example, harmonic number 2 is 1/2 as loud as harmonic number 7.

The square wave contains odd harmonics in proportion to “he recip-
rocal of the harmeric number. Other rectangular waoves have varying
harmanic content. By changing the pulse widrh, the timbre of the souna
of o rectangular waove con ke varied fremendously.

PROGRAMMIMG SOUND ANDC MUSIC 195

By choosing carefully the waveform used, yau can start with a har-
monic structure that looks somewhat ke the sound yau want. To refine
the sound, you can add another aspect of saund quality available on
your Commodore 64 called filtering, which we'll discuss later in this
section.

THE ENVELOPE GENERATOR

The volume of @ musical tone changes from the moment you first hear
it, all the way through until it dies out and you can’t hear it anymore.
When a note is first struck, it rises from zero volume to its peak velume.
The rate ot which this huppens is called the ATTACK. Then, it falls from
the peak to some middle-ranged volume. The rate at which the tall of
the nole occurs is called the DECAY. The mid-ronged volume itself is
called the SUSTAIN lsvel. And finally, when the nects stops playing, it
falls from the SUSTAIN level 1u zero vulume. The rate at which it falls is
called the RELEASE. Here is o skeich of the four phases of a note:

]
|
|
|
|

i A

Each of the items mentioned cbove give certain qualities and restric-
tions to a note. The bounds are called parameters.

The parameters ATTACK/DECAY/SUSTAIN/RELEASE cnd collectively
colled ADSR, can ke controlled by your use of anather set of locations in
the sound generator chip. LOAD your first example program egain. RUN
it ogain and remember how it sounds. Then, try changing line 20 so the
program is like this:

196 PROGRAMMING SOUND AND MUSIC

EXAMPLE PROGRAM 4 (EXAMPLE 1 MODIFIED):

TOE+24 POKEL, & HEMT
z i W 2 POKE S+, 195

e |=IIFE:r+¢-4 I_-

43 FREFDAF, LR, %

a6 IFHFS T‘THEHEH:D

SE POKES+1. HF’ PORES, LF

LHERT
FORT= 1 TOSE HEWT

142 uIZI ruqm
[il 1T HwE

2. 214,258

".l-':* '34 -:.“]

18A 'n]-['[I-!
| S N AR IR |

152 .DFITHL‘:'; B0 2

Registers 5 and & define the ADSR for voice 1. The ATTACK is the high
nybble of register 5, Mybble iz half a byte, in other words the lower 4 or
higher 4 on/all locations (bits) in each register. DECAY is the low nyhble.
You can pick any numoer 0 through 15 tor ATTACK, multigly it by 16 and
add to any number O through 15 for DECAY. The values that correspond

to these numbers are listad below.

SUSTAIN level is the high nybble of register 6. It can be 0 through 15.
It dafines the proportion of the peak velume that the SUSTAIN level will

be. RELEASE rufe is the low nybble of register 6.

PROGRAMMING SOUND AND MUSIC

197

Here are the meanings of the values for ATTACK, DECAY, and RE-
LEASE:

VALUE iATTACK RATE (TIME/CYCLE) | DECAY/RELEASE RATE ITIME:’CYCLE)—‘
0 Z ms 6 ms |
1 8 ms 24 ms |
2 16 ms 48 ms ‘
3 24 ms 72 ms
4 38 ms 114 ms
5 56 ms 168 ms
o] 68 ms 204 ms
7 80 ms 240 ms
8 100 ms 300 ms
=] 250 ms 750 ms
10 500 ms 1.5 s |
11 E00 ms 2.4s |
12 1s 3s
13 3s Qs
14 5s 15 s
L 15 8 s 24 s

Here cre o few sample seftings to try in your example program. Try
these and a few of your own. The variety of sounds you can produce is
astounding! For a violin type sound, try changing line 20 to read:

20 POKES+5,88:POKFS+6,89:REM A=5;D=8;5=5,R=9

Change the wavaform to triangle and get a xylophone type sound by
using these lines:

20 POKES+5,9:POKES+6,9:REM A=0,0=9;S=0;R=7

70 POKES+4,17
90 POKES+4,16: FORT=1TOS50:NEXT

198 PROGRAMMING SOUND AND MUSIC

Change the waveform ta square and try o piono type sound with these
lines:

15 POKES+3,8:POKES+2,0

20 POKES+5,9:POKES+6,0: REM A=0;D=9;5=0;R=0
70 POKES+4,65

90 POKES+4,64:FORT=1TO50:NEXT

The most exciting sounds are those unique to tha music synthesizer
itself, cnes that do rot ottempt to mimic aceoustic instruments. For
example fry:

20 POKES | 5,144:POKES | 6,243:REM A=9,D=0; 5=15;R=3

FILTERING

The harmonic content of a waveform can be changed by using a
filver. The SID chip is eguipped with three types of fillering. They can be
used separately or in combination with one another. Let's go back to the
sample program you've been using to play with a simple example thai
uses a filter. Thera are several filter controls to set.

You add line 15 in the program fo set the cutoff frequency of the filter.
The cutoff frequency is the reference point for the filter. You SET the high
and low frequency cutoff points in registers 21 and 22, To turn ON the
filter for voice 1, POKE register 23.

Next change line 30 to show that a high-pass filter will be used (see
the 5ID register map).

FROGRAMMING SCUND AND MUSIC 199

EXAMPLE PROGRAM 5 (EXAMPLE 1 MODIFIED):

DOS=DRETE
FORL=3TOS+2d FOKEL 8 HEST

15 PORES+22. 126 POKES+21 ., 8 POKES+25, 1
2R POKES+5, Q0 PORESHG. &

20 POKES+2d, 7

48 REFDHF |- R

S IFFFCATHEMNEMD

aE RORES CFOKES.LF

T FORES-4, 33

QB FORT=.TODR:HEST

28 PORES+4, 2 FORT =1 TOSE: MERT
180 GOTO40

118 DETHZTE. LP7. 250, 228,214, 258
126 DFTAZS . L A7 . 2560, 29, 177,250
1538 OMTHRS, 177, 1285, 28,214, 125
=& DATAIZ, 34, 75@, 25, 177, 25K
LoE DRTAZE, 214, 2568, 19,85, 250
1o DATA1S, &2, 258, 13,83, 2339
178 DATAZL, 154,63, 24,632, 63
led@ DATAZS, LP7F.25@, 24,63, 129
128 DMTRIZ, 53,298, ~1.~-1. -1

Try RUNning the program now. Notice the lower tanes have had their
volume cut down. It makes the overcll quality of the note sound tinny.
This is because you cre using a high-pass filter which attenuates [cuts
down the level of) frequencies below the spccified cutoff frequency.

There are three types of filkers in your Commodore computer’s SID
chip. We have bean using the high-gpass filter. It will pass cll the fre-
guencies al or uvove the cutoff, while attenuating the frequencies below

the cutoff.

LAMOUNT PASSED

GL'TIOF ¥

FREQIIFNCY

The SID chip also has o low-pass filter. As its nome implies, this filler
will pass the frequencies below cutoff and aftenuate those above.

200 PROGRAMMING 50UND AND MLUSIC

AMOUNT PASSED

GUTOFF

FREQUENCY

Finally, the chip is equipped with o bondpass filter, which passes ¢
narrow band of frequenciss around the cutoff, and allenuates all
athers.

ANMCUNT PASSED

CUTOFF
|
FREQUENCY

The nigh- and low-pass filters can be combined to form a notch reject
filter which passes frequencies avray from the cutoff while aottenuating
at the cutoff frequency.

a
w
g
= ~
a
B
=
=
=]
=
i
C-UIFLJ-I-
FREQUENCY

FROGRAMMING SQUND AND MUSIC 201

Register 24 determines which type filter you want to use. This is in
addition 1o register 24‘s [unclion as the overall volume control. Bit 6
contrals the high-poss filter (0 = off, 1 = on), bit 5 is the bandpaoss
filter, and bit 4 is the low-pass filter. The low 3 bits of the cutoff fre-
quency are determined by register 21 (L) (L;y = O through 7). While the
8 kits of the high cutoff frequency wre delermined by register 22 (H.p)
(H.; = 0 through 255).

Through careful use of filtering, you cun change the harmonic struc-
ture of any waveform to ger just the sound you want. In addition, chang-
ing the filtering of o sound as it goes through the ADSR phases of its lifs
con produce interesting effects.

ADVANCED TECHNIQUES

The 51D chip’s parometers can be changed aynamically during a note
or sound fc create many interesting and fun effects. In arder to maks
this easy to do, digitized outpurs from oscillator three and envelope
generator three are available for you in registers 27 and 28, respec-
tively.

The output of oscillator 3 (register 27) is directly reloted to the
waveform selected. If you choese the sawtoorth waveform of oscillator 3,
this register will present o series of numbers incremented (increased
step by step) from 0 1o 255 al o rate defermined by the frequency of
oscillator 3. If you choose the triongle wavefarm, the output will incre-
men! from O up v 255, then decrement [decrease step by step) buck
down to 0. If you choose the pulse wave, the oufput will jump bock-
ond-forth between 0 and 255. Finally, choosing the noise waveform will
give you o series of random numhers When oscillater 3 is used for
modulation, you usualy do NOT want to hear its outout. Setting bit 7 of
ragistar 24 turns *he audio output of veoice 3 off. Register 27 always
reflects the changing output of the oscillater and is not affected in any
way by the envelope (ADSR) generator.

202 PROGRAMMIMG SOUMD AMD MUSIC

Register 25 gives you access to the output of the envelope generater
of ascillatar 3. It functiors in much the same fashion that the output of
oscillator 3 does. The oscillator must ke turred on to produce any output
from this register.

Vibrato (o rapid variation in frequency) can be achieved by adding
the output of oscillator 3 to the frequency of another oscillator. Example
Program 6 illustrates this idea.

EXAMPLE PROGRAM 6:

1B S=52TE

g FORL=BTOZ4 :FORES+HL. 8 HEMT
SR POCES+E. 8

4@ FOKES4S, 41 FOKES+H,. 23

=E POCESS14. 117

G PORES+1S, 18

T8 FORES+HES, 143

3@ REFADFR, IR

ap [FFR=aTHEHEHTD

138 PORCD-4, 62

1.8 FORT=.TODR%Z

120 CO=FR=-FEEK (S-270 /0

10 AF=THT IFERy 2560 0 _F=FROAMIL S
1ebE POESAE, LF CFORE] HF

SJERT

168 "ORES+4, 64

178 Z0TOSa

seE DATA48LF. 2,505, 2. 5487 . 2
=18 DATR2SED. 4, 5407, 2, 85 |
=28 DRTHS4R7 .9, 8
R OHTHLBAET & 18
el DRATAZEES . 9, 10
oo DFETASEEE 4, 83585, 12
Bom DETAS, &

Here is o line-by-line explanation of Example Pragram 6&:

PROGRAMMING 50UND AND MUSIC 203

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 6:

Lines(s) Description

10 Set S to beginning of sound chip.

20 Clear all sound chip locations.

30 Set high pulse width for veice 1.

40 Set Attack/Decay for voice 1 (A=2, D=9).

Set Sustain/Release for voice 1 (§=5, R=9).

50 Set low frequency for voice 3.

60 Set triangle waoveform for voice 3.

70 Set volume 15, turn off audio ourput of veice 3.
80 Read frequency and duration of note.

20 If frequency equals zera, stop.

100 POKE start pulse waveform control voice 1.
| 110 Start timing loop for duration.

120 Get rew frequency using oscillator 3 output.
130 Get high and low frequency.

140 POKE high and low frequency for voice |.
150 End of timing loop.

160 POKE step pulse woveform cantrol voice 1.
170 Go back for next note,

500-550 Frequencies and durations for song.

560 Zeros signal end of song.

A wride variety of sound effects can also se achieved using dynamic
effects. For example, the following siren program dynamically changes
the frequency cutput of oscillater 1 when it's based on the output of
oscillotor 3's triangular wave:

204 PROGRAMMING SOUND AMD MUSIC

EXAMPLE PROGRAM 7:

16
A
3@ P iR X
E 1 F'C”“:ES"".EH 1
S8 PORES 3, L

=g F"‘lk’l:h-ﬁ- -1 14"1
7R -PIE
=il
1)
L
Lila
1ae
120
A
154 P

TOZEER
PRAPEEK (52704

5

Here is a line-by-line sxplanation of Example Program /:

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 7:

Line(s) Descriptien
10 Set 5 ta start of sound chip.
20 Clear sound chip registers.
30 Set lew frequency of voice 3.
40 Sct triangular waveform voice 3.
50 Set high pulse width for voice 1.
60 Set volume 15, turn oft audio output oT veoice 3.
70 Sel Sustuin/Release for voice 1 (5=15, R=0).
80 FOKE start pulse waveform control voice 1.
90 Set lowest frequency for siren,
100 Begin timing loop.
110 Gel new frequency using output of oscillater 3.
120 Get high and lew frequencies.
130 POKE high and low frequancies for veice 1.
140 End timing loop.
150 Turn off voluma.

PROGRAMMING SOUND AND MU3IC

205

The noise waoveform can be used to provide a wids range of sound
effects. This example mimics a hand clop using a filtered noise
waveform:

EXAMPLE PROGRAM 8:

18 S=34272

28 FORL=0T0Z4 . POKES+L. 8 NEXT
38 FPOEES+, 298 POKES+1, 33

48 POKES+S, 8

S PORES+22 . 10

S POKES+23, 1

TE FOKES+24, 72

8 FORM=1TOLS

98 FORES+4, LE23

18@ FORT=1T0258 - MEXT POKES+4, 128
118 FORT=1TO22: MEXT HEXT

128 POKES+24. 3

Here is ¢ line-oy-line explanation of Example Program &:

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 8:

| Line(s) Description
| 10 Set S to start of sound chip.
20 Clear all sound chip registers.
30 Set high and lew trequencies for voice 1.
40 Sel Atlack/Decay for voice 1 (A—0, D=8).
50 Set high cutoff frequency for filter.
60 Turn on fiter for voice 1.
70 Set volume 15, high-pass filter.
80 Count 15 claps.
90 Set srart noise waveferm ceontrol.
100 Wail, then sel stop noise wavelorm control.
110 Wait, then start next clap.
120 Turn ofl volume.

206 PROGRAMMING SOUND AND MUSIC

SYNCHRONIZATION AND
RING MODULATION

The 6581 SID chip lets you crecte more complex harmonic structures
through synchronization or ring modulation of two voices.

The process ot synchronization is basically o logical ANDing of two
wave forms. When either is zero, the output is zero. The following
exampe uses this process to create an imitation of @ mosgquito:

EXAMPLE PROGRAM 9:

18 £=54272

23 FORL=8TCZ24 PORES+L, 8 HEWT

38 FOKEZ+1. 1680

468 FOKES+5, 219

58 FOKES+19,28

6l FOKES+E4, 135

78 FOHEZ+4, 13

S FORT=] TOSREE HERT

F8 FOKES+4, 18

188 FORT=1TO1880 HEXT ' PORES+24.2

Here is o line-by-I'ne explanation of Example Program :

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 9:

Line(s) Descriplion

10 Set S to start of sound chip.

20 Clear sound chip registers.

30 Set high frequency voice 1.

40 Set Artack/Decay for voice 1 (A=13, D=11).

50 Set high frequency voicz 3.

60 Set volume 15.

70 Set start triangle, sync waveform ceontrol for voice 1.
80 Timing loop.

90 Set stop triangle, sync weveform control for voice 1.
100 Wait, then turn off velume.

The synchronization feature is enabled (turned on) in line 70, where
bits 0,1, and 4 of register 4 are set. Bit 1 enables the syncing functiar
between voice | and voice 3. Birs 0 and 4 have their usual functions of

garing voice 1 anc sering the triangular wavefarm.

PROGRAMMING SOUMD AND MUSIC 207

Ring modulation {occomplished for voice 1 by setting bit 3 of register
4 in line 70 of rhe program below) reploces the triangular output of
oscillater 1 with @ "ring modulated” combination of oscillators 1 and 3.
This produces nan-harmanic overtane structures for use in mimicking bell
or gong scunds. This orogram produces a clock chime imtation:

EXAMPLE PROGRAM 10:

18 S=Ed427

@ FORL=6T024 :FOKES+L .8 MEST
a8/ “r!!’Ew—rj”.j_ % |

i]

53 P2k

(il ! + 15
78 FORL= lTEIlE FOKES+4 .21

20 FORT=1TO1E0E MEXT - FOKES+d 28
S FORT=1TO1IEEE MEST MERT

Here is @ line-by-line sxplanation of Exemple Program 10:

LINE-BY-LINE EXPLANATION OF EXAMPLE PROGRAM 10:

Line(s) Description
10 Set 5 to start of sound chip.
20 Clear sound chip registers.
30 Set high frequency for voice 1.
40 Set Attack/Decoy for voice 1 (A=0, D=9).
50 Set high frequency for voice 3.
60 Set valume 15.
70 Count number of dings, set start triangle, ring mod
waveform control voice 1.
B0 Timing loop, set stop tricngle, ring mod.
20 e Timing loop, nexr ding.

The effects available through the use of the parameters aof your
Commodore é4's §ID chip are numerous and varied. Only through ex-
perimentation on your own will you fully appraciate the capabilities of
your machinc. The examples in this section of the Programmer’s Refer-
ence Guide merely scratch the surfece.

Watch for the book MAKING MUSIC ON YOUR COMMODORE COM-
PUTER for everything from simple fun and gomes to professional-type
musical instruction.

208 PROGRAMMING SOUND AND MUSIC

]

e e e 0 800

CHAPTER

BASIC TO
MACHINE
LANGUAGE

What |s Machine Language?
How Do You Write Machine
Language Programs?
Hexadecimal Netation
Addressing Modes

Indexing

Subroutines

Useful Tips for the Beginner
Approaching o Lorge Task
MCS6510 Microprocessor Instruction
Set

Memory Management on the
Commodere 64

The KERNAL

KERNAL 'Power-Up Activities
Using Machine Language From
BASIC

Commodore 64 Memory Map

209

WHAT IS MACHINE LANGUAGE?

At the heart of every microcomputer, is a central microprocessor. It's
o very spacial microchip which is the “brain” af the camputer. The
Cemmodore &4 is no exception. Every microprocessor understands its
own language of instructions. These Instructions are called machine lan-
guege instructions. To put it more precisely, machine lorguage is the
ONLY programming language that your Commodore 64 understands. It
is the NATIVE language of the machine.

If machine language is the only language that the Commodore 64
understands, then how does it understand the CBM BASIC programming
language? CBM BASIC is NOT the mochine lunguage of the Commodore
64. What, then, makes the Commodare 64 understand CBM BASIC in-
structions like PRINT and GOTO?

To answer this question, you must first see what happens inside your
Commodore 64. Apart from the microorocessor which is the brain of the
Commodare 64, there is o machine language program which is stored in
a special type of memery so that it cant be changed. And, more impar-
tantly, it does not disappear when the Commodore 64 is turned off,
unlike o oregram that you may hove writlen. This machire languoge
program is called the OPERATING SYSTEM of the Commodore 64. Your
Commodore 64 knows whal to do when it's turned on because its
QOPERATING SYSTEM (program) s automatically “RUN.”

210 BASIC TO MACHINE LANGUAGE

The QOFERATING SYSTEM is in charge of “arganizing” all the memory
in your machine for various tasks. It also looks et what characters you
type on the keyboard and puts them onto the scrsen, plus a whale
number of other functions. The OPERATING SYSTEM can be thought of
as the “intelligence and persanality” of the Commodare 64 (or any com-
puter for that matter). So when you turn on your Commodore 64, the
CPERATING SYSTEM takes control ef your machine, and after it has
done its housework, it then says:

READY.
|

The OPERATING SYSTEM of the Commodore 64 then allows you te
type on the keyboard, and use the buill-in SCREEN EDITOR on the Com-
modore 64. The SCREEN EDITOR allows you te move the cursor, DELete,
INSert, elc,, anc is, in fact, only one part of the operating system that is
built in for your corvenienca.

All of the commands that are available in CBM BASIC are simgly
recognized by onother huge mochine language program built into your
Commodore &4. This huge program “RUNs” the appropriate piece of
machine language depending on which CBM BASIC command is being
executed. This program is called the BASIC INTERPRETER, because it
intarprets each command, one by one, unless it enccunters a command
it does not understand, and then the femiliar message appears:

PSYNTAX ERROR

READY.
=

WHAT DOES MACHINE CODE LOOK LIKE?

You should be familiar with the PEEK and POKE commands in the CBM
BASIC language for changing memory locations. You've probakly used
them for graphics cr the screen, and for sound effects. Each memory
locatian has its own number which identifies it. This numoer is known as
the “address” of a memory locaticn. If you imagine the memory in the
Commeodore 64 as a street of buildings, then the number on each door
is, of course, the addrass. Now let's look at which parts of the street are
used for whul purposes.

BASIC TO MACHINE LANGUAGE 2n

SIMPLE MEMORY MAP OF THE COMMODORE 64

ADDRESS

DESCRIPTION

D&

2
up to:
1023

1024
up to:
2039

2040
up fo:
2047

2048
up to:
40959

40960
up to:
49151

49152
up to:
53247

53248
up to:
53294
54272
up te:
55295
55296
up fto:
56296
56320
up to:
57343

57344
up to:
65535

—6510 Registers.

—Start of memaory.
—Memory used by the operating system.

—Screen memary.

—SPRITE pointers,

—This is YOUR memory. This is where yaur BASIC or
maochine longuage programs, or both, are stered.

—8K CBM BASIC Interpreler.

—Special programs RAM area.

—VIC-II.

—SID Registers.

—Color RAM,

—I1/O Registers. (6526's)

— 8K CBM KERMNAL Operating Systern,

212 BASIC TO MACHINE LANGUAGE

If you don’t understand what the description of each part of memory
means right now, this will becamz clear from other parts of this manua.

Machine lunguuge prugrams consist of instructions which may or may
not hove operands (parameters) associated with them. Each instruction
lukes up one memory location, and any operand is contained in one or
two locations following the instruction.

In your BASIC programs, words I'ke PRINT and GOTO do, in fact, only
toke up one memory location, rather than ene for each character of the
word. The contents of the location that represents a particular BASIC
keyword is callad a token. In machire language, there are different
tokens for different instructions, which clso take up just cre byte (mem-
ary lacotion=hkyta).

Machine language instructions are very simple. Therefore, each indi-
vidual instruction cannat achieve a great deal. Machine language ir-
structions either change the contents of o memcry location, or change
one of the internal registers (special storage locations) inside the micro-
processor. The internal registers form the very basis of machine lor-
guage.

THE REGISTERS INSIDE THE 6510 MICROPROCESSOR

THE ACCUMULATOR

This is THE most important register in the microprocessor. Yarious mo-
chine language instructions allow you to copy the contents ot @ memory
location inte the accumularor, copy the contents of the accumularor into
a memery location, modify the cantents of tha occumulotor or same
uther register directly, without affecting any memory. And the occ-
cumulator is the only register that has instructions for performing math.

THE X INDEX REGISTER

This is a very impartant register. There are instructions for nearly all of
tha trensformetions you can make to the accumulator. But there are
olher instructions for things that only the X register can do. Various mo-
chine language instructions allow you to copy the contents of ¢ memary
location irto the X register, copy the contenls of the X register into a
memory lacation, and medify the contents of the X, or some other regis-
ter directly.

BASIC TO MACHINE LANGUAGE 213

THE Y INDEX REGISTER

This is @ very important register. There are instructions for nearly all of
the transformetions you can moke to the accumulator, and the X regls-
tar. But there are other instructions for things that only the Y register con
do. Various machine language instructions allow you 1a copy the con-
tents of a memory lccction into the Y register, copy the contents of the ¥
register into a memory lacction, and madify the confents of the Y, ar
some other register directly,

THE STATUS REGISTER

This register consists of eight “tHags” (a tlag = something that indi-
cates whether samething hos, or has nol vccurred).

THE PROGRAM COUNTER

This contains the address of the current machine language instruction
keing executed. Since the opszrating system is always “RUN“ning in the
Commodore 64 (or, for that matter, any computer), the program counter
is alweys changing. It could only be stopped by halting the microproces-
sSOr in sume wuy,

THE STACK POINTER

This registar cantains the location of the first empty place on the stack.
The stack is used for temporary storage by machine language pro-
grams, and by the computer.

THE INPUT/OUTPUT PORT

This register cppears at memory locations € [for the DATA DIRECTION
REGISTER) and 1 (for the actual PORT]. It is an 8-bit input/output port.
On the Commodare 64 this register is used for memory management, 1o
allow the chip to control more than 64K of RAM and ROM memory.

The detalls of these registers are not given here, They are explained
as the principles needed te explain them are exglained.

HOW DO YOU WRITE MACHINE LAN-
GUAGE PROGRAMS?

Since machine langucge programs reside in memory, and there is no
facility in your Commodore 64 for writing and editing machine longuage

214 BASIC TO MACHINE LANGUAGE

programs, you must use either a program to do this, or write far yourself
a BASIC progrem that “allows” you to write mochine language.

The most common methods used to write machine langucge pro-
grcms dare assembler progams. These packagas allow you to write ma-
chine language instructians in o standardized mnemonic farmat, which
mokes the machine language pregram o lot mere readeble than o
stream of numbers! [ats review: A& program thot ollows you to write
machine languoge programs in mnemonic format is called an assem-
bler. Incidentally, o program that disploys @ machine langucge pro-
gram in mnemonic farmat is colled o disassembler. Availob e for your
Commodore 64 is a machine language monitor carlridge (with assem-
bles/ disassembler, etc.) moce by Commodore:

64MON

The 64MON cartridge ovailohle from your local dealer, is a progrom
thal ullews you to escape fram the warld of CBM BASIC, into the land of
machine languogs. It can display the contents of tha internal registers in
the 6510 micruprocessor, and it allows you to cispley portions of mem-
ory, and change them on the screen, using the screen editor. I also hos
o built-in assembler and discssembler, as well as many other features
that ellow yeou to write ard edit machine language programs easily. You
don’t HAVE to use an assembler to write machine language, but the task
is considerably easier with it. If you wish 1o write machine languoge
programs, it is strongly suggested that you purchase an assemkler of
some sort. Without an assemoler you will prebably hove to “POKE” the
machine ldnguege pregram into memory, which is totally unadvisable.
This manual will give its examples in the format that 94MON uses, from
now on. Nearly all assembler tormets are the same, therefore the ma-
chine unguuge excmples shown will almost certainly be compatible
with any assembler. But before 2xplaining any of the ather features of
G4MON, the hexadecimal numbering system must be explained.

HEXADECIMAL NOTATION

Hexudecimal notation is used by mast mackine lenguage program-
mers when thay tclk about o number or address in a machine language
prograrm.

Some assemblers let you refer to cddresses and numbers in decimal
{base 10}, vinary (base 2), o ever octal (base 8) us well as hexadeci-

BASIC TO MACHINE LANGUAGE 215

mal (base 16) (or just “hex” as most people say). These assemhblers do
the conversions for you.

Hexadecimal pronably seems a litfle hard to grasp at first, but like
mast things, it won't take long to master with practice.

By looking at dacimal (base 10} numbers, you can see that 2ach digit
fal's somewhere in the range betwveen zero and @ number equal to the
base less one {e.g., 9). THIS IS TRUE OF ALL NUMBER BASFS. Binary
(base 2) numbers have digits ranging from zero tc one (which is one less
then the base). Similarly, hexadecimal numbers should have digits rang-
ing from zero to fifteen, but we do not have any single digit figures for
the numbers ten to fifteen, so the first six leHers of the alphabet are
used instead:

DECIMAL | HEXADECIMAL BINARY
0 0 D0D000AC

1 1 00000001

2 2 00000010

3 3 00000011

4 4 00000100

5 5 Do0DO1ON

| 6 6 00000110
7 7 00000111

‘ 8 | g 000071000
9 9 00001001

| 10 A 00001010
B B 00001011

12 5 00001100

13 D 00001101

14 E 00001110

15 F 00001111

16 10 | oon10000

216 BASIC TO MACHINE LANGUAGE

Let’s look ar it annther way; here’s an examplz of how o base 10
(decimal number) is constructed:

Base raised by
increasing powers; ... 107 107107 107
Bqualss oosssnveanns 1000 100 10 1

Consider 4569 (base 10) 4 5 b 9
=(4x1000]+(5=100)+(6x1C)+9

Now look ot an example of how © base 16 (hexadecimal number) is
constructed:

Buse raised by
increasing powers: ... 163 162 18" 15°
Eualss van s ssduweny 409¢ 256 16 1

Consider 11D9 (base 14) 1 1 D =
=1X409&64+1X 256+ 13% 16+9

Therefore, 4569 (hase 10) = 1109 (hase 16]
The range for addressable memory locations is 065535 (as was
stoited earlier). This range |s therefare O-FFFF in hexadecimal natation.
Usually hexadecimal numbers are prefixed with o dollar sign ($). This
is 1o distinguish them from decimal numbers. let's look ar some “hex”
numbers, using 64MON, by displaying the contents of same memory by

typing:

SYS 8*4096 (or SYS 1274096)
B #
PC SR AC XR YR SP
.: 0401 32 04 5E 00 Fé (these may be different)

Then if you type ir:
.M 0000 0020 (ond press [IESIELE)

you will see rows of 9 hex numbers. The first 4-digit number is the ad-
dress af the first byte of memary being shown in thar row, and ~he other
eight numbers are the actual contents of the mermory locations begin-
ning ot that start address.

You should really try to learn to “think” in hexadecimal. It's not tco
difficult, because you don’t have tno think about coanverting it back into

BASIC TO MACHINE LANGUAGE nT

decimal. For example, if you said thet o oarlicular value is stored ot
$14ED instead of 5357, it shouldn't make any difference.

YOUR FIRST MACHINE LANGUAGE INSTRUCTION
LDA — LOAD THE ACCUMULATOR

In €510 assembly lenguages, mnemenics a-e always three charucters.
LDA represerts “load cccumulatar witk . . . * and what the ce-
cumulator should be loaded with is decided by the parameter(s) asso-
ciated with that instruction. The assernbler knows which taken is repra-
sented by each mnemonic, and when it “assembles” on instruction, it
simply pufs into memory {at whatever address has been specified), the
toker, and whaot parameters, arc given. Some cssemblers give error
messages, or warnings when you Try ta assamhle snomething thot either
the assembler, or the 6510 micrcprocessor, cannct do.

If you pul a "#” symbal in front of the paramerer associated with the
instructicr, this means that you want the register specified in the instruc-
tion to be loaded with the “va ue” ofter the “#.” For example:

LDA #505

Ihis ‘nstruction will put $05 (dec'mal 5) into the accumulotor register.
The assermber will put into the specified aodress for this instructian, $A9
(which is the token far this particular instruction, in this mode), and it will
put $05 into the next location after the loculiun conluining the instruction
($A9).

If the perameter to be used by an instruction hos “#' Lelore it; ..,
rather than the contents of @ memory loca-

il +

the parameter is a “value,’
tion, or another register, the instruction is said tc be in the “immediate”
mode. Ta put th's inte perspective, lst's compare this with another
mode:

If you want to put the contenrs of memary lecotion $102E into the

accumulator, you're using the “absolute” mode of instruction:

LDA $102E

The ussembler can distinguish barween the two different moades bacause
the latter does not have a "#" before the parametes. The 6510 micro-
processor con distingulsh between tha immedicate mode, and the abso-
lute mode of the LDA instruction, beccuse they have slightly different
tokens, LDA (mmediate) has $A9 as its token, nand LDA (absolute), has
$AD as ite token.

218 BASIC TO MACHINE LANGUAGE

The mnemonic representing an instruction usually implies whot it
does. For instance, if we considar anather instruction, LDX, what do you
think this does?

Il you said “load the X register with . . ., go to the top of the class.
It you gidn't, then don’t worry, learring machine languace does uks
patience, and cernnot be learned in o day.

The varous internal registers can be thought of as special memary
locations, becouse they taa can hald ane byte of information. It is rot
necessary for us to explain the bina-y numasering system (base 2) since it
follows the same rules as outlined for hexadecimal and decimal sutlined
previcusly, but one “kbi=" ic one binary digit and eigkt b'ts make us one
pyte! This means that the maximunr number that can be cantained in a
byte is the largest aumber that an e'ght digit kinary numbker can ke. This
nurnber is 11111111 (birary), which equals $FF (hexadacmal), which
equals 255 (decimal]. You have probably wondered why only numbers
from zero to 255 could be put into @ memory location. If you try POKE
7680,260 (which '= o BASIC statement that “says”: “Put the number two
hundred ond sixty, info memory Iocation seven thousand, six hundred
and eighty,” the BASIC interpreter knows that orly numbkers 0 — 255 can
be pul in o memory location, and your Commodare 64 will reply wirh:

?ILLEGAL QUANTITY ERROR

READY.
|

If the limit of one byte is $FF (hex), how is the address parameter r the
aosolute instruction “LDA $102E” expressed in memory? ['s expressed in
two bytes (it won't fit infc one, of course). The lower (rightmost} twe
digits of the hexodecimal acdress form the “low byte” of the address,
and the upper (leftmost] two digits form the “high byte.”

The 6510 requires any address ro ke specified with its low byte first,
and then the high byte. This mcans that the instruction “LDA $102E" is
represented in memory by the three consecutive voluss:

$AD, $2E, 310

Now cll you need to know is one more instruction and then you con write
your first program. Thal instruction s 3RK. For o full explanciion of 1his
instructicr, refer 1o M.O.8. 502 Programming Manual. But rignt now,
you can think cf it as the END insftruction in mochine language.

BASIC TO MACHINE LANGUAGE 219

If we write a program with 64MON and put the BRK instruction ai the
end, than when the program is executed, it will return to 64MON when it
is finished. This might not happen if there is a mistake in your program,
or the BRK instruction is never reached (just like an END statement in
BASIC may never get executed). This means that if the Cammadore 64
didn’t hove a STOP key, you wouldn't ke able tc¢ akort your BASIC pro-
grams!

WRITING YOUR FIRST PROGRAM

If you've used the POKE statement in BASIC to put characters anto the
screen, you're oware that the character codes for POKEing are different
from CBM ASCII character vulues. For exumple, if you enter:

PRINT ASC("A") (and press)

the Cammodore é4 will respond with:

65

READY.

However, to put an “A" cnto the screen by POKEing, the code is 1,
enter:

CLR/HOME to clear the screen

POKE 1024,1:POKE 55296,14 (and) (1024 is the start

of screen memory)
The “P" in the POKE stuternent should now oe an "A."

Now let's try this in machine langucge. Type the following in 64MON:
(Your cursor should be flashing alongside a . right naw.)

.A 1400 LDA #3501 (and press)

220 BASIC TO MACHIME LANGUAGE

The Commodore 84 will prompt you with:

.A 1400 A9 O1 LDA #$01
A 1402 B

Type:
.A 1402 STA $0400

(The STA instruction stores tha contents of the accumulctor in a specified
memory location.)
The Commodore &4 will prompit you with:

.A 1405 B

Now type in:
JA 1405 LDA #$0E

.A 1407 STA $D800
A 140A BRK

Clear the screen, and type:
G 1400

The G should turn into an “A" if you've done everything correctly,

You have now written your first machine language pragram. lIis pur-
pose is to store one character [("A"”) at the first location in the screen
memory. Having achieved this, we must now explore some of the othar
instructions, cnd principles.

ADDRESSING MODES

ZERD PAGE

As shown earlier, absolute addresses are exprassed in terms of a high
and a low order byte. The high order byte is often referred to ws Ihe
page of memory. For example, the address $1637 is in pags $16 (22),
and $0277 is in pace $02 (2), There is, however, o special mode of
addressing known as zero page addressing and is, as the name implies,
ussocioted with the uddressing of memory locations in page zera. These

BASIC TO MACHINE LANGUAGE 227

addresses, therefare, ALWAYS have a high order byte of zerc. The zero
pocge moade of cddressing only expects ane byte to describe the ad-
dress, rather than two when using an aksolute address. The zero page
oddressing mode tells the micropracessor ta assume thar the high order
address is zera. Therefore zerc page cddressing can reference memory
locations whose addresses are betwean $0000 and $00FF. This may not
seem too important at the moment, but you'll need the principles of zero
poge addressing soon.

THE STACK

The 5510 microprocesscr has what is known as a stack, This 's used
by koth the orogrammer and the microprocessor to temporarily re-
member things, ond to remember, for example, an order of events. The
GOSUB statement in BASIC, which allows the programmer to call a sub-
routine, must remember where it is being called from, so that when the
RETURN statement iz executed in the subroutine, the BASIC inferpreter
“knows' where to go kack fo centinue esxscuting. When o GOSUB
slaternent is encountered in a program by the BASIC interpretar, the
BASIC interpreter “pucshes” itz current position crto the stock befors
guing o do the subrouline, and when o RETURN is execuled, the in-
terprater “pulls’” off the stock the informaticr that tells it where it wos
before the subroutine call was made. Thz interpreter uses instructions
like PHA, which pushes the confents of the accumulator onto the stack,
and PLA (the reverse) which pulls a value off the stack and intc the
anccumulotor. The status register can also be pushed and pulled with the
PHP and PLP, respectively.

The stack is 256 byles lorg, and s lacated ' page ane af memary. |t
is therefore from $0100 to $07FF. It is organized sackwards in memory.
In other words, the first position in the stack is at 301FF, and the last is
at $0100. Ancther register in the 6510 microprocessor is called the stack
pointer, and ir always peints to the next availoble lccation in the stock.
When something is pusked onto the stack. it is placed where the stack
pointer points fo, and the srack pointer 's moved down fo the next posi-
tion (decremented). When something ic pulled off the stack, the stack
poinler is ncremented, und the byle poinled 1o by the stack pointer is
placed into the specified register,

222 BASIC TO MACHINE LANGUAGE

Up to this point, we huve covered immediate, zerc page, and abhee-
lute mode instructions. We have also covercd, but hove not really 1clked
obout, the “implied” mode. The implied mode means that information is
implied by an instruction itself. In other words, what registers, flegs,
and memory the insiruclion is referring to. The examples we have seen
are PHA, PLA, PHP, and PLP, which refer to stack processing and the
accumulate: and stotus registers, respectively,

NOTE: The X register wll be referred to as X from now on, and simiurly A (ac-
L cumulator) ¥ (Y index register), S (stack pointer), and P {(processor sclus), |

INDEXING

Indexing plays an extremely impartant port in the running of the é510
microprocessor. It can be defined as “rreating an actual address fram a
basc address plus the contents of either the X or Y index registers.”

For example, if A containg $05, and the micropracessor executes an
LDA instruction in the “absclute X indexed mode” with base address
(e.q., $9000), then the actual location that is loaded into the A registar
is 59000 + $05 = 3$GC05. The mnemonic format of an absolute indexed
instructicn is the same as an absolule irstruction except o, X“ or 7, 7"
denoting the index is odded to the address.

EXAMPLE:
LDA £2000,X

There are absolute indexed, zero page ndexed, indirecl indexed,
and indsxed indirect modes of addressing available on the 6510

microprocessor.
INDIRECT INDEXED

This only allows usage of the Y register os the index. The actual ad-
dress can ony ke in zerc page, and the mode of instruction is called
indirect because the zero page address specified in the instruction con-
tuins the low byte of the actual cddress, and the next byte to it cantains
the high order byte.

BASIC TO MACHINE LANGUAGE 223

EXAMPLE:

Let us suppose that location $02 contains $45, and location $03 con-
tains $1E. I the instruction to load the accumulater in the indirect inde-
red mode is executed and the specified zero pace address is 302, then
the aectual address will be:

Low erder — certents of £02

High ordar = contents of $03
Y register =%00

Thus the actual address = $1E45 + Y — $1E45.
The title of this mode does in foect imply an indirect principla, clthough
this may be difficult fo grasp ot first sight. Let's look ot it another woy:
"I am going to deliver this letter to the posl office al oddress
02 MEMORY ST, and the address cr the lettar is $05 hcuses post
$1600, MEMORY streel.” This is equivulent to the code:

LDA #8500 — lood low order uctual base address

STA $02 — set the low byte of the indirect address
LDA #$16 — laed high order indirect address

STA $03 — set the high byte of the indirect address
LDY #%05 — set the indirect index (Y)

LDA ($02),Y — load indirectly indexed by ¥

INDEXED INDIRECT

Indexed indirect only allows usage of the X register as the index. This
is the same as indirect indexed, except it is the zero poge cddress of the
puointer thal is indexed, rather than the actual base address. Therefore,
the cictunl base address 15 the actual address because the index has
already been used for the indirect. Index indirect would also be used if

224 BASIC TO MACHINE LANGUAGE

o table ot indirect peinters were loccted in zero page memory, and the
X register could then specify which indirec! poinier to use,

EXAMFLE:

Let us suppose that location $02 contains $45, and location $03 con-
rains $10. If the instruction to load the accumulatar in the indexad indi-
rect mede is executed and the specified zero page address is $02, then
the acrual address will be:

Low order = contents of ($02+ X)
High order = contents of ($03+X)
X register = $00

Thus the actual pointer is in = $02 + X = $02.

Thercfore, the actual address is the indirect address contained in $02
which is again $1045.

The fitle of this mede does in tact imply the principle, althcugh it may
be difficult to grosp af first sight, Look at it this way:

“I am going to daliver this letter to the fourth post office ot address
301 ,MEMORY ST., und the uddress on the letter will then be delivered to
51600, MEMORY street.” This is equivalent to the code:

LDA #S00 — load low order octual base oddress
STA 506 — set the low byte of the indirect cddress
LDA #$16 — lead high order indirect address

STA $07 — set the high byte of the indirect address
LDX #%05 — sat the indirect index (X)

LDA ($02,%) —Iload indirectly indexed by X

NOTE: Of the twe indirect methods of addressing, the first (indirect indexed) is fer
more widsly used,

BASIC TO MACHIME LAMGUAGE 225

BRANCHES AND TESTING

Another very important principle in machine language is the ability to
test, and detecl certain conditions, in a smiliar fashion to the "IF . . .
IHEN, IF . . . GOTO'" structure in CBM BASIC.

The various flags in the status register are cffected by different in-
structions in different ways. For example, there is a flag that is set when
an instruction has couvsed o zero resull, and is resel when g result is not
zero. The instruction:

LDA #$00

will cause the zero result flug to be set, because the instruction hos
resulted in the accumulator containing a zero.

There are o set of instructions that will, given a particular candition,
branch to anathar part of the program. An example of ¢ branch instrue-
tion is BEQ, which mecns Branch if result EQual to zero. The branch
instructians branch if the condition is true, and if not, the program con-
tinues onto the next instruction, as if nothing hac occurred. The branch
instructions brench not by the result of the previous instruction(s), but by
internally examining the status register. As was just mentioned, thers is
o zero result flog in the status register. The BEQ instruction branches if
the zero result flag (known as Z) is set. Every branch instruction has an
opposite branch instruction. The BEQ instruction has an opposite instruc-
tion BME, which means Brench on result Not Equal to zerc (i.e., Z not
sef).

The indax registers have a number of associated instructions which
modify their contents. For example, the INX instruction (Ncrements the X
index register. If the X register containad $FF kefora it was incremented
(the maximum number the X register can contain), it will “wrap around”
back to zero. If you wented a program fo continue to da something until
you had performed the increment of the X index that pushed it around
to zero, you could use the BNE instruction to continue “looping™ around,
until X became zero.

The reverse of INX, is DEX, which is DEcrement the X index register. If
the X index register is zero, DEX wraps around to $FF. Similarly, there
are INY and DEY for the Y index register.

2256 BASIC TO MACHINE LANGUAGE

But what if a pragrem didn’t want to wait until X or ¥ had reached (or
not reached) zero? Well there are comparison instructions, CPX and
CPY, which allow the machine languege pregrammer to test the index
registers with specific volues, or even the contents of memory locations,
If you wanted fo see if the X register contained $40, you would use the
instructicn:

CPX #3540 — compare X with the “value” $40.
BEQ — branch to scmewhere else in the
(some other program, if this condition is “true.”
part of the

pragram)

The compare, and branch instructions play a major part in any machine
language program.

The vperand specified in o branch instruction when using 64MON is
the address of the part of the program that the branch goes to when the
proper conditions are met. However, the operand is only an offset,
which gets you frem where the program currently is to the cddress spec-
ified. This offset is just one byte, and therefore the range that a brarch
instruction can branch to is limited. It can hranch from 128 hytes back-
ward, to 127 bytes forward.

MNOTE: This is o total range of 255 bytes which is, of course, the maximum range of
values one kyte can centain.

64MON will tell you if you “branch out of range” by refusing to “as-
semble” that particular instructian. But don’t worry about that now be-
cause it's unlikely that you will have such branches for quite a while. The
branch is a “quick” instruction by machine language standards becouse
of the “offset” principle as opposed to an absolute address. 64MON
allows you to type in un ubsolute uddress, and it calculates the correct
offset. This s just one of the "comforts” of using an assembler.

NOTE: It is NOT passible ta cover every single branch instruction. For further infarma- |
tion, refer to the Bibliography sectinn in Appendix F. |

I

3ASIC TO MACHINE LANGUAGE 227

SUBROUTINES

In machine language (in the same way as using BASIC), you can call
subroutines. The irstruction to call @ subroutine is JSR (Jump lo Sub-
Routine), followed ky the specified absalute address.

Incorporated in the operating system, there is a machine languoge
subroutine that will PRIMT a character to the sereen. The CBM ASCI
code of the character should ke in the accumulator before calling the
subroutine. The address of this subrautine is $FFD2.

Therefore, te print “HI" to the screen, the following program should

be entered:
A 1400 LDA #3548 — locad the CBM ASCII code of “H”
A 1402 ISR SFFD2 — print it
.A 1405 LDA #$49 — load the CBEM ASCIl cede of “I”
.A 1407 JSR $FFD2 — print that tec
.A 140A LDA #3$0D — print a carriage return as well
_A 140C JSR $FFD2
.A 140F BRK — return to H54MON
.G 1400 — will print “HI" and return to 64MON

The "PRINT o character” routine we have just used is part of the
KERNAL [ump rable. The instructfion similar ta GOTO in BASIC is IMP,
which means JUMP fo the specified aksolute cddress. The KERNAL is o
long list of “standardizec™ suoroutines that control ALL input and autput
of the Commodore 64. Each entry in the KERNAL JMPs to a subroutine in
the operating system. This “jump tabla” is found between mamory loca-
tions $FFBA to $FFF5 in tha operating system. A full explanation of the
KERNAL is available in the “KERNAL Reference Section’ of this manual.
However, certain routines ara used here to show how easy and effective
the KERNAL is.

Let's now use the new principles you've just learned in ancther pro-
gram. It will help you to put the insiruclions info contexi:

228 BASIC TO MACHINE LANGUAGE

This program will disploy the alphaber using a KERNAL routine. The
unly new instruction infroduced here is TXA Transfer rthe conrents of the X
index register, into the Accumulafor.

.A 1400 LDX #%41 — X = CBM ASCI| of “A"
LA 1402 TXA — A =X

LA 1403 JSR SFFD2 — print character

A 1406 INX — bump count

A 1407 CPX #55B — hove we gone past "2 7
A 1409 BNE $1402 — no, go back and do more
LA 140B BRK — yes, refurn fo 64MON

To see the Commodere &4 print the alphabat, type the Tamiliar com-
mand;

.G 1400

The ccmments thet are keside the program, explain the program flow
and logic. f you are writing a progrem, write it on paper first, and then
test it in small parts if possible.

USEFUL TIPS FOR THE BEGINNER

One of the best ways to learn machine language is to look at other
oeoples’ machine lunguage programs. These are published all the time
n magezines and newsletters. Look at them even if the article is for o
different computer, which also uses the 6510 (or ¢502) microprocessor.
You should make sure thet you thoroughly understand the code that you
leck ot. This will require perseverence, especially when you see o new
technigue that you have never come ccross beforz. This can be infuriar-
ing, but if patience prevails, you will be the victor.

Having locked at other mechine language programs, you MUST write
your ewn. These may be utilities for your BASIC pregrams, or they may
be an all machine language program.

BASIC TO MACHINE LANGUAGE 229

You should clso use the utilities thot are avoilabla, either IN your
camputer, or in a program, thet aid you in writing, editing, or tracking
down errors in @ machine language program. An example would be the
KERNAL, which allows you to check the keyboard, print text, contrsl
peripheral devices like disk drives, printers, medems, etc., manage
memory and the screen. It is extremely powerful and it is advised
strongly that it is used (refer 1o KFRNAL section, Poge 268).

Advantages of writing programs in machine language.

1. Speed —Machine language is hundreds, and in some ccses
thousands of times fastzr than o high level languoge such os
BASIC.

2. Tightness —A machine langucge program can be made totolly
“watertight” i.e., the user can bhe made to do ONLY what the
program allows, and no more. With o high level langucge, you
are relying on the user not “crashing” the BASIC interpreter by
entering, for example, o zere which later causes a.

7DIVISION BY ZERO ERROR IN LINE 830

READY.
|

In essence, the computer can only be maximized by the machine lon-
guage programimer,

APPROACHING A LARGE TASK

When cpproaching o large fosk in machine language, o certain
amount of subconscious thought hos uwsually taken placze. Yeu think
okout how certcin processes are coarried out in machine languoge.
V/hen the tosk is started, it is usuolly o good idea to write it cut on
paper. Use block dicgrams of mermory usage, functional modules of
code requirad, and a program flaw. let's say that you wantad to write a
roulette game in machine language. You could outline it samething like
this:

230 BASIC TO MACHINE LANGUAGE

Display fitle

Ask if player recuires instructions
YES—disploy them—Go to START
NO—Ge to START

START Initialice everything

MAIN display roulette table

Take in bets

Spin wheel

Slow whee! to stop

Check bets with result

Inform player

Flayer any money left?

YES—Go to MAIN

NO—Inform user!, and go to START

This is the main outline. As each medule is appreachad, you can
breck it down further. If you look at o large indigestcble proslem as
something that carn he broken down inte small encugh pieces ta be
eafen, then you'll be cble ¢ upprocch something that seems impossible,
and hawve it all fall into ploce.

This process only improves with practice, so KEEP TRYING.

BASIC TO MACHINE LANGUAGE 23

MCS6510 MICROPROCESSOR

ADC Add Memory to Accumulator with Carry
AND “AND"” Memory with Accumulator
ASL Shift Left One Bit (Memery or Accumulator)

BCC Branch on Carry Clear

BCS Branch on Carry Set

BEQ Branch on Result Zero

BIT Test Bits in Memory with Accumulator
BMI Branch on Result Minus

BNE Branch on Result not Zero

BPL Branch on Result Plus

BRK Force Break

BVC Branch on Qverflow Clear

BVS Branch on Overflow Set

CLC Clear Carry Flag

CLD Clear Decimal Mode

CLI Clear Interrupt Disable Bit

CLV Clear Overflow Flag

CMP Compare Memory and Accumulator
CPX Compare Memory and Index X
CPY Compare Memory and Index Y

DEC Decrement Memory by One

DEX Decrement Index X by One

DEY Decrement Index Y by One

EOR “Exclusive-Or'* Memory with Accumulator
INC increment Memory by One

INX Increment Index X by One

INY Increment Index Y by One

JMP Jump to New Location

232 BASIC TO MACHINE LANGUAGE

INSTRUCTION SET—ALPHABETIC SEQUENCE

JSR

LDA
LDX
LDY
LSR

NOP
ORA

PHA
PHP
PLA
PLP

ROL
ROR
RTI

RTS

SBC
SEC
SED
SEI

STA
STX
STY

TAX
TAY
TSX
TXA
TXS
TYA

Jump to New Location Saving Return Address

Load Accumulator with Mamory

Load Index X with Memory

Load Index Y with Memory

Shift Right One Bit (Memory or Accumulator)

Na Operation
“OR" Memory with Accumulator

Push Accumulator on Stack
Push Processor Status on Stack
Pull Accumulator from Stack
Pull Processor Status from Stack

Rotate One Bit Left (Memory or Accumulator)
Rotate One Bit Right (Memory or Accumulator)
Return from Interrupt

Return from Subroutine

Subtract Memory from Accumulator with Borrow
Set Carry Flag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulator in Memory

Store Index X in Memory

Stare Index Y in Memary

Transfer Accumulatar 1o Index X
Transfer Accumulator to Index Y
Transfer Stack Pointer to Index X
Transfer Index X to Accumulator
Transfer Index X to Stack Pointer
Transfer Index Y to Accumulator

BASIC TO MACHIME LAMCUAGE

233

Note:

The follecwing notaticn applies to this summary:

A Accumulator
X, Y Index Registers
M Memory
P Processor Status Register
] Stack Pointer
v Change
No Change
+ Add
N Logical AND
Subtract
¥ Logical Exclusive Dr
+ Iransfer from Stack
¥ Transfer to Stack
¥ Transfer to
* Transfer from
v Logical OR
2C Program Counter
Cl Program Counter High
PCL Program Counter Low
OPER OPZRAND
{ IMMEDIATE ADDRESSING MODE

At the top of each table is located in parentheses a
reference number [Ref: XX) which directs the user to
that Section in the MCS6500 Microcomputer Family
Programming Manual in which the instruction is defined

and discugsed.

BASIC 1O MACHINE LANGUAGE

ADC

Add memory to accurulatar with carey

ADC

Operatien: A+ M+ C+ A, C NEOLTI DV
(Ref: 2.2.1) Wil Fonal
Addressing Assembly Languages oF Na. No.
Mode Form CODE | Bytes | Cyclzas
Immediate ADC # Oper 69 2 2
Zero Tage ADC ODaer 65 2 3
Zern Page, ¥ ADC Oper, X 75 2 &
Absolute ADC Oper &D 3 &
Absolute, X ADC Oper, X 7D 3 L%
Absolute, ¥ ADC Oper, ¥ 79 3 b
{Indirect, X) ADC (Dper, X} [2 b
(Indirect), T ADC (oper), T 71 2 G
* Add 1 if page boundary :1s crossed.
AND "AND T memory with accumulator AHD
Lozieal AND to the accumulartor
Operation: AN M+ A NECILDV
(Raf: 2.2.3.0) S N
Addresslug Assenbly Language ap Nc. No.
Mode Form CODE | Bytes | Cycles
Immediate AND f Oper 29 2 2
Zero Page AND Oper 25 2
Zero Page, X AND Oper, X 35 2 &
Absolute AND Opar D 3 h
Absolute, X AND Oper, X Eiv] 3 4%
Absolute, Y AND Oper, Y 39 3 4*
(Indirece, X) AND (Mper, X) 21 2 6
(Indirecty, ¥ AND (oper), Y 31 2 3

* Add 1 if page boundary is croased.

BASIC TO MACHIME LANGUAGE 235

ASL

Operation: C + HE. Haa .|

bddrassing
Mode

Accumulator
Zero Page
Zero Page, X
Ahsolute

Absolute, X

ASL Shift Left One Bit (Memory or Accumnulator)

AslL

N&ZCIDV
AN ———
(Ref: 10.2)
Assembly Language oP No No.
Form CONE Fyres Cycles

ASL A Ba 1 2
ASL Oper @6 2 5
ASL Oper, X 16 2 £
ASL Oper FE 3 &
ASL Oper, X 1E 3 7

BCC

BCC Branch on Carry Clear

fOperation: Branch on C = § NEZCIDV
(Ref: 4.1.1.3)
Addressing Assembly Language 0P No. Na.
Mode: Form CODE ByLes Cycles
Relative BCC Oper Bl ‘ 2 1%
* Add | {f branch cccurs to same pagec.
* Add 2 if branch occurs to different page.
BCS BCS Branch on carry et Bcs
Operation: Branch on € =1 N2CIDVW
(Ref: 4.1.1.4) N
Addressing Assembly Language cr Ne. Ne.
Mode Form CODE | Bytes Cyecles
Relative BCS Oper Ed p i

Add 1 if branch occurs Lo same page,

w Add 2 1f Lranch vccurs Lo next page.

236 BASIC TO MACHINE LANGUAGE

BEQ

BEQ Branch on resudt zero

Operation: Branch on 2 = 1 N2CIDY
Res SadolaSy 0 oo
Addressing Assembly Language op No No.
Mode Form CODE Byres Cycles
Relative BEQ CUper Fia 2 2%
Add L 4f branch cccure to same page.
* Add 2 if branch coccurs to next page.
B“ BIT Te:st bils in memorn: with accumulator ' IT

Operation: A N M, }i? + N, _«16 -y

Bit & and 7 are transferred to the status regisrer. HMZCIDV

Lf the result of A/\M 1s zere then Z = 1, otherwise M?r’ iy
z-9 (Ref: 4,2.1.1)
Adcressing Assemply Language oF No. No.
Hode Form CODE Byces Cycles
Zerc Page BIT Oper 24 2 3
Absclute EIT Oper YL ¢ 3 4

BMI Branch on result minus

Operation: Eranch on N = 1 H&ECIDYV
(Ref: 4,1,1,1) ~ 7777
Addressing Assembly Language ap o Na.
Hode Form CODE Bytes Cycles
Relative BMI Opzar kT 2 2%

pdd L if branch cccurs to same page.
* Add 2 4f branch ccecurs te different page.

BASIC TO MACHINE LANGUAGE 237

Operation: Eranch on Z = 0

BNE french on resull not zero

(Ref: 4.1.1.6)
Addressing Aszsembly Language op No No.
Mode Form CODE | Bytes | Cycles
Relative BNE (Oper D@ ? D%
1

®# Add 1 if branch ececurs to came page.

®# Add 2 Lf branch occurs to different page.

BPL

RPL. Rranch nn result plus

BPL

Operaticn: Branch on N = @ NECIDV
(Ref: 4.1.1.2)
Addressiug Assembly Language op No. No.
Mode Form CODE | Eytes | Cyeles
Relacive BPL Uper 1@ 2 2%
% 4dd 1 if branch ocCurs to same page.
* Add 2 Iif branch eoccurs to different page.
BRK ERK Force Break BRK
Operation: Forced Interrugt PC + 2 + P + N2CIDV
1
(Ref: 9.11)
Adcressing Assembly Languzge oF No. No
Mode Form CODE | Eytes | Cycles
Implied BRK ("] 1 7

1. A BEK command cannot be masked by setting 1.

238 BASIC TO MACHINE LANGUAGE

BYC

BYC Hranch or overflow clear

BVC

Operation: Branch on V=10 N2CIDYV
(Ref: 4.1.1.,8) T T T 777
Addressing Assembly Language ne No. No,
Mode Form CODE [Bytes | Cycles
Relative BVC Oper 50 P 2%
* Add 1 If bLranch occurs to same page.

% Add 2 if branch ocecurs to different page.

BYS

BVE Branch on overflow set

Jperation: Breanch on V= 1 NELCLDV
(Ref: 4.1.1.7)
addressing Assembly Language OF Hey Hu.
Mode Form CODE | Bytes | Cycles
Relative EVS ODpe: e 2 2%

* add 1 if branch occurs to same page.

* Add 2 if branch oceurs to different page.

CLC

CLC Clegr carry flag

CLC

Operacion: @ » € HB8CIDV
(Ref: 3.0.2) e
Addressing hssem>ly Language op No. No.
Mede Form CODE | Bytes | Cycles
Loplied CLC 12 1 2

BASIC TO MACHIMNE LANGUAGE 239

4 1)

Operation: @ + D

CLD Clear decimal mode

LaTy s
(Ref: 3,3.2)
Addrcss:lug Assembly Language op Ho. No
Mode Form CODE | Bytes | Cyecles
Implied CLD DB 1 2

CLI

CL1 Clear interrup disable bit

CLI

Operation: @ -+ [N2CI1IDV
(Ref: 3.2.2) el
Addressing Assembly Langunage op Na, Ho.
Hode Form CODE Bytes Cycles
Implied CLT 58 1 2
CI.V CLY Clear averflow flag CI.V
Operation: @ = V N&£C1LDV
==
(Ref: 3.6.1)
Addressing Assembly Language oF No. Ka.

Made

Form

CODE | Bytes Cycles

Implied

CLV

BE 1 2

240 BASIC TO MACHINE LANGUAGE

CMP

CMP Compare memory and accumulator

CMP

Dperation: A - M NEZECIDV
(Ref: 4.2.1) Rht
Addressing !3sembly Language or No. No.
Mode Form CODE | Bytes | Cycles
Tmmed igle CMP #Oper c9 2 2
Zero Page CMP Oper c5 2 3
Zero rage, X CMP Uper, X D3 p 4
Absolute CMP" COper cD 3 4
Absolute, X CMP Oper, X on 3 G%
Absolute, Y CMP Oper, Y D9 3 4
(Indirect, X) CMP (Oper, X) Ccl 2 6
(Indirect), Y CMP (Uper), Y ul 2 5%
add 1 if page boundary is crossed.
CPX CPX Compare Memory and Index X CPX
Operation: X - M NKZC-CIDV
S - ==
(Ref: 7.R)
| Addressing Assemhly Language OF No. Ho.
Modz Form CODE Bytes Cycles
Inrediate CPX # 0Oper EQ 1 z
Lero Page CFX Oper EL v 3
J Absolute CPX Oper EC 3 4
CPY CPY Compare memory and index ¥ CPY
Operation: Y — M]l S o0 N | B
3l S
(Ref: 7.9)
[
Acdressing Assemh’y Language oF No. No.
Mode Form | CODE BylLes Cyules
Immediate CPY #Oper [o7] ? 2
7ern Page CPY Uper cé 2 3
AbsoluLe CPY Oper ce 3 4

BASIC TO MACHINE LANGUAGE 241

DEC DEC Decrement memcry by one DE(
Operation: M - 1 = M N2 CILDUV
R ——
(Ref: 10.7)
Addressing Assembly Languagse ne Nov. No.
Mode ToTm CODE Bytes Cyeles
Zero Page NEC Oper (a1 2 3
Zevo Page, X DEC Oper, X Db 2 6
Absclute DEC Dper CE 3 6
Absgluce, X DEC OJper, X DE 3 7
DEX DEX Decrement index X by one D“
Operation: X - 1 + X N&CZIoDV
(Ref: 7.6) i
Addressing Assembly Languszpe op Ho . No.
Mode Form CCDE Bytes Cycles
Implied DEX CA 1 2
DEY DEY Decrement index Y hy one DEY
Operation: ¥ - 1 » ¥ HECIDY
R e —
(Rei: 7.7)
Addressing Azsembly Lenguage or No. No.
Made FTorm CODE Bytes Cycles
[mpliad DEY 28 L 2

242 BASIC TO MACHINE LANGUAGE

EOR

EOR "Exclusive—Or" memary with accumulator

EOR

Operation: A ¥ M+ a HeCIDY
(Ref: 2.7.31.7) LR A
Addressing Assewbly Lauguage or Nao. No.
Mode Form CODE Bytes Cycle
Imnediate ECR # Opeq 49 2 2
Zero Page ECR DOper h5 2 3
Zero Fage, 2 EUR Uper, X 55 2 4
Absolute EOR DOper 4D 3 Y
Absclute, X EOR Odper, X 5D 3 4%
Absulute, Y EOR Oper, ¥ 29 3 4
(Indirect, X) ECR (Oper, X) 41 g 8
{Indirect),Y EUR (Operd), Y 51 2 5k
Add 1 if page boundary is crossed.
I"c INC [Incremenr memory by one IH(
Operation: M+ 1 + M N2CIDYVW
T SRS
(Hef: 10.8)
Addressing Accembly Language cP No. No.
Mode Form CODE | Bytes | Cycles
Zero Page INC Oper E& 2 5
Zero Page, X INC Oper, X F6 2 6
Absolute INC Oper EE q [}
Absolute, X INC Oper, X FE | 7
I“x INX Ilrerement Index X by one l“x
Operation: X + 1 + X N&ECIDV
A ————
(Ref: 7.4)
Addressing Assembly Language o Nu. No.
Mode Form CODE | Bytes Cycles
lmplied INX E8 1 2

BASIC TO MACHINE LANGUAGE

243

IHY INY fncrement Index ¥ by one

INY

Cperacion: Y + 1 + ¥ REZETNDVY
N
(Ref: 7.5)
Addressing Assenbly Language B ‘ Wo. Wo.
Hode Form = CODE Bytea Cycles
Inplied INY o] 1 2

JMP

IMP Jurap (v new locaiion

IMP

Operation: (FC + 1) + ICL NgCIDV
i pcn (Ref: 4029
LhE e Rk (Ref: 9.5.1)
Addressing Assenbly Language cr Bo. Nu.
Mnde Form CODE | Bytes | Cyeles
Absolute JMP Oper 4C 3 3
Indirect JHP (Oper) 6C 3 5
JSR ISR Juwmip to new location seving rewurn address jSR
operztion: PC + 2 +, (FC + 1) - FCL NZCIDY
(PC + 2) = PCH = Lo
(Ref: B.L)
Addressing Assembly Larguage or No. No.
Hode ; Form CODE ByLes Cyclas
Absolute JER Uper 20 3 6

244 BASIC TO MACHINE LANGUAGE

LDA LDA Load accumulator with memory I.DA
Jperation: M - A R2CIDY

vy ==

(Ref: 2,1.1)

Addressing Assembly Language ap N Nev.
Hode Form ZODE Bytes Lycles
Inmediatce LOA # Oper A 2 2
Lerc Page LDA Dper A3 2 3
terc Pape, X LDA Oper, X BS 2 4
Absolule LDA Oper AL 3 4
Absclute, X LDA Oper, X ED 3 G*
Absolute, Y LDA Oper, ¥ B9 3 e
(Indirect, X) LDA (Oper, X) Al 2 6
(Indirect), ¥ LDA (Opcr), Y Bl 2 ~be

A oadd 1 il page boundary Is crussed.

le LDX Lvad index X wirth memory LDX
Operation: M+ X NdCL DV
4
(Ref: 7.0) /A
Addressing Assembly Language [vid No. No.
Mode Form COBE Eytes Cycles
Tmedlate LDX f Oper AZ 2 Z
Zern Page LDX Oper AB 2 3
Zeru Page, Y LDX COper, ¥ B 2]
Absolute LDX Cper AE 3 4
Absolute, Y Lbx Cper, I BE 3 4=

* Add 1 when page boundary ie crossed.

BASIC TO MACHIME LANGUAGE 245

LDY

LDY Load index Y with memory

LDY

Operation: M + Y N8 ITV
o = —
(Rel: 7.1)
Addressing Assembly Language OF Ho. Ne.
Moce Form CODE | Bytes | Cyeles
Immediate LLY #0per AR 2 2
Zern Page LOY Oper A4 2 3
Eero Page, X LDY Oper, X L4 2 4
Absolute LDY Oper AC 3 b4
Absolute, X LDY Oper, X EC 3 4%
* Add 1 when page houndary is erossed.
lsn LSR Shift right arne hit [memory or accumaiator) lSR
Operacion: @ = Ean - C NaClDV
g/
(Ref: 10.1)
Addressing Assembly Language oF No. Na.
Mode Form CODE | Bytes Cycles
Aciumulator LSR A 44 1 2
Tera Page LSR Oper L6 2 5
Zero Page, X LSR Oper, X 56 2 6
Absclute LSR Oper LE 3 €
Absglute, X LSKE Oper. X 3E 3 7
NOP MNOP No aperation HOP
Operation: No Operation (2 cycles) NaC1IDV
S— I o
Addressing Assembly Language apP Na. Na.
Mode Form CODE | Dytes | Cycles
loplied NOF Ea 1 &

248 BASIC TO MACHIME LAMGUAGE

ORA ORA “OR" memory with accumularor OHA
Dperation: A VM + A NZCIDV
(Ref: 2.2.3.1) =
Addressiag Assembly Language oy No. No.
Mode Furtn CODE By:zes Cyzles
Imuediate CRA #0per gy 2 2
Zerc Page CRA Dper g5 2 3
Zera Page, X CRA per, X L5 2 4
Absolute CRA Oper (1] 3 4
Absolute, X CRA Oper, X 10] 4=
Absolute, Y CRA idper, ¥ 19 3 L%
({Indirect, X) CRA (Oper, X) i1 ¥ [}
(Indirect}, ¥ CRA (Oper), Y 11 2 5
* Add 1 cn page crassing
PHA PHA Pusiraccrimulaior on stack PHA
Operation: A # NZECIDV
(Ref: E.5) Boae
Addressing Asgembly Language op lio . No.
Mode Form CODE Brtes Cvcles
Implied PAA 48 1 B
PHP PHP Push processor status on stack PHP
Operation: F+ NeLCLIDV
(ref: 8.1 0T~
Addressing Assembly Language 0op No. No.
Mode Form CoODE Eycres Cvcles
Implied FHF s T 3

BASIC TO MACHIMNE LAMGUAGE 247

248

PLA

Operation: A ¢

PLA Pull cccumudator from stack

N&dC1DV

PLA

o —— — -
{Ref: 8.5}
Address Lug Assenbly Lauguag: op Ko, No.,
Made Form CODE Eytes Cycles
Implied PLA 68 1 4

PLP

PLF Pull processaor status from stack

PLP

Operation: F + N2C1IDV
Frem Stack
(Ref: £.12)
Addressing Azsemhly Language op KNo. No.
Mode Form CODE Eytes Cyrles
Implied FLP 28 1 4
ROL ROL Rotatr one bit l=ft (memory or accumulator) ROI_
M or A
Operarion: [7]s]5[4[3[2]1]e] - =7 ~ NECIDV
s
(Ref: 10.3)
Addressing Assembly Language oP No. No.
Mode Form CODE Bytes Cycles
Accunmulatoc ROL A 2A 1 2
Zero Page ROL Oper 26 2 5
Zero FPage, X ROL Oper, X 30 Z]
Absolute ROL Oper 2E 3 6
Absolute, X ROT. Oper, X iE 3 7

BASIC TO MACHINE LANGUAGE

RO R ROR Rotate one bit right [memory or accurridlator) Ron

Operacion: ?|ﬁ|SIaJHI?ITJHIJ HNEZCIDVW

¢
(Ref: 10.4) v f
Addressing Assembly Language OF Ho. Ko.
Mode Form COCE Brtes Cycles
Accunulator ROR A A 1 2
Zero Page ROR Oper L] 7 5
Zero Page,X ROR Oper,X 76 2 G
Absolute ROR Oper EE 3 6
Ahzolute,¥ RO Oper,X¥ IE 3 7

Note: ROR instruction is awailable on MCS650X micro-
proressors after Tune, 1976.

RTI RT1 Return from énierrupt RTI
Operation: Pt FCt NECLDV
(Ref: 9.6) From Scack
Addressing Assembly Lamguage oP No. No.
Mode Form CODE Bytes Cycles
Inplied RTI id 1 A
RTS RTS Rewrn from subroutine RTS
Operation: EFCt, PC + 1— PC RBCIDY
(Ret: 8.2 ~— T T7 77
Addressing Assembly Lamguage oP No. No.
Mode Form CDODE | Bytas | Cycles
Implied RTS 6@ 1 5

BASIC TO MACHINE LANGUAGF 249

SBC

Operation: A - M - ¢ + 4

SBUC Subtract memary from zecumulaior with berraw

SBC

N&E2CILDV
Note: C = Barrow (Ref: 1.3.2) o — —
Addresecing Assembly Language OF No. Ho.
Made Form COLE | Bytes Cycles
Immediate SBC # Oper L9 2 2
iero Fage SR Oper ES 2 3
Zeto Page, X SBC Oper, X Fa 2 4
Absolute SEC Oper ED 3 4
Absolute, X SBC Oper, X FD 3 bk
Abzsolate, ¥ SBC Oper, T F9 3 a¥
(Indirect, X) SRC (Dper, X El Z [
(Indirect), ¥ SBEZ (Oper), Y F1 2 5%
Add 1 whena page bpundary is crossed,
SEC SEC Set varry flag SEC
Operation: L + (H2cILDV
(Rel: 3.0.1) -1 - ==
Addressing Assembly Language P No. Na.
Mode Form CODE | Byras Cycles
Implied SEC 38 1 2
S[D SED Ser decirnal muode SED
Operation: 1 + D NEZCIDYV
: e
(Raz: 7.3.1)
Atfdressing Assamhly Language op No. No.
Mude Farm CULE Bytes Cyeles
Irpli=zd SED FR 1 2

250 BASIC TO MACHINE LANGUAGE

SEl

Operation: 1 + 1

SEl Sev interrupt disable status

— — 1 ——
CRef:y .2.1)
Addressing Asgombly Language (8] 4 No. ko.
Mode Form CCDE Bytes Cycles
Implied SEI 18 1 i
SIA STA Srore accumueiator in memory STA
Operation: A -+ M H2CIDV
Gef: Wm0 T T T
Addressing Assenkly Language op Nov. N
Mnde Form LoDz bytes Ccycles
Zero Page STA Oper 85 z 3
Zero Page, X STA OQper, X a5 2 &
Absolute STA Oper 8D 3 4
Absoluce, X sla Oper, X 8D 3 5
Absolute, ¥ STA Oper, ¥ 09 3 5
(Indirect, X) STA (Oper, X) Bl 2 b
(Indirect), ¥ STA (Oper), ¥ 91 2 6
s"x STX Store index X in memiory S'rx
Operation: X + M NZCIDUV
(Ref: 7.2)
Addrezsing Aszemhly Langusage op Ko. No.
Mode Form CODE byres Cycles
Zero Page STX Oper B6 2 3
2ero Page, Y STX Oper, Y 96 4
Absolute STX Oper BE 3 A

BASIC TO

MACHINE LANGILIAGE

51

sn STY Stare index Y in memory s r Y

Operation: Y + H ¥acIrIonv
(Ref: 7.3)
Addressing Assembly Language ap Na, Neo.
Mode Form CODE Byres Cycles
Zero Page 5TY Oper B4 2 3
Zero Pags, X STY Oper, X 94 2
Absolute STY Oper 8C
Tu TAX Transfer eccumulator 1o index X Tu
Operaticm: A+ X NZCIDVY
Vo ==ee
(Ref: 7.11)
Addressing Asserbly Language op No. No.
Hode Form CODE Bytes Cycles
Implied TAX Ad 1 2
TAY TAY Transfer accumulator 1o index Y TAY
Dperation: A =¥ NECILDVYV
T
(Ref: 7.13)
Adcressing Assenbly Language ar Nu. Ne.
Mode Torm CODE | Bytes | Cycles
Inplied TAY A8 1 2

252 BASIC TO MACHINE LANGUAGE

Tsx TSX Trancfer srack pointer to index X Tsx

Oparation: S =+ X NZCcIDYV
(Bef: 8.9) e
Addressing Assembly Language o2 No. No.
Mode Form CODE | Bytes | Cyeles
Implied TSX BA 1 2

TXA TXA Transfer mdex X to accumulator TxA

Operativn: X — A N3 CIDV
o T
(ef: 7.12) o
Addressing Assembly Larguage op No. No.
Mode Form CODE Bytas Cycles
Tuplied TXA 84 1 2
sz TXS Tronsfer index X to stack pointer sz
Operation: X - § NECIDV
CREf; 8.8 = TUEEETEEE
Addressiog Assembly Langiage OF Hu. No.
Mode Form COLDE Bytes Cycles
[mplied TXS a8 1 i

TYA TYA Transfer index Y to accumulator WA

Operation: Y * & NEZECITY
} o - =
(Ref: 7.14)
Addressing Assembly Language ar No. Ka.
Mode Form CCODE | Bytes | Cycles
Implied TYA 98 1 Z

BASIC TO MACHINF LANGUAGE 253

INSTRUCTION ADDRESSING MODES AND

Zero Page, Y
{Indirect), Y
Absolute Indirect

Zero Page, X
Absolute

[Indirect, X)

Absolute, X
Absolute, Y
Implied
Relative

Accumulator
Immediate
Zero Page

ADC
AND .
ASL 2 ; £ ¥ 3
BCC e % B @ W oo s o® e
BCS e T T)
BEQ TR ¥ 5 5 s 2%
BIT sow B o v W s s & ow s
BMI B T T .
BNE T S SR S S -yl
BPL g B oom o= ® o= owm owm e
BRK U SR T S SRR SR S
BvC S x4 & % & w o4 @ BN
BVS v ® @ moowm om m s 4 Bk
CLC .
CLD
CLI
CLvV
CMP
CPX
CPY
DEC
DEX
DEY s % v Je WLl
EOR ! 2 . 4 44 | B 5*.
INC 5z 6 v & F - & x = u
INX SO A T PR e~ .

INY 2 ow m e w ow. W % B & & dha
JMP o w @ e o PO oM o w ow wow D

*

SN
G W
hh
hh b

B

F

IS

L

=]

LS SR NS

AP

TNNN
N ' MWW
F Y
o e ARAR o -
MM -

Add one cycle if indexing across page boundary
** Add one cycle if hranch is taken, Add one additional

254 BASIC TO MACHIME LAMGUAGE

RELATED EXECUTION

TIMES (in clock

cycles)

JSR
LDA
LDX
LDY
LSR
NOP
ORA
PHA
PHP
PLA
PLP
ROL
ROR
RTI
RTS
sBC
SEC
SED
SEI
STA
STX
STY
TAX
TAY
TSX
TXA
TXS

TYA

Accumulator

Immediate

Zero Page

Zero Page, X

Zero Page, Y
Absolute

X

Absolute,
Absolute, Y
Implied
Relative
(Indirect, X)
{Indirect),Y

Absolurs Indirect

NN

W MWL w-

AT AN

B OB -

B MbEppbO
F.Y
*
P
[)
o

CNNRNT OO BRLW N

bbb

MR RNS

i1t branching operation crosses page boundary

-

K

5 .

5" .

BASIC TO MACHINE LANGUAGE

255

o9

g1 -
gz -
p3 -
P4 -
@5 -
@6 -
@7 -
P8 -
@9 -
A -
@B -
ac_
@D -
PE -
OF -
1g -
11 -
12 -
13 -
14 -

15

16 —
17 -
18 -
3 i
1A -
1E -
1C -
1D =
1E =
IF -

256

- BEK
ORA - (Indirect,X)

Future EKxpansion
Future Expansion
Future Expansion
ORA - Zero Fage
ASL - Zero Page
Future Expansion
PHP

ORA - Immediate
ASL - Accumulator
FuLure Expansion
Future Expansion
ORA - Absolute
ASL - Absolute

Future Expansion
BPL

ORA - (Indirect),Y

Future Expansion

Future Expansion

Future Expansion

ORA - Zerc Page,X
ASL - Zero Page,X
FuLure Expansion

CLC

ORA - Absclute,Y

Future Expansion

Future Expansion

Future Expansion

ORA - Absclute,X

ASL - Absclute,X

Future Expansion

BASIC TO MACHIME LAMNGUAGE

20
21
22
23
24
25
26
27
28
29
24
2B
2C
20
2E
2F
9
31

33
34

36
37
i8
39
34
k)]
3c
3D
JE
3F

JSR

AND - (Indirect,X)
Future EKxpansion
Future Expansion
BIT - Zero Page
AND - Zero lage
ROL - Zero Fage
Future Expansion
PLP

AND - Immediate
ROL - Accumulator
Future Expansion
BIT - Absclute
AND - Ahsaolute
ROL = Absclute
Future Expansion
BM1

AND - (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
AND — Zero Page,X
ROL - Zerc Page,X
Future Expansion
SEC

AND - Absolute,¥Y
Future Expansion
Future Expansion
Fulure Expanslion
AND = Absolute,X
ROL = Absolute,X

Future Expansion

4@
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
56
51
52
53
LT A

EE

33
56
57
58
59
SA
5B
5C
5D
SE
5F

RTL

EOR - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
EOR - Zero Page
LSR - Zero Page
Future Expansion
PHA

EOR - Immediate
LSR = Accumulator
Future Expansion
JMP — Absolute
EOR ~ Absolute
L3R = Absolute
Future Expansion
BVC

EOR = (Indirect),Y
Future Expansion
Future Expansion
Future Expansion
EOR - Zero Page,X
L5R - Zero Page,X
Future Expansion
CLI

EOR - Absolute,Y
Future Expansion
Future Expansion
Future Expansion
EOR - Absolute,X
LSR = Absolute,X

Future Expansion

60
61
62
63
64
65
66
67
68
69
64
6B
€C
6D
6E
GF
70
71
72
]
74
75
76
77
78
79
74
7B
ic
iD
7E
rhy

RTS

ADC - (Indirect,X)
Future Expansion
Future Expansion
Future Expansion
ADC - Zero Page
ROR - Zero Page
Future Expansion
PLA

ADC - Immediate
ROR - Accumulator
Future Expansion
JMP - Indirect
ADC - Absolute
ROR - Absclute
Future Expansion
BV3

ADC - (Indirect),¥Y
Future Expansion
Future Expansion
Future Expansion
ADC - Zerc Page,X
ROR - Zero Page,X
Future Expansion
SEL

ADC - Absolute,Y
Futurc Expansion
Future Expansion
Future Expansion
ADC - Absolute,X
ROR - Absolute,X

Future Expansion

BASIC TO MACHINE LANGUAGE 257

80
81
82
83
34
85
86
87
88
89
84
8D
8C
8D
BE

99
91
92
93
94
95
96
97
98
95
24
9B
9C
9D
9E
9F

258

Future Exparnsion
STA = (Indirect,X)
Future Expansion
Future Expancion
STY - Zero Fage
STA - Zero Fege
3TX - Zero Fege
Future Expansion
DEY

Future Expanesion
TXA

Future Expansion
STY - Absolute
STA - Absolute
37X = Absolute
Future Expansion
BCC

STA - (Indirect),¥

Future Expansion

Fulure Expansion

STY - Zarn Page,X
STA - Zaro Page X
5TX - Zaro Page,Y
Future Expanszion

TYA

STA - Absolule,Y

TXS

Future Expansion

Future Expansion

STA - Absolute,X

Future Expansion

Tuture Expansion

BASIC TO MACHINE LANGUAGE

Al

AF
B@
Bl
B2
B3
B4
B5
B6
B7
B8
B9
BA
BB
BC
BD
BE
BF

LOY - Immediate
LDA - (Indirect,X)
LDX - Immediate
Future Expansion
LDY - Zero Page
LDA - Zero Page
LDX - ZeTo Page
Future Expansion
TAY

LDA - Immediate
TAX

Future Expansion
LDY - Absoluta
1.NA = Absoluts
LDX - Absolute
Future Expansion
BCS

LDA - (Indirect),Y
Future Expansion
Future Expansion
LDY - Yern Page,X
LDA - Zero Page,X
LD¥X - Zero Page,Y
Future Expansion
CLV

LDA - Absoluts,Y
TSX

Future Expansion
LDY - Absolutke,X
LDA - Absolute,X
LDX - Absolute,¥Y

Future Expansion

co
cl
c2
C3
Cé
C5
cé
c7
c8
c9
CA
CB
G
CD
CE
CF
Dg
D1
D2
D3
e
15
D
D7
Le
TS
TA
DB
LcC
DD
LE
DF

CFY - Immediate
CMP - (Indirect,X)
Future Expansion
Future Expansion
CPY - Zero Page
CMP - Zero Page
DEC - Zero Page
Future Expansion
INY

CMP - Immediate
DEX

Future Expanaion
CPY - Absolute
CMP - Absolute
DEC = Absoluta
Future Expansion

BNE

CMP - (Indirect),Y

Future Expansion

Future Expansion

Future Expansion

UMP — Zern Page,X
DEC - Zero Page,X
Future Expansion

CLD

CHP - Absolute,T

Future Expansion

Future Expansion

Future Fxpansion

CMP - Absolute,X

DEC - Absclute,X

Future Expanslon

CFX = Immediate

SBC - (Indirect,X)

Future Expansicn
Tuture Cxpansion
CFX - Zerp Page
SEG - Zern Page
INC - Zero Page
Future Expansicn
INX

SEC — Immediate
NCF

Future Expansion
CPX - Absolute
SEC - Absolute
INC - Absolute
Future Expansion
BEQ

SBC - (Indirect),Y

Future Expansion

Future Expansion

Future Expansion

SBC - Zero Page,X
INC - Zero Page,X
Future Expansion

SED

SKC - Absolute,Y

Future Expansion

Future Expanzion

Future Expansion

3BC - Absolute,X

INC - Absolute,X

Future Expancion

BASIC TO MACHIMNE LANGUAGE

259

MEMORY MANAGEMENT ON THE
COMMODORE 64

The Commadare 64 has 64K hytes of RAM. It clso has 20K bytes of
ROM, containing BASIC, the operating system, and the standcrd char-
acter set. It also accesses input/output devices as a 4K chunk of mem-
ory, How is this all possible on o computer with a 16-bit address bus,
that is normaly only capable of addressing 64K?

The secret is in the 6510 pracessor chip itself, On the chip is an input/
output poart. This port is used to control whether RAM or ROM or 1/O will
appear in certain portions of the system’s memory. The port is also used
fo contral the Datassefte™, so it is important to affect only the proper
bits.

The 6510 input/cutput port appears at location 1. The data direction
register fer this port cppears ot location 0, The port is controlled like ony
of the other input/autput ports in the system . . . the dota direction
controls whether o given kit will be an input or an output, and the actual
dato transfer occurs through the part itself.

The lines in the 6510 control port are defined as follows:

NAME BIT DIRECTION DESCRIPTION
LORAM 0 OUTPUT Control for RAM/IROM at
$A000—$BFFF (BASIC)
HIRAM | QUTPUT Control for RAM/ROM at
$E000 - $FFFF (KERNAL)
CHAREN 2 ouTPUT Control for I/O/ROM at
$D000—$DFFF
3 QUTPUT Cuasselle write line
4 INPUT Cossette switch sense
5 QUTPUT Casserte motor control

The proper value for the data direction register is us follows:

BITS 5 4 3 2 1 0
| M 1 DI i S |

(where 1 is an output, and 0 is on input)

260 BASIC TO MACHINE LANGUAGE

Thizs gives o value of 47 decimal. The Commedore 64 auiematicolly
sets the data direction registe- to this value.

The control lines, in general, perform the function given in their de-
scriplions. However, a combination of contro’ lines are occasionally used
to get o particular memory configuraticn.

LORAM (bit 0) caon generally be thought of as @ cantral line which
bonks the 8K byte BASIC ROM in and out of the microprocessor address
space. Nermally, this line is HIGH for BASIC operation. If this line is
progrommed LOW, the BASIC ROM will disappear from the memcry
map dnd be replaced by 8K bytes of RAM from $A000-S$BFFF.

HIRAM (oit 1) can generally be thought of as a control ine which
bonks the 8K byte KERNAL ROM in and out of the micropracessar ad-
dress space. Normally, this line is HIGH fer BASIC operation, If this line
is programmed LOW, the KERNAL ROM will disappear from the memary
map and be replaced by 8K bytes of RAM from $E000- S$FFFF.

CHAREN (bit 2) is used erly to bank the 4K byte character generator
ROM in or out of the microprocessor address space. From the processor
point of view, the charccter ROM occupies the same address space zis
the I/O devices ($D000—$DFFF). When the CHAREN line is set to 1 (as is
normal), the I/O cevices appear in the microprocessor address space,
anc the cheracter ROM ‘s net occessable. When the CTHAREN bit is
cleared 1c 0, the chorocter ROM appears in the processor oddress
space, and the I/0 devices are not accessabls. (The microprocessor anly
needs to access the charocter ROM when downloading the character set
from ROM to RAM. Special care is needed tor this . . . see the section
or PROGRAMMABLE CHARACTERE in the GRAPHICS chaoter), CHAREN
can be overricden by otner centrcl lines in certain mamory
configurations. CHAREN will have no effect on any memory
configuration without 1/O devices. RAM will appear trom $D00C— 8DFFF
instead.

MOTE: In any memory mop containing ROM, o WRITE (u POKE] tu o ROM locafion will
store doto in the RAM “under” the ROM. Wiiling 1o o ROM location stores dota in the
“hicden” RAM. For example, this allows a hi-resclution screen 1o be kepr undemszath
a ROM, and be changee without havirg te bank the screen back inlo the processor
ncdress space. Of course o READ ot ¢ ROM lacation will return the contents of the
ROM, not the "Fidden' RAM

BASIC TO MACHINE LANGUAGE 61

COMMODORE 64 FUNDAMENTAL MEMORY MAP

K KEHNAL HUM
E000-FFFF OR
FAN
o 4K IO DR RAM OR
BEO-BERE: SHARACTER ROM
ceon-CFEF 4K RAM
3K BASIC ROM
DR
AMD-RFFF FAM
[nln}
FOM PLUG-IN
BK FAM
8000-SFFF OR
FCM PLUGN
4000 TEFF 16K RAM
0000-3FFF 16K RAM

I/O BREAKDOWN

DO0O-D3FF VIC (Video Controller)
D400-D7FF SID (Sound Synthesizer)
D800-DBFF Color RAM

DCOO-DCFF CIAT (Keybourd)

DDOO-DDFF CIA2 (Serial Bus, User Port/RS-232)
DEOO-DEFF Open 1/O slot #1 (CP/M Enable)

DFOO-DFFF Open /O slot #2 (Disk)

262 BASIC TO MACHIME LANGUAGE

1K Bytes
1K Bytes
1K Nybhles
256 Bytes
256 Bytes
256 Bytes
256 Bytes

The rwo ooen /O slots are for general purpose user I/0, specicl pur-
pose /O cartridges (such as IEEE), and have been tentalively designoted
for enabling the Z-8G cartridge (CP/M opticn) and for intertacing to a
low-cost high spced disk system,

The system provides for “auta-start” of the progrom in & Commodare
64 Expansion Cartridge. The certridge program is started if the first nine
bytes of the carridge ROM starting at locatien 32768 ($8000) contain
specific data. The first two bytes must hold the Cald Start vector to be
used by the cartridge pragram. The next two bytas at 32770 ($8002)
must be the Warm Start vector used by the cartridge program. The nexi
three bytes must be the letters, CBM, with hit 7 set in each lefter. The
last two bytes must be the digits “80" in PET ASCII.

COMMODORE 64 MEMORY MAPS

The follewirg tables list the various memary configurations available
on the COMMODORE 64, the states of the contral lines which select each
memory map, and the intended use of each map.

X = DON'T CARE
HK-KERNAL RON 0 = Low
E000 1 = HIGH
Dooo i LORAM =
4K RAM (SUFFER) HIRAM i
Coog GAME -
&K BAS C ROM T
AD00
BK FAM
3000
16K RAM
1000
16K RAM
This 15 e default BASIC mamnry
map wnich prosides BASIC 2.0 and
38K contiguous bytes of user FAM.
00co

BASIC TO MACHINE LANGLIAGE 261

264

E000
Qoo
Cooo

&000

4000

aleleli}

EQ0D
Dooo
cood

2000

4000

0000

2K AAM

4K 1D

4K FAM

16K RAM

16K RAM

1B RAM

EK KERNAL ROM

4K 11O

4K AAM

16K RAM

16K RAM

15K Ram

BASIC TO MACHINE LANGUAGE

X
0
1

DON'T CARE
LW
HIGH

LORAM
HIRAM
GAME
EXROM

waanm
[P ey _ R

- OR

LORAM
HIRAM
GAME =
ITHE CHARACTER ROM

IS NOT ACCESSIELE EY
THE CPU IM THIS NAP)

EXROM =10

4
o
0

This map provides EOK, byles ol
AAM and O devices. The user
must write nis awn 7D driver
roulings

% = DON'T GAHE
= LOW
= HIGH

-

]

LORAM
HIRAM
GAME
EXROM

ok ok O3

o

This map is intended for tae with
softload langueges| noiuding
CPMI, providing 52K suntigucus
bytes cf user RAM, 10 devices,
and U0 criver roctings

coco

8000

4000

0oco

E0OC
Dooo
cooo

ADCO

8000

14000

0000

16K RAM

16K RAM

16K RAM

1CK RAM

3K KERNAL ROM

4K 1o

4K RAM (BUFFER)

8K BASIC ROM

8K ROM CARTRIDGE
(BASIC EXP)

16K RAM

16K RAM

¥ = DON'T CARE
0 = LOwW
1 - laEH

LORAM
HIRAM
GAME
EXROM

P -]

0OR
LORAM
HIRAM
GAME
EXROM

Wwinmu
ome o

This map gives access to all 6dK
bytas of HAM. The IO devices
musi be banked back into the
processor's addrass space lor any
11O operation.

DON'T CARE
Low

b
0
| HIGH

LORAM
HIRAM
GAME
EXROM

[= SRy

b

This is 1he standard cenfiguration
for a BASIC system with 2 BASIC
axpansion ROM. Thiz mag provides
32K contiguous bytes of usar HAM
and up o 8K bytes of BASIC
“erhancement”

BASIC TO MACHINE LANGUAGE

245

EOCO
D000
cooo

ADCO

8000

4000

0000

EQOD
Doon
Cood

8000

4000

0000

BK KEHNAL ROM

4K 110

4K RAM (BUFFEF)

8K ROM (CARTHIDGE)

8K RAM

“EK RAM

TEK HAM

8K KERNAL ROM

4K VO

4K FAM (RUIFFER)

15K ROM (CASTRIDGE)

16K RAM

16K RAM

266 BASIC TO MACHINE LANGUAGE

DON'T CARE
Law
HIGH

=1
nn

LORAM
HIRAM
GAME

EXROM =

I
oo =0

This ma> provides 40K contiguous
bytes of user RAM ard up (0 8K
bytes of plug-in ROM for special
HOM-Cazed apalicarions which daq't
require BASIC,

X = DOMN'T GARE
= LOw
= HiGH

LORAM
HIRAM
GAME
EXROM

00 - -

This map provides 32K contiguous
bytas of user RAM and uo to 16K
bytes of plug-in ROM for aoecial
ROM-tased applical ons which don't
require EASIC (word processors,
other [anguzges, elc.).

E0CD
Doco
cooa

ADOD

&000

4000

1000
0000

:; ¥ = DON'T CARE

BK CARTRIDGE HOM 0= LOW

1 = HIGH

4K 110

4K OPEN LORAM = X
HIRAM = X
3K OPEN GAME =10
EXROM =1

8K CARTRIDGE ROM

16K, OPEN

T2K QREN

Thig is the ULTIMAX videa game
memory mag. Mote that the 2K
Diyle “expaisior RAMT for (w

4K RAM

ULITINVAX, if required, |5 accessed
ou” of the COMMDIIDRF R4 and any

RAM in the castridge is gnored.

BASIC TO MACHINE LANGUAGE

267

THE KERNAL

One of the problems fecing programmers in the microcomputer field
is the question of what to do when changes are made ta the operating
system of the computer by the cempany. Machine language programs
which took much time g develop might no longer work, farcing major
revisions in the program. To alleviate this problem, Commodore has
developed a method of protecting software writers callad the KERNAL.

Essentially, the KERNAL is a standardized JUMP TABLE to the input,
output, and memory management routines in the operating system. The
locations of each routine in ROCM may change as the system is up-
graded. But the KERNAL jump table will always be changed to match. If
your machine language routines only use the systern ROM routines
through the KERNAL, it will take much less work to modify them, should
that need ever arise.

The KERNAL is the vperaling systerm of the Commodore 64 computer,
All input, output, and memory management is controlled by the
KERNAL.

To simplify the machine language programs you write, and to make
sure that fulure versions of the Commodure 64 operaling syslem don’l
make your machine language pragrams obsolate, the KERNAL contains
a jump table for you to use. By taking advaniage of the 32 input/output
routines and other utilities available 1c you frem the rable, nor only do
you save fime, you also maoke it casier to translate your programs from
one Cammodore computer to another.

The jump table is located on the last poge of memory, in read-only
memaory (ROM).

To use the KERNAL jump table, first you set up the parameters that the
KERNAL routine needs to work. Then J5R (Jump to SubRouting) to the
proper place in the KERNAL jump table. After performing its function,
the KERNAL Iransfers control back to your machine language program.
Depending on which KERNAL routine you are using, certain registers
may pass parameters back to your program. The particular registers for
each KERNAL rautine may be faund in the individual descriptions of the
KERNAL subroutines.

268 BASIC TO MACHINE LANGLIAGE

A good question at this point is why use the jump tchle at all? Why
not just J5R directly o the KERNAL subroutine involved? The jump tcble
is used so that if the KERNAL or BASIC is changed, your machine lan-

guage programs will stil work. In lulure operating systems the routrines
may have their memory lccations moved around to o different position
in the memory map . . . but the jump lable will still work correctly!

KERNAL POWER-UP ACTIVITIES

1) On power-up, the KERNAL firsr resets the stack pointer, and clears
dacimal mode.

The KERNAL then checks for the presence of an autostart ROM car-
tridge at location $8000 HEX (32768 decimal). If this is present, nor-
mal initialization is suspended, and control is transferred 1o the car-
tridge code. If an autestart ROM is not present, normal system ini-

2

—

fialization contfinues.

Next, the KERNAL initializes oll INPUT/OQUTPUT devices. The sarial bus
is Initialized. Both 6526 CIA chips are sct to the proper values for
keyboard sconning, and the 40-Hz timer is activated. The SID chio is
clearzd. The BASIC memory map is selected and the cassette motor

3

—

is switched ofT.,

Next, the KERNAL performe o RAM test, setting the top and bottom of

memory poinfers. A'so, page zero is inifiolized, cnd the rape buffer

is set up.

The RAM TEST routine is @ nondestructive test starting al location
$0300 and working upwarg. Once the test has feund the first non-
RAM locatian, the top of RAM has its pointer sel. The botiom of
memory is olways set to 30800, and the screen satup is always sef at
$0400.

5] Finally, the KFRNAL perfarms these other activities. I/ vectors are
et to default values. The indirect jump table in low memary is estab-
lished. The screen is then cleared, and cll screen aditor variahlas
reset. Then the indirect at $A000 is used fo start BASIC.

4

BASIC TO MACHINE LANGUAGE 269

HOW TO USE THE KERNAL

When writing machine languoge programs it is often canvenient to
use the routines which are already part of the operating system for
input/outpur, access to the system clack, memory monagement, and
other similar cperations. It is an unnecessary duplication of effort to
wtite these rautines avar and over again, so 2nsy access fto the operas-
ing system helos speed machine 'anguage programming.

As mentioned bhefore, the KERNAL is a jump table. This is just a col-
lection of JMP instructions to many operating system routines.

To use o KERNAL routine you must first make all of the preparations that
the routina demands. If one routine says that you must call another
KERNAL routine first, then thot routine must be cclled. If the routine
expects you to put @ number in the accumulater, then that number must
be there. Otherwise yaur routines hove little chance of working the way
you expect them tc work.

Aftar all preparations ars made, you must call the routine by means
of the JSR instruction. All KERNAL routines you can access are structurad
os SUBROUTINES, and must end with an RTS instruction. Wher the
KERNAL routine has finished its task, control is returned to your program
ot the instruction after the JSE.

Mony of the KERMAL routines return error codes in the status word ar
the accumulatar if you have oroblems in the routine. Good programming
proctice ond the success of your machine lenguage programs demand
thul yeu hondle this properly. If you ignore an error return, the rest of
your program might “bomb.”

Thot's cll there is to do when you're using the KERMNAL. Just these
three simple steps:

1) Set up
2) Call the rcutine
3) Error handling

270 BASIC TO MACHIME LAMNGUAGE

The fellowing conventions are used in describing the KERNAL routines:

—FUNCTION MAME: Name of the KERNAL routine.

—CALL ADDRESS: This is the call address of tha KERNAL routine, given
in hexadecimal.

—COMMUNICATION REGISTERS: Registers listed under this heading
are used to pass parametars to and from the KERNAL routines.

—PREPARATORY ROUTINES: Certain KERNAL routines require that data
be set up before they con cperate. The routines needed are listed
here.

—ERROR RETURNS: A return from o KERNAL routine with the CARRY set

indicates that on error was encountered in processing. The ac-
cumulator will contain the number of tha error.

—STACK REQUIREMENTS: This Is the actuval number of stack bytes used
by the KERNAL routine.

—REGISTERS AFFECTED: All registers used by the KERNAL routine ars
listed here.

— DESCRIPTION: A short tutorial on the function of the KERNAL routine
is given here.

The list of the KERNAL rourines follows.

BASIC TO MACHINE LANGUAGE 27

USER CALLABLE KERNAL ROUTINES

272 BASIC TO MACHINE LANGUAGE

ADDRESS BN
TeR" HEX DECIMAL e

ACPTR $FFAS 65445 Input byte from serial
port,

CHKIN $FFCé 65478 Open channel for input

CHKOUT $FFC? 65481 Open channel for output

CHRIN $FFCF 65487 Input character from
channel

CHROUT $FFD2 65490 Outpui character te chan-
ﬂ(!l

clouT $FFAB 65448 OQutput byte to serial port

CINT $FF81 65409 Initialize sereen editor

CLALL $FFE7 65511 Clase all channels and
files

CLOSE $FFC3 65475 Close a specified logical
file

CLRCHN $FFCC 65484 Close input and output
channels

GETIN $FFE4 65508 Get choracter from
keyboard queve
(keyboard buffer)

IOBASE $FFF3 65523 Returns base cddress of
10 devices

IOINIT $FFa4 65412 Initialize input/output

LISTEN $FFB1 65457 Command devices on the
serial bus ta LISTEN

LOAD $FFD5 65493 Lood RAM from u device

MEMBOT SFF9C 65436 Read/set the hottam of
memory

MEMTOP FF9 65433 Read/set the tep of mem-
ary

QPEN $FFCO 65472 Open a logical file

ADDRESS

NAME HEX I DECIMAL FUNCTION

PLOT $FFFO I 65520 Read/set X,Y cursor posi-
tion

RAMTAS $FFE7 | 65415 Initialize RAM, allocate
tape buffer, set screen
50400

RDTIM $FFDE 45502 Read real time clock

READST {$FFR7 A5463 Read /O status word

RESTOR $FFEA 65418 Restore default /O vecters

SAVE 3FFD8 65496 Save RAM to device

SCNKEY $FF9F 65439 Scan keyboard

SCREEN $FFED 65517 Return X.Y organizaticn
of screen

SECOND $FF93 65427 Send secondary oddress
atter LISTEN

SETLFS $FFBA 65466 Set logical, first, and sec-
ond addrasses

SETMSG $FF90 65424 Confrol KERNAL messages

SETNAM $FFBD 65469 Set file name

SETTIM $FFDB &£5499 Set real time cleck

SETTMO $FFA2 £5447 Set timeout on serial bus

STOP $FFE1 65505 Scan stop key

TALK §FFB4 65460 Command serial bus de-
vice to TALK

TKSA 3FF96 65430 Send secondary address
after TALK

UDTIM $FFEA 65514 Increment real time clock

UNLSN $FFAE 65454 Command cerial bus te
UMNLISTEN

UNTLK $FFAB 65451 Command serial bus to
UNTALK

VECTOR $FFED 65421 Read/set vectored 1/Q

BASIC TO MACHINE LANGUAGF

273

B-1. Funetion Name: ACPTR

Purpose: Get daota from the serial bus

Call eddress: $FFAS (hex) 65445 (decimal)
Coammunicaticn ragisters: A

Preparatory roufines: TALK, TKSA

Error returns: See READST

Stack requirements: 13

Registers affected: .A, X

Description: This is the routine to use when you want to get informa-
tion from o device on the serial bus, like a disk. This routine gets o byle
of doto off the serial bus using full handshaking. The data is returned in
the accumulater. To prepare for this routine the TALK routine must be
called first to command the device on the serial bus 1o send data
through the bus. If the input device needs a secondary command, it
must be sent by using the TKSA KERNAL routine hefore calling this
routine. Errors are returned in the status word. The READST routine is
used to read the status word.

How te Use:

0) Command a device on the sericl bus 1o prepare to send data to
the Commodore 64. (Use the TALK and TKSA KERNAL routines.)

1) Call this routine (using JSR).

2) Store or otherwise use the data,

EXAMPLE:

;GET A BYTE FROM THE BUS
JSR ACPTR

STA DATA

274 BASIC TO MACHINE LANGUAGE

B-2. Function Name: CHKIN

Purpose: Open o channel for input

Call address: $FFCAH (hex) 65478 (decimal)
Communicalion registers: .X

Preparatory routines: (OPEN)

Error returns:

Stack requirements: Nana

Reyislers affected: A, .X

Description: Any logical file that has alrecdy been opened by the
KERNAL OPEN routine can be defined as an input channel by this
routine. Naturally, the device on the channel must be an input device.
Otherwise an errar will occur, and the routine will abart.

If you are getting data from anywhere other than the keyboard, this
routine must be called before using either the CHRIN or the GETIN KER-
NAL routines for dato input, f you want to use the input from the
keykboard, and no other input channels are opened, then the calls to this
routine, and to the OPEN rcutine are not needed.

When this routine is used with o device on the serial bus, it auto-
matically sends the talk address (and the sscondary address it one was
specified by the OPEN roufine) over the bus.

How to Use:

0) OPEN the logical file (if necessary; see description above).
1) Load the .X register with number of the logical file to be used.
2y Call this routine (using a JSR command).

Possible errors are:

#3: File nat opan
#5: Device not present
#6: File not an input file

EXAMPLE:

; PREPARE FOR INPUT FROM LOGICAL FILE 2
LDX #2
JSR CHKIN

BASIC TO MACHINE LANGUAGE 275

B-3. Function Name: CHKOUT

Purpose: Open o channel for output

Call address: $FFCP (hex) 65481 [decimal)
Communication registers: .A

Preparatory routines: (OPEN)

Error returns: 0,3,5,7 (See READST)

Stack requirements: 4+

Registers affected: .A, .X

Description: Any logical file number that has been created by the
KERNAL routine OPEN can be defined os an output channel. Of course,
the device you intend opening a channel to must be an output device.
Otherwise an error will occur, and the routine will be aborted.

This routine must be called before any dota is sent to any oulpul
device unless you want to use the Commodore 64 screen as your output
device, If screen output is desired, and there are no other output chan-
nels already definad, then calls to this routine, and te the OPEN routine
are not needed.

When used to open a channel to o device on the serial bus, this
routine will automatically send the LISTEN address specified by the OPEN
routine (and a secondary cddress if there was one).

How te Use:

REMEMBER: this routine is NOT NEEDED to send data to the screen.

0) Use the KERNAL CPEN routine to specify a logical file number, a
LISTEN eddress, and a secondary address (if needed).

1) Load the .X register with the logical file number used in the open
statement.

2) Call this routine (by using the JSR instruction).

EXAMPLE:

LDX #3 ;DEFINE LOGICAL FILE 3 AS AN OUTPUT CHANNEL
JSR CHKOUT

Possible errors are:

#3: Flle not open
#5: Device not prasent
#7: Not an output file

276 BASIC TO MACHIMNE LANGUAGE

B-4. Function Name=: CHRIN

Purpose: Get o character fram the inout channel
Call address: $FFCF (hex) 65487 (decimal)
Communication registers: A

Preparatory routines: (OPEN, CHKIN)

Frrar returns: 0 [See READST)

Stack reguirements: 7+

Ragistars affected: A, X

Description: This routine gets a byte of data fram a channel already
sct up as the input channel by the KERNAL routine CHKIN. If the CHKIN
has NCT been used 1o cefine anather input channal, then all your data
is expected from the keyboard., The data byte is returned in the cc-
cumulater. The channel remains apen ofter the call.

Input frem the keyboard is handled in a special way. First, the cursar
is turned on, and klinks until o carriage return is typad on the keyboard.
All characters on the line (up to 88 charactars) are stored in the BASIC
input buffer. These charucters can be retrieved one at o time by calling
this routine ance for acch character. When the carriage return is re-
trieved, the entire line has been processed. The next time this routine is
called, tha whele process begins again, i.e., by flashing the cursor.

How to Use:

FROM THE KEYBOARD
1) Retrieve a byte of duta by calling this routine.
2) Store the dota oyte.
3) Check if it is the last data byte (is it a CR ?).
)

4) If nat, go to step 1

EXAMPLE:

LDY $#00 ;PREPARE THE .Y REGISTER TO STORE THE DATA
RD JSR CHRIN
STA DATA,Y ;STORE THE YTH DATA BYTE IN THE YTH
LOCATION IMN THE DATA AREA.

INY
CMP #CR ;15 IT A CARRIAGE RETURN?
BME RD ;NO, GET AMOTHER DATA BYTE

BASIC TO MACHIMNE LAMGUAGE 277

EXAMPLE:

JSR CHRIN
STA DATA

FROM OTHER DEVICES
0) Use the KERNAL OPEN and CHKIN routines,
1) Call this routine {using o JSR instruction).
2) Stere the data.

EXAMPLE:

JSR CHRIN
STA DATA

B-5. Funclion Name: CHROUT

Purpose: Output a character

Call address: 3FFD2 (hex) 65490 (decimcl)
Communication registers: A

Preparatory routines: (CHKOUT,OPEN)
Error returns: O (See READST)

Stock reguirements: 8+

Registers affected: A

Description: This routine outputs a character to an already opened
channel, Use the KERNAL OPEN and CHKOUT routines to set up the
nutput chanrel before calling this routine. If this call is omitted, data is
sent to the default output device (number 3, the screen). The deta byte
to be output is locded into the accumularor, and this routine is called.
The data is then sent to the specified output device. The chennel is left
open after the call.

MOTE: Care must be tcken when using this reutine to send dato ‘o a specific serial
device since data will be sent to all open output channels on the bus. Unless this is
desirad, all apen autput channels on the serial hus athar than the intendad dasfinotion
chonnel must he clased hy a call 10 the KFRNAL CIRCHN routine.

278 BASIC TO MACHINE LANGUAGE

How fo Use:

0) Use the CHKOUT KERNAL routine if needed (see description
above).

1) Load the data to be output imto the accumulatar.

2) Call this routine.

EXAMPLE:
iDUPLICATE THE BASIC INSTRUCTION CMD 4,“A";
LDX #4 ;LOGICAL FILE #4
JSR CHKOUT FOPEN CHANMNEL QUT
LDA #'A
JSR CHROUT . ;SEND CHARACTER

B-6. Function Name: CIOUT

Purpose: Transmit a byte over the serial bus
Coll address: $FFAE (hex] 65448 (decimal)
Communication registers: .A

Preparatory routines: LISTEN, [SECOND]
Error returns: See READST

Stack requirements: 5

Reyisters affected: None

Description: This routine is used to send information to devices an the
serial bus. A eoll to this routine will put a data byte onto the scrial bus
using full serial handshaking. Before this routine is colled, the LISTEN
KERNAL routine must he usad to command o device on the serial bus to
get ready to receive data. (If a device needs o secondary uddress, it
must also be sent by using the SECOND KERNAL routine.) The ac-
cumulator is loaded with a kyts to handshake as data or the serial bus.
A device must be listening or the status werd will return a timeout. This
routine always buffers cre character. (The routine holds the previous
character to be sent back.) So when a call to the KERNAL UNLSN routine
is made to end the data fronsmission, the buffered character is sent
with an End Or Identify (EOI) set. Then the UNLSN command is sent to
the device.

BASIC TO MACHINE LANGUAGE 279

How ta Use:

0) Use rhe LISTEN KERNAL raoutine {and the SFCOND routine if
nceded).

11 Load the accumulator with o byte of daota.

2] Call this routine fo send the dota byte,

EXAMPLE;

LDA #'X ;SEND AN X TO THE SERIAL BUS
JSR ClOUT

B-7. Function Name: CINT

‘Purpose: Initiclize screen editor & 6567 video chip
Call uddress: $FF81 (hex) 65409 (decimal)
Commurication registers: ‘None

Preparalory roulines: None

Frrar returns: None

Stock requirements: 4

Registers offected: A, X, .¥

Description: This routine sets up the 6567 video controller chip in the
Commodore 64 for normal operation. The KERNAL screen editor is also
initialized. This routine should be called by a Commadore 64 program

cartridge.
How to Use:

1] Call this routine.
EXAMPLE:

JSR CINT
JMP RUN ;BEGIN EXECUTION

280 BASIC TO MACHINE LANGUAGE

B-B. Funciion Name: CLALL

FPurpose: Close all files

Call address: $FFE7 (hex) 65511 (decimal)
Communication registers: None
Preperatery routines: None

Error returns: None

Stack requirements: 11

Registrers affected: A, .X

Description: This routine closes all open files. When this routine is
called, the pointers inte the open file table are reset, closing all files.
Also, the CLRCHN routine is automatically called to reset the /O chan-
nels.

How to Use:
1) Call this routine.
EXAMPLE:

JSR CLALL ;CLOSE ALL FILES ANMD SELECT DEFAUILT I/O CHAMNMNELS
JMP RUN ;BEGIN EXECUTION

B-9. Function Name: CLOSE

Furpose: Close a logical file

Call address: $FFC3 (hex) 65475 (decimal)
Communication registers: A

Frepurulory roulines: None

Error returns: 0,240 (S5ee READST)

Stack requirements: 21

Registers affected: A, . X, .Y

Description: This routine is used to close o legical file after all VO
operations huve been completed on that file, This routine is called after
the accumulator is loaded with the Inogical file number to be closed (the
same number used when the file was opened using the OPEN routine),

BASIC TO MACHINE LANGUAGE 281

How 1o Use;

1} Lead the accumulater with the number of the logical file 1o be
closed.
2) Call this routine.

EXAMPLE:

;CLOSE 15
LDA #15
JSR CLOSE

B-10. Function Name: CLRCHN

Purpose: Clear /O channels

Call uddress: $FFCC (hex) 5484 (decimal)
Communication registers: None
Preparatory routines: None

Error returns:

Stuck requirements: 9

Registars aftfectad: A, X

Description: This routine is called to clear all open channels and re-
store the I/O channels to their original default values. It is usually called
ofter apening other /O channels (like o tape or disk drive) and using
them for input/autput operaticns. The default input device is 0
(keyboard). Tha default output device i 3 (the Commcdore 64 screen).

If one of the channels to be closed s to the serial port, an UNTALK
signal is sent first ta clear the input channel ar an UNLISTEN is sent ta
clear the output channel. By not calling this routine (ard lsaving lis-
tener(s) active an the serial bus) several devices can receive the same
data from the Commodore 64 at the same timz. Onc way to icke ad-
vantage of this would be to command the printer ta TALK and tha disk to
LISTEN. This would allow direct printing of a disk file.

This routine is automatically called when the KERNAL CLALL routine is
executed,

How to Usa:

1) Cell this routine using the JSR instrucrion,
EXAMPLE:

JSR CLRCHMN

282 EASIC TO MACHIMNE LANGUAGE

B-11. Function Name: GETIN

Purpose: Get a character

Call address: $FFE4 (hex) 65508 (decimal)
Communication registers: A

Preparatory routines: CHKIN, OPEN

Error returns: See READST

Stack requirements: 7+

Registers affected: .A (.X, .Y)

Description: |f the channel is the keyboard, this subroutine removes
one choracter from the keyboard queue and returns it as an ASCII value
in the accumulafor. If the gqueue is emgty, the value returnad in the
accumulator will be zero. Characters are put inta the qucue auto-
matically by an interrupt driven keyboard scan routine which caolls 1he
SCNEKEY routine. The keyboard buffer con hold up to ten characters.
After the buffer is filled, additional characiers are ignored until at least
one charocter has been removed from the queue. If the channel is RS-
232, then anly the .A register is used and a single character is returned.
See READST to check validity. If the channel is serial, cassette, or
screen, call BASIN routine.

How ta Lse:

1) Call this routine using a JSR instruction,
2) Check for a 7era in the accumulator (empty buffer).
3) Process the data.

EXAMPLE:

SWAIT FOR A CHARACTER
WAIT JSR GETIN

CMP #0

BEQ WAIT

BASIC TO MACHINE LANGUAGE 283

B-12. Function Nome: IOBASE

Purpose: Define I/{O memory page

Call address: $FFF3 (hex) 65523 (decimal)
Communication registers: X, .Y
p'epc*amry roufines: None

Error refurns:

Stack requirements: 2

Registers affected: X, .Y

Description: This routine sets the X and Y registers to the oddress of
the memory section where the memory mapped I/D devices are located.
This address can then be used with an offset to access the memory
mapped I/Q devices in the Commodore 64. The offset is the number of
locations from the beginning of the page on which the /O register you
want is located. The X register cantains the low order address byte,
while the .Y register contains the high order address byte.

This routine exists ta pravide compatibility between the Commadore
64, VIC-20, and future models of the Commodore é4. If the |/O locations
for a machine language program are set by a call 1a this routine, they
should still remain compatible with future versions of the Commedore
64, the KERNAL and BASIC.

How to Use:

1) Call this routine by using the JSR instructian.

2} Store the .X and the .Y registers in consecutive locations.
3) Lood the .Y register with the offset,

4) Access that I/O location.

EXAMPLE:

; SET THE DATA DIRECTIOMN REGISTER OF THE USER PORT TO 0 (INPUT)
JSR IDBASE

STX POINT ;SET BASE REGISTERS

STY POINT-1

LDY #2

LDA #0 ;OFFSET FOR DDR OF THE USER PORT

STA (POINT), Y ;SET DDR TO O

284 BASIC TO MACHINE LANGUAGE

B-13. Function Name: IOINIT

Furpoce: Initialize I/O devices

Call Address: $FF84 (hex) 65412 (decimal)
Communicction registers: None
Freparatory routines. Mone

Error refurns:

Siuck requirements: None

Registers affected: .A, .X, .Y

Description: This routine initializes all input/outpur devices and
routines. It is normally colled os part of the Initialization procedure of a
Commodore 64 program cariridge.

EXAMPLE:
JSR IOINIT

B-14. Function Name: LISTEN

Purpose: Command o device on the serial bus to listan
Cal Address: $FFB1 (hex) 45457 (decimai)
Communicotion ragistars: A

Preparatory routines; None

Errar returns: See READST

Stack requirements: None

Registers affected: .A

Description: This routine will command o device on the serial bus to
receive data. The accumulator must be loaded with o device number
between 0 and 31 befors calling the routine. LISTEN will OR the numoer
bit by bit to canvert to o listen address, then transmits this data as a
command on the sericl bus. The specified device will then go into listen
mode, and be ready to accept infarmation.

How to Use:

1} Load the accumulator with the number of the device t¢ command
1o LISTEN.
2) Call this routine using the JSR instruction.

EXAMPLE:

;COMMAND DEVICE #8 TO LISTEN
LDA #8
JSR LISTEN

BASIC TO MACHINE LANGUAGE 285

B-15. Function Name: LOAD

Purpose: Load RAM fram device

Call addrass: $FFD5 (hex) 65493 (decimal)
Communication registers: A, .X,.Y
Preparatory routines: SETLFS, SETNAM
Error returns: 0,4,5,8,9, READST

Stack requiremants: None

Registers affected: \A, X, .Y

Description: This routine LOADs data bytes from any input device di-
ractly into the memory of the Commodore 64, It can also be used for u
verily operation, comparing data from a device with the data already in
memory, while leaving the data stored in RAM unchanged.

The accumulater (LA} must be set to 0 for a LOAD aperation, or 1 for a
verify_ If the input device is OPENed with a secerdary address (SA) of 0
the header information from the device is ignored. In this case, the .X
and Y registers must cortnin the starting address for the load. If the
cevice is addressed with o secondary uddress of 1, thern the data s
laaded nta memory starting at the location specified by the headsr. This
routine returns the cddress of the highesi RAM locafion loaded.

Before this routine can be called, the KERNAL SETLFS, and SETNAM

routines musl be culled,

MNOTE: You can NOT LOAD f-am the keyboard (0), RS-232 (2), or the screen (3). —|

How to Use:

0) Call the SETLFS, and SETNAM routines. If a relocated load is de-
sired, use the SETLFS routine to send ¢ secondary address of 0.

1) Set the .A register to Q for lood, 1 far verify.

2) Il a relocated lood is desired, the .X and .Y regisrers must be set
to the start cddress for the locd,

3) Cull the routine using the JSR instruction.

286 BASIC TO MACHIME LANGUAGE

EXAMPLE:
;LOAD A FILE FROM TAPE

LDA #DEVICE1 ;SET DEVICE NUMBER

LDX #FILENO iSET LOGICAL FILE NUMBER
IDY CMDI ;SET SECONDARY ADDRESS
JSR SETLFS

LDA #ANAME]-NAME (LOAD A WITH NUMBER OF
/CHARACTERS IN FILE NAME

LDX #<NAME ;LOAD .X AND .Y WITH
;ADDRESS OF
LDY #>>NAME iFILE NAME
JSR SETNAM
LDA #0 ;SET FLAG FOR A LOAD
LDX #$FF ;ALTERNATE START
LDY #S$FF
JSR LOAD
STX VARTAB ;END OF LOAD
STY VARTAB+1
JMP START
NAME .BYT ‘FILE NAME’

NAME 1 v

B-16. Function Name: MEMBOT

Purpose: Set bottom of memory

Call address: SFFOC (hex) 65436 (decimal)
Communication registers: - X,.Y
Preporatary roulines: None

Ercor returns: Nones

Stack requirements: None

Registers affected: .X, .Y

Description: This routine is used to set the bottom of the memory. If
the accumulatar carry bif is set when this routine is called, a pointer to
the lowest byte of RAM is returned in the .X and .Y registers, On the
unexpended Commodore 64 the initial value of this psinter is $0800
(2048 in decimal]. If the accumulatar carry bit is clear (=0) when this
routine is called, the values of the .X and .Y registers are transterred to
the low and high bytes, respectively, cf the pointer to the beginning of
RAM.

BASIC TO MACHIME LANGUAGE 287

How to Use:

TO READ THE BCTTOM OF RAM
1) Set the carry.
2] Call this routine.

TC SET THE BOTTOM OF MEMCRY
1] Clear the carry.
2} Call this routine.

EXAMPLE:

; MOVE BOTTOM OF MEMORY UP 1 PAGE

SEC ;READ MEMORY BOTTOM

JSR MEMBOT

INY

CLC ;SET MEMORY BOTTOM TO NEW VALUE
JSR MEMBOT

B-17. Function Name: MEMTOP

Purpoze: Set the top of RAM

Call address: $FF?9 (hex) 65433 (decimal)
Communication registers: . X, .Y
Preparatary routines: None

Error returns: None

Stack requirements: 2

Registers aoffected: .X, .Y

Description: This routine is used ta sat the top of RAM. When this
routine is called with the carry bit of the accumulator set, the pointer ta
the top of RAM will be loaded into the .X and .Y registers. When this
routine is called with the accumulator carry bit clear, the contents of the
X and .Y registers are loaded in the top of memary pointer, changing
the top of memory.

EXAMPLE:

;DEALLOCATE THE RS-232 BUFFER

SEC

JOR MEMTOP ;READ TOP OF MEMORY
DEX

CLC

JSR MEMTOP ;SET NEW TOP OF MEMORY

288 BASIC TO MACHINE LANGUAGE

B-18. Function Name: OPEN

Purpese: Open o logical file

Coll address: $FFCO (hex) 65472 (decimal)
Communication registers: None
Preparatery routines: SETLFS, SETNAM
Error returns: 1,2,4,5,6,240, READST
Stack reguirements: Nonec

Registers affected: A, X, .Y

Description: This routine is used to OPEN ¢ logical file. Once the logi-
cal file is set up, it can be used for input/eutput operations. Most of the
I/O KERNAL routines call on this routine to create the logical files to
operate on. No arguments need to be set up to use this routine, but both
the SETLFS and SETNAM KERNAL routines must be called before using
this routine.

How to Use:

D) Use the SETLFS routine.
1) Use the SETNAM rouline.
2) Call this routine.

EXAMPLE:
This is an implementation of the BASIC statement: OPEN 15,8,15,”1/ 0"

LDA #MNAME2-NAME ;;LENGTH OF FILE NAME FOR SETLFS
LDY #>NAME ;ADDRESS OF FILE NAME
LDX #<MAME
JSR SETNAM
LDA #15
LDX #8
LDY #15
JSR SETLFS
JSR OPEN
NAME .BYT ‘I/O"
NAME2

BASIC TO MACHINE LANGUAGE 289

B-19. Function Name: PLOT

Purpose: Set cursor location

Coll address: $FFFD (hex) 65520 (decimal)
Communication registers: A, X, .Y
Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers offected: A, X, .Y

Description: A call to this routine with the accumulator carry flag set
loads the current position of the cursar on the screen (in X,Y coardinates)
into the .Y and .X registers.Y is the calumn number of the curzor location
(6=39], and X is the row number of the |lccation of the cursor (0-24). A
call with the carry bit clear maves the cursor to X,Y as determined by
the .Y and X regisiers,

How to Use:

READING CURSOR LOCATICN
1] Set the carry flag.
2) Call this routine.
3) Getrthe X and Y position from the .Y and . X registers, respectively.

SETTING CURSOR LOCATION
1) Clear carry flag.
2) Set the .Y and .X registers to the desired cursor location.
3] Call this routine.

EXAMPLE:

; MOVE THE CURSOR TO ROW 10, COLUMN 5 (5,10)
LDX #10

LDY #5

CLC

JSR PLOT

290 BASIC TO MACHINE LANGUAGE

B-20. Function Name: RAMTAS

Furpose: Perform RAM test

Call oddress: $FFB7 (hex) 65415 (decimal)
Communicotion registers: | A, X, .Y
Frepurutory routines: None

Error returns: Mone

Stack requirements: 2

Registers affected: A, X, .Y

Description: This routine is used to test RAM aond set the tep and
hottom of memory painters accerdingly. It also clears locations $0000 1o
$0101 and $0200 1o $03FF, It also allocates the cassette buffer, and sets
the screen base to $0400. Noarmally, this routine is called as part of tha
initializaticn process of a Commodore 44 program cartridge,

EXAMPLE:

ISR RAMTAS

B-21. Function Name: RDTIM

Purcose; Read system clock

Call oddress: SFFDE (hex) 65502 (decimal)
Communication registers: A, X, .Y
Preparatory routines: None

Error returns: Mone

Stack reaquirements: 2

Registers affected: A, X, .Y

Description: This routine ‘s used tc read the system clock. The clock’s
resolution is a 60th of ¢ second. Three bytes are returned by the routine.
The accumulator contairs the most significant byte, the X index register
contains the next most sigrificant byte, and the Y index register contains
the least significant oyte.

EXAMPLE:

J5R RDTIM
STY TIME

STX TIME+1
STA TIMEH2

TIME *—"+3

BASIC TO MACHIME LAMGUAGE 291

B-22. Function Name: READST

Purpose: Read status ward

Call address: $FFB7 (hex) 65443 (decimal)
A

Communicalion registers:
Preparctory routines: None

Error returns: None
Stock requirements: 2
Registers affected: -A

Description: This routine returns the current status of the IYO devices in
the accumulatar. The routine is usually called ofter new communication
to an I/O device. The routine gives you information about device status,
ar errors that hove accurred during the 1/O operation.

The bits returned in the accumulater contain the following information:
(see table below)

ST ST TAPE
BIT MNUMERIC CASSETTE | SERIAL'RW VERIFY
PQSITION VALUE READ + LOAD
0 1 Time out
write
1 2 Time out
read
2 4 Shart nlock Short block
2 2 Long block Long block
4 16 Unrecoverable Any
read error mismatch
5 32 Checksum Checksum
error error
6 64 End of file EQI line
7 —128 End of tape Device not| End of
present tape

292

BASIC TO MACHINE LANGUAGE

How to Use:

1) Call this routine,
2) Decode the information in the .A register as it refers fo your pro

gram.
EXAMPLE:
;CHECK FOR END OF FILE DURING READ
JSKE READST
AND #6564 ;CHECK EOF BIT (EOF=END OF FILE)
BNE EOF ;:BRANCH ON EOF

B-23. Function Name: RESTOR

Furpose: Restore default system and interrupt vectors
Call address: $FF8A (hex) 65418 (decimal)
Freparatory routines: None

Error returns: None

Stack reguirements: 2

Registers affected: A X .Y

Deseription: This routine restores the detfault valuas of all system vec-
tors used in KERNAL and BASIC routines and interrupts. (See the Memory
Map for the default vector certents). The KERNAL VECTOR rcutine is
used to read and alter individual system vectors.

How to Use:

1} Call this routine.

EXAMPLE:
JSR RESTOR

B-24. Function Name: SAVE

Purpose: Save memory to a device

Call cddress: $FFD8 (hex) 65496 {decimal)
Communication ragisters: A ¥ .Y
Preparatory routines. SETLF3, SETNAM
Error refurns: 5 8,0, READST

Stack requirements. None

Registers affected: A, X, .Y

BASIC TO MACHIME LANGUAGE 293

Deseription: This routine saves a section of memory. Memory is saved
from an indirect address on pages 0 specified by the accumulator 1o the
address stared in the .X ond .Y registers. It is then sent to a logical file
on an input/output device. The SETLFS and SETNAM roufines must be
used before calling this routine. However, a file name is rict required to
SAVE to device 1 (the Datassette™ recarder). Any attempt to save tg
other devices witheut using a file name results in an error.

NOTE! Devize O (tha keyboard), device 2 (25-232), end device 3 (the screen) carnat
be SAVEd to. If the attempt it made, an error occurs, ond the SAVE is stoppad. |

How to Use:

0) Use the SETLFS routine and the SETNAM routine (unless a SAVE with
no file name is desired on o save to the tape recorder”).

1) Lood twe consecutive locations on page O with a pointer to the
start of your save (in standard 6502 low byte first, high kyte next
format).

2) Load the accumulator with the single byte page zero offser to the
paointer. p

3) Lood the .X and .Y registers with the low byte and high byte re-
spectively of the location of the end of the save.

£) Call this routine,

EXAMPLE:
LDA #1 ;DEVICE=1:CASSETTE
JSR SETLFS
LDA #0 ;NO FILE NAME
JSR SETNAM
LDA PROG ;LOAD START ADDRESS OF SAVE
STA TXTTAB : (LOW BYTE)
LDA PROG+1
STA TATTAB—1 : (HIGH BYTE)
LDX VARTAB :LOAD X WITH LOW BYTE OF END OF SAVE

LDY VARTAB+1 ;LOAD .Y WITH HIGH BYTE
LDA #<TXTTAB ;LOAD ACCUMULATOR WITH PAGE O OFFSET
JSR SAVE

294 BASIC TG MACHINE LANGUAGE

B-25. Function Name: SCNKEY

Purpose: Secan the keyboard

Call address: $FF2F (hex) 65439 (decimal)
Communication registers: Nona
Preparctory routines: [QINIT

Error raturns: None

Stack requirements: 5

Registers affected: A, X, ¥

Description: This routine scans the Commodore é4 keyboard and
checks for pressed keys. It is the same rouline called by the interrup!
handler, It o key is down, its ASCIl value is placed in the keybeard
gueve. This routine is called only if the normal IRQ interrupt is bypassed.

How to Use:

1) Call this routine.

EXAMPLE:
GET JSR SCNKEY iSCAN KEYBOARD
JSR GETIN ;GET CHARACTER
CMP #0 ;1S 1T NULL?
BEQ GET :YES . . . SCAN AGAIN

JSR CHROUT PRINT IT
B-26. Function Name: SCREEN

Purpcse: Return screen format

Call address: $FFED (hex) 65517 (decimal)
Communicalion registers: | X,.Y
Preparatory routinas: Mone

Stack requirements: 2

Registers affected: X, .¥

Description: This routine returns the format cof the screen, =.g., 40
columns in .X and 25 lines in Y. The routine can be used to determine
what machine a program is running on. This function has been im-
plemented on the Commodore 64 to help vpward compatibility of your

programs.

BASIC TO MACHINE LANGUAGE 295

How to Use:
1} Call this routine.

EXAMPLE:

JSR SCREEN
STX MAXCOL
5TY MAXROW

B-27. Function Name: SECOND

Purpese: Send secondary address for LISTEN
Call oddress: $FF93 (hex) 65427 (decimal)
Communication registers: A

Preparatery routines: LISTEN

Error returns: See READST

Stack requirements: §

Registers atfected: A

Description: This routine is used to send a secondary address to an
I/O device after a ccll to the LISTEN routine is made, and the device is
commanded to LISTEMN. The routine canMOT be used to send a sccond
ary address after a call 1a the TALK routine.

A sccondary address is usvally used to give setup infarmation tc a
device before I/O operatians begin.

When a secondery address is to be sent to a device on the serial bus,
the address must first be ORed with $&0.

How to Use:

1) Lood the accumulator with the secondary address to be sent.
2) Call this routine.

EXAMPLE:

;ADDRESS DEVICE #8 WITH COMMAND (SECOMNDARY ADDRESS) #13
LDA #8

JSR LISTEN

LDA #15

JSR SECOND

296 BASIC TO MACHINE LANGUAGE

B-2B. Function Name: SETLFS

Purpose: Set up a logical file

Coll address: $FFBA (hex) 65466 (decimal)
Communication registers: A, .X, .Y
Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers affected: None

Description: This routine sets the logical file number, device address,
and secondary address [command number) for other KERNAL routines.

The logical file number is used by the system as a key to the file table
created by the OPEN file routine. Device addresses can range from 0 to
31. The following codes are used by the Commodore 64 to stand for the
CBM devices listed below:

ADDRESS DEVICE

l(eyboc:rd

Dotassette™ #1

RS-232C device

CRT display

Sericl bus printer

CBM serial bus disk drive

m &L M= O

Device numbers 4 or greater outomatically refer to devices on the
serial bus.

A command to the device is sent as a secondaory address on the serial
bus aftar the device number is sent during the serial attention handshak-
ing sequence. If no secandary address is to oe sent, the .Y index regis-
ter should be set to 255.

How to Use:

1) load the accumulator with the logical file number.
2) Load the .X ‘ndex register with the device number.
3) Load the .Y index register with the command.

BASIC TO MACHINE LANGUAGE 297

EXAMPLE:

FOR LOGICAL FILE 32, DEVICE #4, AND NO COMMAND:
LDA #32

LDX #4

LDY #255

ISR SETLFS

B-29. Function Name: SETMSG

Purpose: Control systemn message output
Call address: $FF90 (hex) 65424 (decimal)
Communication registers: A

Preparatory routines: None

Errar returns: None

Stack requirements: 2

Registers affectea: A

Description: This routine controls the printing of error and control mes-
sages by the KERMAL. Either print error messcges or print cantrol mes-
sages can be selected by setting the accumulator when the routine is
colled. FILE NOT FOUND is aon example of an error messoge. PRESS
PLAY ON CASSETTE is un example of o control message.

Bits & and 7 of this value determine where the message will come
fram. I bit 7 is 1, one of the error messages from the KERNAL is printed.
I¥ hit 6 is set, control messages are printed.

How to Use:

1) Set accumulator to desired value.
2) Call this routine.

EXAMPLE:

LDA #$40
JSR SETMSG ;TURN ON CONTROL MESSAGES

LDA #$80
JSR SETMSG ;TURN ON ERROR MESSAGES

LDA #0
JSR SETMSG ;TURN OFF ALL KERNAL MESSAGES

298 BASIC TO MACHINE LANGUAGE

B-30. Function Name: SETNAM

Purpose: Set up file name

Call oddress: SFFBD (hex) 65459 (decimal)
Communicalion registers: A, X, .Y
Preparatory routines: None

Stack reguirements: None

Registers affected: Nonz

Description: This rautine is used to set up the file name for the OPEN,
SAVE, or LOAD routines, The accumulator must be looded with the
length of the file name, The .X and .Y registers must be loaded with the
address of the file neme, in standard 6502 low-byte'high-byte format.
The address can he any valid memory address in the system where a
siring of characters for the file name is stored. If no file name iz desirec,
the accumulator must be set to 0, representing a zero file length. The .X
ard .Y registers can be set to any memory address in thet case.

How to Use:

1) load the accumulatar with the length of the file name.

2) Load the .X index register with the low order addrass of the file
name.

%) Load the .Y index regisrer with the high order address.

4) Coll this routine.

EXAMPLE:
LDA #NAME2-NAME ;LOAD LENGTH OF FILE NAME
LDX #<NAME ;LOAD ADDRESS OF FILE NAME
LDY #>>NAME
ISR SETNAM

B-31. Function Name: SETTIM

Purpose: Set the system clock

Call address: $FFDB {hex) 65499 (decimal)
Communication registers: -A, X, .Y
Preparatory routines: Nong

Error relurns: None

Stack requirements: 2

Regislers affected: None

BASIC TO MACHINE LANGUAGE 299

Description: A system clock Is maintained by an interrupt routine that
updates the clock every 1/60th of a second (one “jiffy”). The clock is
three byfes long, which gives it the capability ta count up ta 5,184,000
jiffies (24 hours). At that paint the clock resets to zero. Before calling this
routine to set the clock, the accumulator must cantain the most
significant byte, the .X index register the next most significant byte, and
the .Y index register the least significant byte of the Initial time setting
(in jiffies).

How to Use:

1} Loud the accumulator with the MSB of the 3-byte number 1o set the
clock.

2) Lowud the X register with the mext byte.

3) Load the .Y register with tha LSB.

4) Call this routine.

EXAMPLE:
JSET THE CLOCK TO 10 MINUTES = 3600 JIFFIES
LDA #0 ; MOST SIGNIFICANT
LDX #2>3600
LDY #-<3600 ; LEAST SICGMIFICANT
JSR SETTIM

B-32. Function Name: SETTMO

Purpose: Set IEEE bus card timeout flag
Call address: $FFA2 (hex) 65442 (decimal)
Communication registers: A

Preparatory routines: None

Error returns: None

Stack requirements: 2

Registers offected: None

MNOTE: This rostine is used ONLY with an |EEE add-an rard!

Description: This routine sets the timeout flag for the IEEE bus. When
the timeout flag is set, the Commodore 64 will wait for a device on the
IEEE port for 64 milliseconds. If the device does not respond 1o the
Commodore 64‘s Dota Address Valid (DAV) signal within that time the
Commodore &4 will recognize an error condition and leave the hand-
shoke sequence. When this routine is colled when the nccumulator con-
tains @ Q in bit 7, timeouts are enabled. A 1 in bit 7 will disable the

timenuts .

300 BASIC TO MACHINE LANGUAGE

MNOTE: The Commeodore 64 uses the timeaut feature to communicate that a disk file is
not found on ar atempt to OPEN @ file only with an 1EEE cord.

How to Use:

TO SET THE TIMEOQUT FLAG
1) Set bit 7 of the accumulater to 0.
2) Call this roufine.

10O BESET THE 1IMEQUT FLAG
1) Set bit 7 of the accumulator to 1.
2) Call this romtina.

EXAMPLE:

;DISABLE TIMEOUT
LDA #0
JSR SETTMO

B-33. Function Name: STOP

Purpose: Check if key is pressed
Call address: $FFE1 (hex) 65505 (decimal)
Communicalion registers: A

Preparatory roufines: Nene

Error returns: None

Stack requirements: None

Registers affscted: A, X

Description: If the key on the keyboard wus pressed during
a UDTIM call, this call returns the Z flag set. In addition, the channels
will be rezet to default valves. All other flags remcin unchanged. If
the key is not pressed then the accumulator will contain a byte
representing the last row of the keyboard scan. The user can also check
for certain other keys this way.

How to Lse:

Q) UDTIM should be called before this routine,
1) Call this routine.
2) Test for the zero flag.

BASIC TO MACHINE LANGUAGE 3am

EXAMPLE:
JSR UDTIM ;SCAN FOR STOP

ISR STOP
BNE *+5 ;KEY NOT DOWN
JMP READY ;= . . . STOP

B-34. Function Name: TALK

Purpose: Commeand a device on the sericl bus to TALK
Call address: 5FFB4 (hex) 65460 (decimal)
Communication registers: .A

Preparctory routines: None

Error refurns: See READST

Stack requirements: 8

Registers affected: A

Description: Te use this routine the accumulater must first be loaded
with a device number berween 0 and 31. When called, this routine then
ORs bit by bit to convert this device number to a talk address. Then this
dato is transmitted as a command on the serial bus.

How to Use:

1) Load the accumulator with the device number.
2) Call this routine,

EXAMPLE:

;COMMAND DEVICE #4 TO TALK
LDA #4
JSR TALK

B-35. Function Name: TKSA
Purnnse: Send o secondary address lo o device commanded to TALK
Call address: $FF94 (hex) 65430 (decimal)
Communication ragisters: -A
Preparatory routines; TALK
Error returns: See READST
Stack requirements: 8
Ragisters affected: A

302 BASIC TO MACHINE LANGUAGE

Description: This routine transmits a secondary address on the serial
bus for o TALK device. This routine must be called with a number be-
tween 0 and 31 in the accumulator, The routine sends this number cs o
secondary address command over the serial bus. This routine can only
oe called atter o call to the TALK routine. It will not work ofter o LISTEN.

How to Use:

0) Use the TALK routine.
1) Load the accumulator with the sccondary cddress.
2) Call this routre.

EXAMPLE:

{TELL DEVICE #4 TO TALK WITH COMMAND #7
LDA #4

JSR TALK

LDA #7

JSR TALKSA

B-36, Function Name: UDTIM

Purpose: Updare the system clock

Call address: $FFEA (hex] 65514 (decimal)
Communication registers: None
Preparatary routines: Neore

Error returns: None

Stack requirements: 2

Registers offected: .A, X

Description: This routine updates the system clock, Normally this
routine is callec by the nermal KERNAL interrupt routine every 1/60th of
a second. If the user program processes its own ‘nterrupts this routine
must be called to update the time. In addition, the m kay routine
must be called, if the key is to remcin functional.

How to Use:

11 Call this routine.
EXAMPLE:

JSR UDTIM

BASIC TO MACHINE LANGUAGE 303

B-37. Function Name: UNLSN

Purpose: Send an UMLISTEN command
Call address: $FFAE (hex) 65454 (decimal)
Communication regisfers: None
prcparnfor'{ rautircs: Nane

Error refurns: Sea READST

Stack requirements: 8

Registers affected: .A

Description: This routine commands all devices on the serial bus ro
stop receiving data from the Commodere 64 (i.e., UNLISTEN). Calling
this routine results in an UNLISTEN command being fransmitted on the
serial bus. Only devices previously commanded to listen are affected.
This routine is normally used after the Commodore 64 is finished sending
data to external devices. Sending the UNLISTEN commands the listening
devices o get off the seria! bus so it cun be used for other purposes,

How to Use:
1) Call this routine.

EXAMPLE:

JSR UNLSN
B-38. Function Name: UNTLK

Purpose: Send en UNTALK command

Call address: $FFAB (hex) 65451 (decimal)
Communication registers: None
Preparaiary routines: None

Frror returns: See READST

Stack requirements: B

Registers affected: A

Description: This routine transmits an UNTALK command on the serial
bus. All devices previously set to TALK will stop sending data when this
command is received.

How to Use:
1) Call this routine.
EXAMPLE:

JSR UNTALK

304 BASIC 1O MACHINE LANGUAGE:

B-39. Funcrion Name: VECTOR

Purpose: Manage RAM vecters

Call address: $FFBD (hex) 65421 (decimal)
Communication registers: .X,.Y
Preparatory rout'nes: None

Error returns: None

Stack requiraments: 2

Registers offected: .A, . X, .Y

Description: This routine manages all system vector jump addresses
stored in RAM. Calling this routine with the the accumulutor carry bit set
stores the current contents of the RAM vectors in a list pointed to by the
X and .Y registers, When this routine is called with the carry clar, the
user list painted to by the . X and .Y registers is transferred to the system
RAM vectors. The RAM vectars are listed in the memory map.

MOTE: This rqurine reguires caution in i1s wse. The best way to use It iz 1o first read the
anfira vector contents into the Jser crea, alter the desired vectors, and then copy the
contents back to the system vectars,

How to Use:

READ [THE S5YSTEM EAM VECTORS
1) Set the carry.
2) Sef the .X and .y registers to the address ta put the vectors.
Z) Call this routine.

LOAD THE SYSTEM KAM VECTORS
1) Clear the carry bit.
2) 5et the .X cnd .Y registers to the address of the vector list in RAM
that must se lcaded.
3) Call this routine.

BASIC TO MACHINE LANGUAGE 305

EXAMPLE:

;CHANGE THE INPUT ROUTINES TO NEW SYSTEM
LDX #<<USER

LDY #>USER

SEC
JSR VECTOR ;READ OLD VECTORS
LDA #<MYINP ;CHANGE INPUT
STA USER+10

LDA #=>MYINP

STA USER+11

LDX #<USER

LDY #>USER

CLC
JSR VECTOR ALTER SYSTEM

USER *=*+26

ERROR CODES

The fallowing is a list of error messages which can accur when using
the KERNAL routines. If an error occurs during o KERNAL routine, the
carry hit of the accumulator is set, and the number of the error message
iz returned in the accumulator.

MNOTE: Some KERNAL I/O roufines de not use these codes for error messcges. Instead,
errors arz identfied using the KERNAL READET rourine.

I

306

O N bW —-

240

NUMBER MEANING
0 Routine terminated by the key

Too many cpen files
File already cpen

File not open

File not found

Cevice not present

File is not an input file
File is not an output file
File name is missing
llegal device number

Top-of-memory change R5-232 buffer allocation/deallocation

BASIC TG MACHINE LANGUAGE

USING MACHINE LANGUAGE FROM BASIC

There are several methods of using BASIC and machine language on
the Commadare 64, including spacial statements as part of CBM BASIC
cs well as key locations in the machine. There are five main ways to use
machine language routines from BASIC on the Commodore 64. They

are

1} The BASIC SYE statement

2) The BASIC USR function

3) Changing une of the RAM /O vectors

4) Chonging one of the RAM inter-upt vectors
5) Changing the CHRGET routine

1) The BASIC statement SYS X causes a JUMP ro a machine languags

2

subroutine located at addresz X. The recutine must end with an RTS
{ReTurn From Subrouting) instruction, This will iransfer control back
to BASIC.

Parameters are generally pussed betwesen the muachine lan-
gunge routine and the BASIC pregram using the BASIC PEEK and
PCKE statements, and their machine language equivalents.

The 5YS command is the most useful method of combining
BASIC with mochine language. PEEKs and POKEs make multiple
parameter passing easy. There zan be many SYS statements in o
program, cach to o different {or oven the same) machine lan-
guage roufine.

The BASIC “unction USR(X) transfers control te the machine lan-
guage suoroutine locatec at the address stored in locations 785
and 786. (The address is stored in standard low-byte/high-byte
farmat.) The vaolue X is evaluated and paossed to the machine lan-
guage subroutine through Aocting point accumulater #1, located
begirning ot address $&41 (see memory map for more details). A
value may ke returned beck 1o the BASIC pregram by placing it in
the flaating naint accumulatar. The machine language routine must
end with an RTS instruction to return to BASIC,

This statemert is different from the 5YS, because you have ro set
up an indirect vacior, Also different is ~he format through which
the varichle is passed (floating paint format). The indiract vector
must be changed if more than one machre langucge routine is

used.

BASIC TO MACHINE LANGUAGE 307

3) Any of the inpui/output or BASIC internal routines accessed thraugh

4

the vector toble located on page 3 (see ADDRESSING MODES,
ZERO PAGE) can be replaced, or amended by user code, Each
2-byte vector consists ot a low byte and a high byte aadress which
is used by the operating system,

The KERNAL VECTOR routine is the most reliable way to change

any of the vectors, but a single veclor can be chunged by POKEs,
A new vectcr will point to a user prepared routine which is meant
to reploce or augment the standard system routine. When rhe ap-
propriate BASIC command is executed, the user routine will ke
execuled. Il aller execuling the user rouline, il is necessury to exe-
cute the normal system routine, the user program must JMP (JUMP)
to the cddress formerly contained in the vector. If not, the rouline
must end with a RIS to transfer control bock to BASIC.
The HARDWARE INTERRUPT (IRQ) VECTOR can ke changed. Every
1/60th of o second, the operating system transfers control to the
routine specified by this vector. The KERNAL normally uses this for
timing, keyboard sconning, etc. If this technique is used, you
should always transfer control to the normal IRQ handling routine,
unless the replacement rautine is prepared fa handle the CIA chip.
(REMEMBER to end the routine with an RTl (ReTurn frem Interrupt)
if the CIA is handled by the routine).

This method is useful for tasks which must happen concurrently
with @ BASIC program, bur hos the drawbaock of being more
difficult.

MNOTE: AlVAYS DISABLE INTERRUPTS BEFORE CHANGING THIS VECTOR!

5) The CHRGET routine is used by BASIC to get each character/token.

308

This mokes it simple to odd new BASIC commands. Naturally,
gach new command must be executed by o user written machine
language subroutine. A common way to use this methnd is tn
specify a character (@ for example) which will occur before any of
the new commands. The new CHRGET rautine will search for the
special character. If none is present, control is passed to the nor-
mal BASIC CHRGET routine. If the special character is present, the
new commoand is interpreted and executed by your machine lan-
guage pragram. This minimizes the extra execution time added by
the need to search for odditioncl commands. This techaique is
often colled o wedge.

BASIC TO MACHINE LANGUAGE

WHERE TO PUT MACHINE LANGUAGE ROUTINES

The best place for machine language routines on the Commodore &4
is from $C000—FCFFF, ussuming the routines are smailer than 4K bytes
long. This section ot memery is not disturbed by BASIC.

If for some reason it's not oossible or desirable to put the machine
langucge routine at $C000, for instance if the routine is larger tharn 4K
bytes, il then becomes necessary to reserve an area aof the top of mem-
cry trem BASIC for the routine. The top of memory is normally $97FF.
The top of memory can be changed through the KERNAL routine
MEMTOP, or by the following BASIC statements:

10 POKES51,L:POKE5S2,H:POKES5,L:POKES6,H:CLR

Where H and L ure the high and low vorlions, respsclively, of the new
top of memory. For example, to reserve the area from $2000 tec $9FFF
for mechine language, use the following:

10 POKES51,0:POKESZ, 144:POKES5,0:POKESS, 144:CLR

HOW TO ENTER MACHINE LANGUAGE

There cre 3 common methods to add the machine langucge pro-
grams to a BASIC progrom. They ars:

1) DATA STATEMENTS:

By READing DATA statements, and POKEing rhe values infe memary at
the start of tha pragram, machine langucge routines can be added. This
is the sasiest method. No specicl methods are needed 1o save the two
parts of the program, cnd it is fairly ecsy to debug. The drawbacks
include toking up more memory space, and the wait while the program
is POKEd in. Therefore, this method is better for smaller routines,

EXAMPLE:
10 RESTORE:FORX=1TCO9:READA:POKE12% 4096 +X, A:NEXT

BASIC PROGRAM

1000 DATA 161,1,204,204,204,204,204,204 96

BASIC TO MACHIME LANGUAGE 309

2) MACHINE LANGUAGE MONITOR (64MON):

This program allows yau to enter o program in either HFX or SYM-
BOLIC codes, and save the portian of memory the program is in. Advan-
tages of this method include easier entry of the machine language
routines, debugging aids, ond ¢ much faster means of saving and load-
ing. The drawback to this method is that it generally requiras the BASIC
program to load the machine language routine from tape or disk when
it is storted. (For more details on 64MON see the machine language
section.)

EXAMPLE:

The following is cn example of a BASIC program using a machine
language routine prepared by 64MON. The routine is stored on tape:

10 IF FLAG—=1 THEN 20
15 FLAG=1:LOAD “MACHINE LANGUAGE ROUTINE NAME", 1,1

20

REST OF BASIC PROGRAM
3) EDITOR/ASSEMBLER PACKAGE:

Advantages are similar to using @ machine language monitor, but
programs dre even easier ‘o enter. Disadvantages are also similar to the
use of @ machine language monitar.

COMMODORE 64 MEMORY MAP

]
AR AI:::ESS Lg%i\#gbl;l DESCRIFTION

D&6510 0000 0 6510 On-Chip Data-
Direction Register

R&6510 0001 1 6510 On-Chip 8-Bit
Input/Qutput Register

0002 2 Unused

ADRAY1 0003-0004 | 3—4 Jump Vector: Convert

Flooting—Integer

310 BASIC TO MACHINE LANGUAGE

HEX DECIMAL
LABEL ADDRESS LOCATION DESCRIPTION

ADRAY2 0005—-0006 | 5—& Jump Vector: Convert
Integer Floating

CHARAC aco7 7 Search Character

ENDCHR ooce 8 Flag: Sean fer Quote at
End of String

TRMPOS 0009 9 Screen Column From Last
TAB

YERCK 000A 10 Fleg: 0 = Load, 1 = Ver-
ify

COUNT 000B 11 Input Buffer Pointer / No.
of Subscripts

DIMFLG 000C 12 Flag: Defauli Array DI-
Mension

VAITYP 000D 13 Data Type: $FF = String,
$00 = Numeric

INTFLG 000E 14 Data Type: $80 = Integer,
$00 = Floating

GAREBFL 000F 15 Flag: DATA scan/LIST
quote/Gurbuge Coll

SUBFLG 0010 16 Flag: Subscript Ret / User
Function Call

INPFLG 0011 17 Flag: $00 = INPUT, $40
= GET, $98 = READ

TANSGN 0012 18 Flag: TAN sign / Compari-
son Result

0013 19 Flag: INPUT Prompt

LINMUM 0014-0015 | 20-21 Temp: Integer Value

TEMPPT 0016 22 Pointer: Temporary Siring
Siack

LASTPT 0017—-0018 | 2324 Lost Temp String Address

TEMPST 00190021 | 25-33 Stack for Temporary
Strings

INDEX 0022-0025 | 34 37 Utility Pointer Area

RESHO 0026—-002A | 38—42 Flooting-Pcint Product of
Multiply

TXTTAB 002B-002C | 43-44 Pointer: Start of BASIC

Text

BASIC TO MACHINE LANGUAGE m

HEX DECIMAL
LABEL ADDRESS LOCATION DESCRIPTION |
VARTAB 002D-002E | 45-46 Pointer: Start of BASIC |
Variobles
ARYTAR 002ZF-=0030 47— 48 Pointer: Start of BASIC
| Arrays
STREND 0031 -0032 49— 50 Painter: End of BASIC Ar-
rays (+1)
FRETOP 0033-0034 | 51-52 ‘ Pointer: Bettem of String
Storage
FRESPC 0035-0036 | 53-54 Utility String Pointer
MEMSIZ 00370038 | 55-56 Pointer: Highest Address
Used by BASIC
CURLIN 0039-003A | 57-58 Current BASIC Line
Number
OLDLIN 003B-003C | 59-60 Previous BASIC line
Number
OLDTXT 003D-003E | 61-612 Pointer: BASIC Statement
for CONT
DATLIMN O03F—-0040 | 63-64 Current DATA Line
Number
DATPTR 0041-0042 | 65-66 Pointer: Currant DATA
ltem Address
INPPTR 0043-0044 | 67-68 Yector: INFUT Routine
VARMNAM 00450046 | 69-70 Current BASIC Variable
Nome
VARPNT 00470048 | 71-72 Pointer: Current BASIC
Varioble Dota
FORPNT 0049 -004A | 73-74 Pointer: Index Variable
for FOR/NEXT
004B—0060 | 75-96 Temp Pointer / Data Area
FACEXP 0061 97 Floating-Point Accumu-
latar #1: Exponent
FACHO 0062-0065 | ?8-101 Fleating Accum. #1:
Mantissa
FACSGN 00&6 102 Floating Accum. #1: Sign
SGNFLG 0067 103 Pointer: Series Evaluation
Constant

312

BASIC TC MACHINE LANGUAGE

BASIC TO MACHIME LANGUAGE

HEX DE
LARE ADDRESS | LOCATION DESCRIPTION
WTS 0068 104 Floating Accum. #1:
Overflow Digit
ARGEXP 0069 105 Floating-Point Accumu-
lator #2: Exponent
ARCGHO 006A—006D | 106—109 Floating Accum, #2:
Mantissa
ARGSGN QCSE 110 Floating Accum. #2: Sign
ARISGN 0C&F 11 Sign Cemparisen Resulf:
Accum. #1 vs #2
FACOV 0070 112 Floating Accum. #1.
Low-Order {Rounding)
FBUFPT 0071-0072 | 113—-114 Fointer: Cassette Buffer
CHRGET 0073-008A | 115—138 Subroutine: Get Mext Byte
of BASIC Text
CHRGOT 007% 121 Entry to Get Same Byte of
Text Again
TXTPTR 007A—-007B 122123 Painter: Current Byte of
BASIC Text
RNDX 00BB—-008F 139143 Floating RND Function
Seed Volue
STATUS 0090 144 Kernal I/O Status
Word: ST
STKEY 0091 145 Flag: STOP key / RVS key
SVXT 0092 146 Timing Consiant for Tape
VERCK 0093 147 Flag: 0 = Loed, 1 = Ver
ify
C3FO 0094 148 Flag: Serial Bus—Qutput
Char. Buffered
BSOUR 0095 149 Buffered Character for
Serial Bus
SYNO 0096 150 | Cassetta Sync No.
0097 151 Temp Dotu Area
LDTND 0003 152 No. of Open Files / Index
to File Takle
DFLTN 0099 153 Default Input Device (0)
DFLTO 009A 154 Default Output (CMD)
Device (3)

313

HEX DECIMAL
BABEL ADDRESS | LOCATION T DESCRFTION
PRTY 0098 155 ‘ Tope Character Parity
DPSW 007C 156 Flag: Tape Byte-Received
MSGFLG 009D 157 Flag: $80 = Direct Mode,
$00 = Program
PTRI 009E 158 Tape Pass 1 Error Leg
PTR2 00%F 159 Tape Pass 2 Error Leg
TIME 00AQ—00A2 | 160162 Real-Time Jiffy Clock
(approx) 1/60 Sec |
00A3—00A4 | 163164 Temp Data Area [
CNTDN 00AS5 165 Cassette Sync Countdown
BUFPNT 00A& 166 Pointer: Tapa I/O Buffer
INBIT 00A7 167 RS-232 Input Bits / Cas-
sette Temp
BITCI 00A8 168 RS-232 Input Bit Count /
Cassette Temp
RINONE 00AS 16% RS-232 Flag; Check for
Start Bit
RIDATA 00AA 170 RS-232 Input Byte
Buffer/Cassette Temp
RIPRTY 00AB 171 RS-232 Input Parity / Cas-
sette Shart Cnt
SAL 00AC—-00AD | 172-173 Pointer: Tape Buffer/
' Screen Scrolling
EAL O0AE - 00AF (174 175 Tupe End Addresses/End
of Program
CMPO 00BO—-00B1 (176177 Tape Timing Constants
TAPEI 00B2—-00B3 | 178-179 Pcinter: Start of Tape Buf-
fer
BITTS 0084 180 RS-232 Owt Bit Count /
Cassette Temp
NXTBIT 0085 181 RS-232 Next Bit to Send/
Tape EOT Flag
RODATA 00B6 182 RS-232 Out Byte Buffer
FNLEMN 00B7 183 Length of Current File
Name
LA 00Be8 184 Current Legical File

34

BASIC TO MACHINE [ANGUAGE

Number

HEX 1
LABEL ey | TR DESCRIFTION

SA 00B¢ 185 Current Secondary Ad-
dress

FA 00BA 186 Current Device Numhber

FNADR 00OBB 00OBC | 187 188 Peinter: Current File
Name

ROPRTY 008D 189 RS-232 Out Perity ! Cas-
sette Temp

FSBLK 00BE 190 Cassette Read/Write Bleck
Count

MYCH 00BF 191 Serial Word Buffer

CAS1 00CO 192 Tape Motor Interlock

STAL 00C1-00C2 193194 IO Start Address

MEMUSS 00C3-00C4 195—196 Tape Load Temps

LSTX 00C5 197 Current Key Pressed:
CHR3(n) 0 = No Key

MNDX 00C6 198 Mo. of Chars. in
Keyboard Buffer
(Queue)

RYS 00C7 199 Flag: Print Reverse
Chars.— 1=Yes, 0=No
Used

INDX 0ocs 200 Pointer: End of Legical
Line for INPUT

LXSP 00C?-00CA | 201—-202 Cursor X-Y Pos. at Start of
INPUT

SFDX 00CB 203 Flag: Print Shifted Chars.

BLMNSW 00CC 204 Curser Blink enable; 0 =
Flash Cursoer

BLNCT 00CD 205 | Timer; Countdown 1o
Toggle Cursor

GDBLN 00CE 206 Character Under Cursor

BELNON 00CF 207 Flag: Lest Curser Blink
On/OH

CRSW Q0D0 208 Flag: INPUT or GET from
Keyboard

PNT 00D1-00D2 | 209-210 Pointer: Current Screen

Line Address

BASIC TO MACHIME LANGUAGE 315

HEX DECIMAL
LAREL ADDRESS | LOCATION DRSCRTION
PNTR 00D3 21 Cursor Column on Current
Line
QTSW 00D4 212 Flag: Editor in Quote
Mode, $00 = NO
LINAX 00D5 213 Physical Screen Line
Length
TBLX 00Dé& 214 Current Curser Physical
Line Number
00D7 215 Temp Deota Area
INSRT | oop8 216 Flag: Insert Mode, =0 =
INSTs
LDTBI 00D9—00F2 | 217-242 Screen Line Link Table /
Editer Temps
USER 00F3—00F4 | 243—244 Pointer: Current Screen
Color RAM loc.
KEYTAB 00F5—-00F6 | 245-246 Vector: Keybourd Decode
Tahle
RIBUF 00F7 -00F8 | 247—248 R5-232 Input Buffer
Pointer
ROBUF OOFP—OOFA | 249250 RS-232 Output Buffer
Pointer
FREKZP O0FB—OOFE | 2571 254 Free 0-Page Space for
User Programs
BASZPT 00FF 255 BASIC Temp Data Area
0100-01FF | 256—511 Micro-Processor System
Stack Arec
0100-010A | 256—266 Floating to String Work
Area
BAD 0100 013E | 256-318 Tape Input Error Log
BUF 0200-0258 | 512—600 System INPUT Buffer
LAT 02590262 | 601-610 KERMNAL Table: Active Log-
ical File Ne's.
FAT 0263-026C | 611 KERMAL Table: Device No.
- for Each File
SAT 026D—-0276 | 621-630 KERNAL Table: Second
Address Each File
KEYD 0277-0280 | 631-640 Keyboard Buffer Queve
(FIFO)
316 BASIC TO MACKIME LANGUAGE

DECIMAL
LABEL s || e DESCRIPTION

MEMSTR 0281-0287 | 641—5642 Pointer: Battom of Memory
for O.5.

MEMSIZ 0283-0284 | 643644 Painter: Top of Memory for
Q.5,

TIMOUT 0285 645 Flag: Kernal Variable for
IEEE Timecut

COLOR 0286 646 Current Character Coler
Code

GDCOL 0287 647 Background Colar Under
Cursor

HIBASE 0288 648 Top of Screen Memory
(Page)

XMAX 0289 547 Size of Keyboard Buffer

RPTFLG 0ZEA 650 Flag: REPEAT Key Used,
580 = Repeat

KOQUNT 028B 651 Repeat Speed Counter

DELAY 028C 652 Repeat Delay Counter

SHFLAG 028D 653 Flag: Keyb'rd SHIFT Key/
CTRL Key/C— Key

LSTSHF 028E 8654 Last Keyboard Shift Pat-
tern

KEYLOG 028F—0290 | 655656 Vector: Keybecard Table
Setup

MODE 0291 657 Flag: S00=Disakle SHIFT
Keys, $80 = Enable
SHIFT Keys

AUTODN 0292 658 Flag: Avto Scroll Down, 0
= ON

M51CTR 0293 659 RS-232: 6551 Contral
Register Image

MS1CDR 0294 460 RS-232: 6551 Commuand
Register Image

MS1AJB 0295 0296 | 641 662 R§-232 Meon-Standard BPS
(Time/2-100) USA

RSSTAT 0297 663 RS-232: 6551 Status Regis-
ter Image

BITMUM 0293 &é4 RS-232 Number of Bits

Left to Send

BASIC TO MACHIMNE LANGUAGE 317

H ECIMA
LABEL ADDRESS Lgci'nmlq DESCENRON |
BAUDCF (0299-02%9A | 665-0066 R3-232 Baud Rote: Full Bit
Time (Lis)
RIDBE \ 0298 667 R5-232 Index to End of
Input Buffer
RIDBS 0z9C 663] R5-232 Start of Input Buf-
fer (Page)
RODBS 029D 669 R5-232 Start of Culpul
' Buffer (Page)
RODBE 0Z9E 670 R5-232 Index to End of
Cutput Buffer
IRQTMP 029F—02A0 | &71-672 Holds IRQ Vector During
Tape /O
ENABL 02A1 | 673 R5-232 Enables
02A2 | 674 TOD Sense During Cas-
i sette /O
0ZA3 675 Temp Sterage For Cassetie
{ Read
02A4 676 Temp D1IRG@ Indicator For
Cassette Read
0ZAS5 677 Temp For Line Index
02A6 673 PALUNTSC Flag, 0=
NTSC, 1= PAL
02A7-02FF | 679-767 Unused
|IERROR 0300-0301 763-769 Vectar: Print BASIC Error
Message
IMAIN 0302-0303 | 770-771 Veetar: BASIC Warm Start
ICRNCH 0304—-0305 | 772-773 VYector: Tokenize BASIC
Text
IQPLOF 0306-0307 | 774—7735 Vectar: BASIC Text LIST
IGONE 0308 0309 | 776-777 Vector: BASIC Char. Dis-
patch
IEVAL 030A -030B | 77B-779 Vacter: BASIC Token
Evaluation
SAREG 030C 780 Storage for 6502 .A Reg-
ister
SXREG 030D 781 Storoge for 6502 . X Regis-

318 BASIC TO MACHINE LANGUAGE

ter

HEX

DECIMAL

LABEL ADDRESS [LOCATION DESCRIPTION

SYREG Q30E 782 Storage for 6502 .Y Regis-
ter

SPREG C30F 733 Starcge far 6502 SP
Register

USRPOK 0310 784 USR Function Jump Instr
(<C)

USRADD 0311-0312 | 785-786 USR Address Low Byte/
High Byte

0313 787 Unused

CINY 0314-0315 | 788-789 Vector: Hardware IRQ
Interrupt

CBINY 0316—0317 | 790791 Vector: BRK Instr. Interrupt

NMINY 0318-0319 | 792793 Yector: Non-Maskable
Interrupt

IOFEN 031A-031B | 794 795 KERNAL OPEN Routine
Vector

ICLOSE 031C—-031D | 796797 KERMAL CLOSE Routine
Vector

ICHKIN 031E-031F | 798-799 KERNAL CHKIM Routine
Vector

ICKOUT 0320-0321 | 800—-B0D1 KERNAL CHKOUT Routine
Vector

ICLRCH 0322-0323 | 802—803 KERNAL CLRCHN Reoutine
Vector

IBASIN 0324-0325 | 804—305 KERNAL CHRIN Routine
Vector

IBSOUT 0326—-0327 806—807 KERNAL CHROUT Routine
Vector

ISTOP 0323-0329 B08-—807 KERMNAL STOP Routine
Vector

IGETIN 032A-032B | 810-811 KERNAL GETIN Routine
Vector

ICLALL 032C—-032D | 812-813 KERNAL CLALL Routine
Vector

USRCMD 032E-032F | 814-815 User-Defined Vector

ILOAD 0330-0331 | 816—817 KERNAL LOAD Routine

BASIC TO MACHINE LANGUAGE

VYector

319

HEX DECIMAL
EAREL ADDRESS | LOCATION DESCRIFTION
ISAVE 03320333 | B18-819 KERNAL SAVE Routina Vec-
tor
D334-033B | 820-827 Unused
TBUFFR 033C—03FB | 8281019 Tope I/O Buffer
03FC-D3FF | 1020-1023 Unused
| VICSCN 0400-07FF | 1024 2047 | 1024 Byte Screen Memory
Area
0400-07E7 | 1024—-2023 Video Matrix: 25 Lines X
40 Columns
07F8—07FF | 2040-2047 Sprite Data Pointers
D800—9FFF | 2048—40959 | Normal BASIC Program
Spoce
B00OO—9FFF | 32768B—-40%95%| VSP Carlridge ROM—
B192 Bytaes
ACOO—BFFF | 409560—49151| BASIC ROM—8192 Bytes
(er BK RAM)
COO0—CFFF | 49152—53247| RAM—4096 Bytes
DO0O0—DFFF | 53248—57343| Input/Output Devices and
Coler RAM
or Character Generator
ROM
or RAM— 4096 Bytes
EQOQ FFFF | 5734465535 KERNAL ROM—38192

Bytes (or 8K RAM)

COMMODORE 64 INPUT/OUTPUT ASSIGNMENTS

HEX

DECIMAL

BITS

DESCRIPTION

0000

00017

320

7-0

BASIC TO MACHINE LANGUAGE

MOS 6510 Data Direction
Register (xx101111)
Bit=1: Output, Bit=0:
Input, x=Don’t Care

MOS 6510 Micre-Processor
On-Chip I'O Port

/LORAM Signal (0=Switch
BASIC ROM Qut)

HEX DECIMAL BITS DESCRIPTION
|
1 [HIRAM Signal (0=Switch
Kernal ROM Out)
2 /CHAREN Signal
(0=Switch Char. ROM
In)
3 Cussette Data Qutput Line
4 Cassette Switch Sense
1 = Switch Closed
5 Cassette Motor Conirol
0= 0N, 1 = OFF
6-7 Undefined
DO00—DO2E |53248—54271 MO3 6566 YIDEQ INTER-
FACE COMNTROLLER
(VIC)
DOCO 53248 Sprite 0 X Pos
Doa1 53249 Sprite 0 Y Pos
D002 53250 Sprite T X Pos
DoQg3 53251 Sprite 1 Y Pas
Dao4 53252 Sprite 2 X Pos
D005 53253 Sprite 2 Y Pos
DO0& 53254 Sprite 3 X Pos
D007 53255 Sprite 3 Y Pos
D008 53254 Sprite 4 X Pos
DOO0? 53257 Sprite 4 Y Pos
D00A 53258 Sprite 5 X Pos
DOOB 53259 Sprite 5 Y Pos
DOOC 53260 Sprite 6 X Pos
DOOD 53261 Sprite 6 Y Pos
DOOE 53262 Sprite 7 X Pos
DOOF 53263 Sprite 7 Y Pos
Do10 53264 Sprites 0—7 X Pos (msh of
X coord.)
DO11 53265 VIC Contrel Register
7 Raster Compare: (Bit B)
See 53266
& Extended Celor Text
Mode: 1 = Enable

BASIC TO MACHINE LANGUAGE

321

HEX DECIMAL BITS
E
4
3
2-0
D012 53266
D013 53267
D014 53268
D015 53269
D016 | 53270
7-6
5
4
3
2-0
DO17 53271
D018 53272
7-4
349
D019 53273
7
3
322 BASIC TO MACHINE LANGUAGE

DESCRIPTION

Bit-Map Mode: 1 = En-
able

Blank Screen to Border
Coler: 0 = Blank

Select 24/25 Row Text
Display: 1 = 25 Rows

Smacth Scroll to ¥ Dot-
Position (0-7)

Read Raster / Write Raster
Value for Compare IRQ

Light-Pen Lutch X Pos

Light-Pen Latch Y Pos

Sprite Display Enakle:

1 = Enable

VIC Contrcl Register

Unused

ALWAYS SET THIS BIT TO
o!

Multi-Color Mode: 1 =
Enable (Text or Bit-

Map)
Select 38/40 Column Text
Display: 1 = 40 Cels

Smocth Screll to X Pos

Sprites 0—7 Expoand 2X
Vertical (Y)

VIC Memory Control Reg-
ister

Video Matrix Base Ad-
dress (inside VIC)

Character Dot-Data Base
Address (inside VIC)

VIC Interrupt Flag Regis-
ter (Bit = 1: IRQ Oc-
curred)

Set on Any Encbled VIC
IRQ Condition

Light-Pen Triggered IRQ
Flog

HEX DECIMAL BITS DESCRIPTION
Sprite to Sprite Cellision
IRQ Flag
Sprite ta Background
Collision IRQ Flag
Roster Compare IRQ Flag
Da1A 53274 IRQ Mask Register; 1 =
Interrupt Enabled
DO1B 53275 Sprite to Background
Display Priority: 1 =
Sprite
DO1C 53276 Sprites 0—7 Multi-Color
Mode Select: 1 =
M.C. M.
DO1D 53277 Sprites 0—7 Expand 2x
Harizontal (X)
DOI1E 53278 Sprite 1o Sprite Collision
Detect
DO1F 53279 Sprite 1a Background
Collision Detect
D020 53280 Border Coler
. D021 53281 Background Color @
D022 53282 Background Color 1
D023 53283 Background Color 2
D024 53284 Background Color 3
D025 53285 Sprite Multi-Color Regis-
ter 0
D026 53286 Sprite Multi-Color Regis-
ter 1
D027 53287 Sprite 0 Coler
DO28 53288 Sprite 1 Colar
D029 53289 Sprite 2 Color
DOZA 532%0 Sprite 3 Coler
D02B 53291 Sprite 4 Coler
Do2C 53292 Sprite 5 Color
Do2D 53293 Sprite 6 Coler
DOZE 53284 Sprite 7 Coler
D400—-D7FF 5427255295 MOS 6587 SOLUND

(SI1D)
BASIC TO MACHINE LANGUAGE

IMTERFACE DEVICE

323

HEX DECIMAL BITS
D400 54272 i
D401 54273
D402 54274
D403 54275 7—4

3-0
D404 54276

7

é

5

4

3

2

1

a
D405 54277

7—4

3-0
D404 54273

324 BASIC 10 MACTHINE LANGUAGE

DESCRIPTION

Voice 1: Frequency
Control— Low-Byte

Voice 1: Frequency
Control—High-Byte

Voice 1: Pulse Waveform
Width— Low-Byte

Unused

Voice 1: Pulse Waveform
Width— High-Nybble

Voice 1: Contral Register

Select Random Noise
Waveterm, 1 = On

Select Pulse Waveform,

1 = On

Select Sawtooth
Waveform, 1 = On

Select Triangle Waveform,
1 = On

Test Bit: 1 = Disable Os-
cillater 1

Ring Modulate Osc. 1 with
Osc. 3 Oufput, 1 = On

Synchronize COsc. 1 with
Osc. 3 Frequency, 1 =
On

Gate Bit: 1 = Start Att/
Dec/Sus, 0 = Start Re-
lease

Envelope Generator 1: At-
tack / Decay Cycle
Control

Select AHack Cycle Dura-
tien: 0—15

Select Decay Cycle Dura-
tion: 0-15

Envelope Generator 1:
Sustain / Release Cycle
Control

HEX

DECIMAL

DESCRIPTION

D407

D408

D407

D40A

D40B

D40C

54279

54280

54281

54282

54283

54284

Select Sustain Cyele Du-
ration: 015

Select Release Cycle Du-
ration: 0-15

Voice 2: Frequency
Control—Low-Byte

Voice 2: Frequency
Control —High-Byte

Vaice 2: Pulse Waveform
Width—Low-Byte

Unused

Voice 2: Pulse Waveform
Width—High-Nybble

Voice 2: Control Register

Select Random Noise
Waveform, 1 = On

Select Pulse Waveform,

1 = On

Select Sawtooth
Waveferm, 1 = On

Select Triangle
Waveform, 1 = On

Test Bit: 1 = Disuble Os-
cillater 2

Ring Modulate Osc. 2 with
Osc. 1 Output, 1 = On

Synchronize Osc. 2 with
Osc. | Frequency, 1 =
On

Gate Bit: 1T = Start At/
Dec/Sus, 0 = Start Re-
lease

Envelope Generator 2: At-
tack / Decay Cycle
Control

Select Attack Cycle Dura-
tien: 0—15

BASIC TO MACZHINE LANGUAGE 325

DESCRIPTION

D40D

D40E

D40F

D410

D411

D412

HEX] DECIMAL BITS
‘ 3-0
54285
|
74
30
54286
54287
54288
54289 7-4
3-0
54290
7
6
o
4
2
1
0

326

BASIC TO MACHINE LAMGUAGE

Select Decay Cycle Dura- |
tion: 0—15

Envelope Generator 2:
Sustain / Release Cycle
Control

Select Sustain Cycle Du-
ration: 0-15

Select Release Cycle Du-
ration: 0—15

Voice 3: Frequeney
Control— Low-Byte

Voice 3: Frequency
Control—High-Byte

Voice 3: Pulse Waveferm
Width— Low-Byte

Unused

Voice 3: Pulse Waveform
width—High-Nybble

Voice 3: Contrcl Register

Select Random MNoise
Waveform, 1 = On

Select Pulse Waveform, 1
= On

Select Sawtooth
Wavetorm, 1 = On

Select Triangle Waveform,
1 =0n

Test Bii: 1 = Disuble Os-
cillator 3

Ring Modulate Osc. 3 with
Osc. 2 Output, 1 = On

Synchronize Osc. 3 with
Qsc. 2 Frequency, 1 =
On

Gate Bit: 1 = Start At/
Dec/Sus, 0 — Start Re-

ledase

HEX

DECIMAL

BITS

DESCRIPTION

D413

D414

D415

D416

D417

D418

54291

54292

54293

54294

34295

54296

3-0

Envelepe Generator 3: At-
tack [Decay Cycle
Control

Select Attack Cyele Dura-
tion: 0—15

Select Decay Cycle Durc-
tion: 0—15

Envelope Generator 3:
Sustain / Release Cycle
Control

Select Sustain Cycle Du-
ration: 0=15

Select Release Cycle Du-
ration: 0—15

Filter Cutoff Frequency:
Low-Nybble (Bits 2—0)

Filter Cutoff Frequency:
High-Byte

Filter Resonance Contrel /
Voice Input Control

Select Filler Resonance:
0-15

Filter External Input: 1 =
Yes, 0 = No

Filter Voice 3 Qutput: 1
Yes, 0 = No

Filter Voice 2 Output: 1 =
Yes, 0 = No

Filter Voice 1 QOutput: 1
Yes, 0 = No

Select Filler Mede and
Volume

Cut-Off Vaice 3 Qutput: 1
— Off, 0 — On

Select Filter High-Pass
Mode: 1 = On

Select Filter Band-Pass
Mode: 1 = On

BASIC TO MACHINE LANGUAGE 327

HEX

DECIMAL

BITS

DESCRIPTION

D41y

D41A

D418

D41C

D500—-D7FF
D800—-DEFF
DCO0—DCFF

DCoo0

DCol

32g

54297

54298

54299

54230

5452855195
55296—-56319
56320-56575

56320

56321

BASIC TO MACHIMNE LANGUAGE

Select Filter Low-Pass
Mode: T = On

Select Output Volume:

| 0-15

Analag/Digital Canverter:

| Game Paddle 1 (0—
255)

Analog/Digital Converter:
Game Paddle 2 (0—
255)

Oscillator 3 Random
MNumber Generator

Envelope Generator 3
Qutput

SID IMAGES

Color RAM (Nykbles)

MOS 6526 Complex
Interface Adapter (CIA)
#1

Data Port A (Keybeerd,
Joystick, Paddles,
Light-Pen)

Write Keybourd Column
Values for Keyboard
Scan

Read Paddles on Port A
B (01 — Pert A, 10 =
Port B)

Joystick A Fire Button: 1 —
Fire

Paddle Fire Buttens

loystick A Direction
(0-15)

Data Port B (Keyboard,
Joystick, Paddles):
Game Port 1

HEX DECIMAL BITS
7 0
7

| 6

4
3—2
3-0

DCO2 56322

DCa3 56323

DCO4 56324

DCO5 56325

DCO& 56326

DCO7 56327

DCO8 56328

DCO9 56329

DCOA 56330

DCOB 56331

DCOC 56332

DCOD 56333
7
4

DESCRIPTION

Read Keyboard Row
Values for Keyboeird
Scan

Timer B: Teggle/Pulse
Qutput

Timer A: Toggle/Pulse
Qutput

loystick 1 Fire Button: 1 =
Fire

Paddle Fire Buttons

Joystick 1 Direction

Dato Direction
Register— Port A
(546320)

Data Direction
Register—Port B
(56321)

Timer A: Low-Byte

Timer A: High-Byte

Timer B: Low-Byte

Timer B: High-Byte

Time-of-Day Clock: 1/10
Seconds

Time-of-Day Clock: Sec-
onds

Time-of-Day Clock: Min-
utes

Time-of-Day Clock: Hours
+ AM/PM Flag (Bit 7)

Synchronous Serial /O
Data Buffer

CIA Interrupt Control
Register (Read IRQs/
Write Mask)

IRQ Flag (1 = IRQ Oc-
curred) / Set-Clear Flag

FLAG1 IRQ (Cassette Recad
! Serial Bus SRQ Input)

BASIC TO MACHINE LANGUAGE 329

HEX DECIMAL BITS DESCRIPTION
3 Serial Port Interrupt
2 Time-of-Day Clock Alarm
Interrupt
1 Timer B Interrupt
0 Timer A Interrupt
DCOE 56334 CIA Control Register A
T Time-of-Day Clock Fre-
| queney: 1 = 50 Hz, 0
| = 60 Hz
6 I Serial Port I/O Mode: 1 =
Qutput, 0 = Input
5 Timer A Counts: 1 — CNT
Signals, 0 = System 02
Clock
4 Force Load Timer A: 1 —
Yes
3 Timer A Run Mode: 1 =
[One-5hot, 0 = Con-
tinuous
| 2 Timer A Cutput Made 1o
PBé: 1 = Toggle, 0 =
Pulse
1 Timer A Output en PBé&: 1
= Yes, 0 = No
0 | Start/Stop Timer A: 1 =
| Start, 0 = Stop
DCOF 56335 | CIA Centrol Register B
7 Set Alarm/TOD-Clock: 1 =

Alarm, 0 = Clock

330 BASIC TG MACHINE LANGUAGE

HEX

DECIMAL

, DESCRIPTION

DDO0—DDFF

DDO0

DDO1

5657656831

56576

56577

BASIC TO MACHINE LANGUAGE

Timer B Mode Select:

00 = Count System 02
Clock Pulses

| 01 = Count Pesitive

CNT Transitions

10 = Count Timer A
Underflow Pulses

11 = Count Timer A
Underflows While
CNT Positive

Same as CIA Control Reg.
A—tor Timer B

MOS 6526 Complex Inter-
face Adapter (Cla) #2

Dauta Port A (Serial Bus,
RS-232, VIC Memory
Control)

Serial Bus Data Input

Serial Bus Clock Pulse
Input

Serial Bus Data Qutput

Serial Bus Clock Pulse
Qutput

Serial Bus ATN Signal
Qutput

RS-232 Data OQutput (User
Port)

VIC Chip System Memcry
Bank Select (Default =
1)

Data Port B (User Port,
RS-232)

User / RS-232 Data Set
Ready

331

HEX

DECIMAL

BITS

DESCRIPTION

DDO2
DDO3
DDO4
DDO5
DD0é6
DDO7
DDOB
DDOY
DDOA
DDOB
DDOoC

DDOD

332 BASIC TO

56578

56579

56580
56581
56582
56583
56584
56585
56586
56587
56588

56589

MACHINE LANGUAGE

User / RS-232 Clecr to
Send

Usar

User / RS-232 Carrier De-
tect

User / R5-232 Ring Indi-
cator

User / R5-232 Data Termi-
nal Ready

User / R5-232 Request to
Send

User / R5-232 Received
Data

Data Direction
Register—Port A

Data Direction
Register—Fort B

Timer A: Low-Byte

Timer A: High-Byte

Timer B: Low-Byte

Timer B: High-Byte

Time-of-Day Clock: 1/10
Seconds

Time-of-Dey Clock: Sec-
onds

Time-of-Day Clack: Min-
utes

Time-of-Day Clock: Hours
+ AM/PM Flag (Bit 7)

Synchronous Serial 1/O
Data Buffer

CIA Interrupt Control
Register (Read NMIs/
Write Mask)

HEX

DECIMAL

BITS

DESCRIPTION

DDOE

DDOF

56590

56591

NMI Flag (1 = NMI Oc-
curred) [Set-Clear Flag

FLAG1 NMI [User/RS-232
Received Data Input)

Serial Port Interrupt

Timer B Interrupt

Timer A Interrupt

ClA Control Register A

Time-of-Day Clock Fre-
quency: 1 = 50 Hz, 0
= 80 Hz

Serial Port I/O Mode: 1 =
Qutput, 0 = Input

Timer A Counts: 1 = CNT
Signals, 0 = System 02
Clock

Force load Timer A: 1 =
Yes

Timer A Run Mode: 1 =
One-5hot, 0 = Con-
tinuous

Timer A Qutput Mode to
PB6: 1 = Teggle, 0 =
Pulse

Timer A Output on PB6: 1
= Yes, 0 = No

Start/Stop Timer A: 1 =
Start, 0 = Stop

ClA Control Register B

Set Alarm/TOD-Clock: 1 =
Alarm, 0 = Clock

BASIC TO MACHINE LANGUAGE 333

HEX

DECIMAL

BITS

DESCRIPTION

DEOO—DEFF

3683257087

DFOO—DFFF |57088—57343

6-5

Timer B Mode Selech:
00 = Count Syslem 02
Clock Pulses
01 = Count Positive
CNT Transitiens
10 = Count Timer A
Underflow Pulses
11 = Count Timer A
Underflows While
CNT Positive
Same as ClA Cantrol Reg.
A for Timer B
Reserved for Future I/O
Expansion
Reserved for Future I/O
Expansion

334

BASIC TO MACHINE LANGUAGE

CHAPTER

INPUT/OUTPUT .
GUIDE .

Introduction
Outpul to the TV

,Output to Other Devices

The Game Ports

RS-232 Interface Description
The User Port

The Serial Bus

The Expansion Port

Z-80 Microprocessor Carfridge

335

INTRODUCTION

Computers have three basic abilities: they can calculate, make deci-
sions, and communicate. Calculation is probahly the easiest to program.
Most of the rules of mathematics are familiar to vs. Decision mcking is
not too difficult, since the rules of logic are relatively few, even if you
don’t know them too well yet.

Communication is the most complex, because it invalves the |east
exacting set of rules. This is not an oversight in the design of computers.
The rules allow enough flexibility to cammunicate virtually anything, and
in many possible ways. The only recl rule is this: whatever sends infor-
mulion must present the information so that it can be understood by the
receiver.

OUTPUT TO THE TV

The simplest form of outpur in BASIC Is the PRINT starement. PRINT
uses the TV screen as the output device, and your eyes are the input
device because they use the information on the screen.

When PRINTing on the screen, your main objective iz t¢ tormat the
information on the screen so it's eusy to read. You should try to think like
o graphic artist, using colors, placement ct letters, capital and lewer
case letters, as well os groghics to bes! communicate the information,
Remember, no matter how smart your program, you want to be able to
understand what the results mean to you.

The PRINT statement uses certain character codes as "commands™ to
the cursor. The key doesn’t actually display anything, it just
makes the cursor change position. Other commaonds chonge colors,
clear the screen, and insert or delete spaces, The key has a
character code number (CHRS) of 13. A complere table of these codes is
contained in Appendix C,

There are two functions in the BASIC language that work with the
PRINT statement. TAB posifions the cursor on the given position from the
left edge of the screen, SPC mcves the cursor right a given number of
spaces from the current position,

Punctuation marks in the PRINT sratement serve to separate ond for-
mat information. The semicolon {;] separates 2 items without any spaces
in between. If it is the last thing on a line. the cursor remains after the
lost thing PRINTed insteod of going down to the next line. It suppresses

334 INPUT/OUTPUT GUIDE

(replaces) the RETURN character that s normally PRINTed ot the end of
the line.

The comma (,) separafes items into calumns. The Commodara 64 has
4 columns of 10 characters each on the screen. When the computer
PRINTs o comma, it moves the cursar right to the start of the next col-
umn. If it is past the last column of the line, it moves the cursor dewn to
the rext line. Like the semicolon, if it is the last item on a line the
RETURN is suppressed.

The quote marks (' ”] separote literal text from variablas. The first
quote mark on the line starts the literal area, and the next quete mark
ends it. By the way, you don’t have o have a final quote mark or the
end of the line.

The RETURN code (CHR$ code of 13) makes the cursor go 1o the nexr
logical line an the screen. This is not always the very next line. When
you type post the end of a line, that line is linked 1o the next line. The
computar knows that both lines are really one leng line. The links are
held in the line link table (see the memary map for how this is set up).

A logical line can ke 1 or 2 screen lines long, depending on whal was
typed or PRINTed. The logical line the cursor is on delermines where
tha key sends it. The logical line at the top of the screen
determines if the screen scrolls 1 or 2 lines at o time,

There are other weays to use the TV as on output device. The chapter
on graphics cescribes the cammands to create objects thot move across
the screen. The VIC chip section tells how the screen and border calors
and sizes are changed. And the sound chapter tells how the TV speaker
creates music and special effects.

OUTPUT TO OTHER DEVICES

It is often necessary to send output to devices other than the screen,
like o cassette deck, printer, disk drive, or modem. The OPEN stotement
in BASIC creates o “channe ™ to talk ta one of these devices, Once the
channel is OPEN, the PRINT# statement will send charocters to that
device,

EXAMPLE of OPEN and PRINT# Statements;

100 OPEN 4, 4: PRINT# 4, “WRITING ON PRINTER"

110 OPEN 3, B, 3, "0:DISK-FILE,S,W": PRINT# 3, “SEND TO DISK"
120 OPEN 1, 1, 1, “TAPE-FILE": PRINT# 1, "WRITE ON TAPE"

130 OPEN 2, 2, 0, CHR$(10): PRINT# 2, “SEND TO MODEM”

INPUT/QUTPUT GUIDE 337

The CPEN statement is somewhat different for aach device. The pao-
rameters in the OPEN statement are shown in the table below for each
device.

TABLE of OPEN Statement Parameters:

FORMAT: OPEN file#, device#, number, string

DEVICE |DEVICE# NUMBER | STRING

CASSETTE 1 0 = Input File Name
I = Qutput
2 = Qutput with
EQT
MODEM 2 Control Registers

0

SCREEN 3 4]
PRINTER 4 or5 |0 = Upper/Graphics Text Is PRINTed

7

2

= Upper/lower Case

DISK 81ta 11 | 2-14 = Data Channel | Drive #, File Name,
Fil= Type, Read/\Write
15 = Command Cormnmund
Channal

OUTPUT TO PRINTER

The printer is an output device similar to the screen. Your main con-
cern when sending output ta the printer is to create a formar that is easy
on the eyes. Your tools here inciude reversed, double-width, capital and
lower case letters, as well os dot-pragrammable graphics.

The SPC function warks for the printer in the scme way it works for the
screen. However, the TAB function do=s not work correctly on the print-
er, because it calculates the current position on the line based on the
cursor's position on the screen, not on the paper.

The OPEN statement tor the printer creates the channe! for communi-
cation, It also specifies which characier sel will be used, either upper
case with graphics or upper and lower case.

EXAMPLES of OPEN Statement for Printer:

OPENM 1, 4: REM UPPER CASE/GRAPHICS
OPEN 1, 4, 7: REM UPPER AND LOWER CASE

338 IMPUT/QUTPUT GUIDE

When working with one character set, individual lines can be PRINTed
in the opposite character sef. When in upper case with graphics, the
cursor down character (CHR$(17)) switches the characters to the upper
and lower case set. When in upper and lower case, the curser up char-
ucler (CHR$(145)) allows upper case cnd graphics characters to ke
PRINTed.

Other soeciul funclions in the printer are conirolled throuch characrer
codes. All these codes are simply PRINTed just like any cther charoctar.

TABLE of Printer Control Character Codes:

CHR$ CODE PURPOSE
10 Line feed
13 RETURN (automatic line feed on CBM printers)
14 Begin double-width character mode
15 End double-width character mode
18 Begin reverse character mode
146 End reverse charocter mede
17 Switch to upper/lower cuse character set
145 Switch to upper case/graphics charncter set
16 | Tab to position in next 2 characters
27 Move to specified dot position
8 Begin det-programmable grophic mode
26 Repeat graphics data l

See your Commeadore printer's manval for details on using the com-

mand codes.
OUTPUT TO MODEM

The modem is a simple device that cen translate charocter codes into
audio pulses anc vice versa, so that computers can communicate cver
telephone lines. The OPEN sratemen: for the modem se's up the pe-
rameters to maich the speec and tormet ot the other computer yeu are
cormmunicating with., Two characters can be sent in the string of the end
of the OPEN statement.

The bit oositions of the first character code determine the baud rate,
numoer of deta bits, and number of stop bits. The second code is op-
tional, crnd its bits specify the parity and duplex of the ransmission. 3ze
the RS-232 section or your VICMODEM manual tor specific details on this

device,

INPUT/QUTPUT GUIDE 339

EXAMPLE of OPEN Statement for Modem:

OPEN 1, 2, 0, CHR$(6): REM 300 BAUD
100 OPEN 2, 2, 0, CHR$(163) CHR$(112): REM 110 BAUD, ETC.

Most computers use the American Standard Code for Information In-
terchunge, known as ASCIl (pronounced ASK-KEY). This stundard set of
character codes is somewhat ditferent trom the codes used in the Com-
modore &4, When communicating with other computers, the Comimo-
dore character codes must be transloted into their ASCIl countarparts. A
table of standard ASCII codes is included in this book in Appendix C.

Qutput to the maedem i a fairly uncomplicated tock, aside from the
need for charocter translotion. However, you must know the receiving
device fairly well, especially when writing progroms where vour
computer “talks” to onother computer without human intervention., An
axample of this would be a terminal program that autematically types in
your account number and secrat password. To do this successfully, you
must carefully count the number of charactars arnd RETURN characters.
Otherwise, the computer receiving the charecters won'’t know what to do
with tham.

WORKING WITH CASSETTE TAPE

Casserte topes have an almost unlimited cupacity for data, The
lenger the tape, the more information it can store, Howawver, tapes are
limited in time. The more data on the tope, the longer the rime it lukes
to find the information.

The programmer must try to minimize the time factor when working
with tape storage. One comman practice is to read the sntire cassette
datu file into RAM, then process it, and then re-write all the data on the
tape. This allows you 1o sort, edit, and examine yaur data. However,
this limits the size of your files to the amount of available RAM.

If your data file is larger than the available RAM, it is probahly time
to switch ta using the flopoy disk. The disk can read data at any position
nn the disk, without needing to read through all the ether date. You can
write dota over old dota without disturbing the rest of the file. That's
why rhe disk is vsed for all business cpplications like ledgers anc mall-
ing lists.

The PRINT# statement formats dara just like the PRINT statement
does, All punctuation works the same. But remember, you're not work-
Ing with the screen now. The formatting must be done with the INPUT#
statement constantly in mind,

340 INPUT/OUTPUT GUIDE

Consider the statement PRINT# 1, A%, 3%, C$. When used with the
screen, the commas between the variables provide enough blank space
between items to format them into columns ten characters wide. On
cosserte, anywhere from 1 10 10 spoces will be added, depending on
the length of the strings. This wastes space on your fape.

Ever worse is what happens when the INPUT# statement tries 1o read
these strings. The statemant INFUT# 1, A, B}, C$ will discover no data
for Bf and Ch. A% will cantain all three variables, plus the spaces be-
tween them. What happens? Here's a look at the tape file:

AS="DOG" B$="CAT" C$="TREE"
PRINT# 1, AS, B%, C$

1234567872 10111213 141515617 168 19 20 21 22 23 24 25
DOG C AT T R E E RETURN

The INPUT# statement werks like the regular INPUT statement, When
typing data into the INFUT statement, the data items are separated,
either by hitting the key or using commas to separate them.
The PRINT# statement puts a RETURN at the end of a line just like the
FRINT statement. A% fills up with all three values because there's no
separator on the tape between them, only ofrer all three,

A proper separator would be a comma {,) or a RETURM on the tape.
The RETURN ccde is automatically put at the end of a PRINT or PRINT #
statement. One way to put the RETURN code betwean aach itam is to
use only one item per PRINT# statement. A better way is lo sel a vori-
cble to the RETURN CHRS code, which is CHR$[13), or use a comma,
The statement for this is RE= . : PRINT# 1, A$ R$ B% R$ C§. Don't use
commas or any other punciuation between the variable names, since
the Commodare 64 can tell them aport and they'll only use up spoce in
your program.

A proper tape file looks like this:

1234567891011 1213
DOG, CAT, TR E E RETURNM

The GET# statement will pick data from the tape one character at a
time. It will receive each character, including the RETURN code and
other punctuation. The CHRE(0) code is received os an empty string, not
os o one characler siring with o code of 0. If you try to use the ASC
tunction on an empty sfring, you get the error message ILLEGAL
QUANTITY ERROR.

INPUT/OUTPUT GUIDE 341

The line GET# 1, AS$: A= ASC(A$) is commonly used in prcgrams 1o
examine tape datc. To avoid error messages, the line should be mod-
ified to GET#1, A%: A= ASC{ A%+ CHR$(0)). The CHRS$(C) at the end
acts as insurance against empty strings, but doesn’t affect the ASC
function when there are other characters in A$.

DATA STORAGE ON FLOPPY DISKETTES

Diskettes allow 3 different forms of data storage. Sequential files are
similar to those on tape, but several can can be used at the same time.
Relative files let you organize the data into records, and then read and
replace individual recards within the file. Random files let you werk with
data anywhere on the disk. They are orcanized into 256 byte sections
called blocks.

The PRINT# statement’s limitations are discussed in the section on
cassette tape. The same limitations ta formatr apply on the disk.
RETURNSs or commas are necded to sepcrate your data. The CHR$(0) is
still read by the GET# statement as an empry string.

Relative and random files both maks vse of separate deta and com-
mand “channels.” Data written to the disk goes through the datu chan-
nel, where it is stored in a temporary buffer in the disk's RAM. When the
record or block is complete, o command is sent through the command
channel that tells the drive whare to put the data, and the entire suffer
is written.

Applications that require large amounts of data to be processed are
best stored in relative disk files. These will use the least amouni of time
and provide the best flaxibility fer the programmer Your disk drive
manuc| gives a complete programming guide to use of disk files.

342 IMPUT/QUTPUT GUIDE

THE GAME PORTS

The Commodore 64 has two ?-pin Gume Ports which allow the use of
joysticks, paddles, or o light pen. Each port will accept either one joy-
stick or one paddle pair. A light pen cun be plugged into Port A (anly) for
special graphic contral, ete. This section gives you examples of how to use
the joysticks and paddles from both BASIC and mochine language.

Ihe digital joystick is connected te ClA #1 (MOS 6526 Complex Inter-
face Adapter). This input/output device alse handles the paddle fire but-
tons and keyhoard scanning. The 6526 CIA chip has 16 reqgisters which
are in memory locatierns 56320 threugh 55335 inclusive [($DCCO to
$DCOF). Port A deta appears at lacation 56320 (DC0O0O) and Part B data
is found ct location 56321 ($CCO1).

A digital joystick has five distinet switches, four of the switches are
used for direction and one of the switches is used for the fire button, The
joystick switches are arranged os shown:

(Top)
FIRE
(Switch 4)
up
(5wirch 0)

LEFT RIGHT
{Switch 2) : {Switch 3)
DOWN
(Switeh 1)

These switches correspend to the lower 5 bits of the data in location
56320 ur 56321. Normually the il is sel fo a one il o direction is NOT
chesen or the fire button is NOT pressed. Whan the fire button is

INPUT/QUTPUT GUIDE 343

pressed, the it (bit 4 in this case) changes to a 0. To read the joystick
fram BASIC, the following subrauting should be used:

18 FORK=OTOLO:REM SET UF DIRECTION STRIMNG

28 READDRF(K i MNERT

3@ DATA"", "HY, S, 0, v, R

48 DATA"SW®, ", "E" . "NE", "SE"

S0 FRIMT"GOING. .. "

4@ GOSUE100:REM READ THE JOYSTICK

65 TFDRECIY)=""THENSH:REM CHECK 1F A DTRECTION WAS

CHITSER

78 PRINTDRSECIVI:" " iREM QUTPUT WHICH DIRECTION
a8 IFFR=1&THEEE :REM CHECK [F FIRE ZUTTOM WAS
FUSHED

90 PRIMT"——~—m] R — QR SO pa— L1 BO0TOS

1@ JVW=FEEK (T53280 REM CET JOYSTICK VALLE
114 FR=JYANDLE:REM FORM FIRE BUTTON STRTUS
128 TW=13-CJVAMHD15) : FEM FORM DIRECTION “ALUE
132 RETURH

MOTE: For the second joystick, set JV = PEEK (56321).

The values fer JV correspond to these directions:

JV EQUAL TO DIRECTION
0 NONE
] up
2 DOWN
3 —
4 LEFT
5 UP & LEFT
6 DOWN & LEFT
7 P
8 RIGHT
9 UP & RIGHT
10 DOWN & RIGHT

344 INPUT/CQUTPUT GUIDE

A small machine code routine which accomplisnas the same task is as

follows:

1g@e . PAGE
ROUTIHE
iaia
1R2a
1636

1848 D=%C1 L8
1@5e Dy'=$C101
1BEE ¥=$CL00
1878 DIRR

Pl OHLY 2

leaa DIRRE LDY #3
[ECONES THE

CIONSTICK, BA50

LDA FDCoe

@5 I He
IMFUT OATA Ik
11 SR A

LERET STEMIFTOAMT

ii1a a0s DIrRe
SWITOH CLOSURE
11z JEY

IS CLOSED THEMW IT
1128 2TRE LER A
Bl =SWTTOR T8 TIREM THER
L L BLE DIRL
THE JOYSTICK DIR-
1156 ITHY
FORWARD, BRCKMART
1463 DLIR1 LR A
EITI=BACKWARI.
1178 BCE DJEZ
BIT4=FLRE BUTTOH.
1128 DE#
TEHTALIH 27% COMPLLIMENT
li9a DJ=2 LER H
$FFe-1, ®EH=G, +@1=1.
1ZAam BCs DJEE
LROYE LEFTS.
lE1i
Li==1 CMONVE P SCREEMD,
1228 JIR2 L3R A
= CHO YW CHAMGE D .
STw D
TLOM CORRESFLRE
aTY 1Y
THE BRACKMARD
RTS

T

12w
fir-T

123K
BCREEH.

laod

1:7@

BUTTOM ETRTE.

1286 ;TF Cml THEM BUTTOM

SED.
12548

1286 ;E%m

. THIS

i THE FCCUMJLFTOR.

CITHFORMAT IOk

PRINLCES

FECTICHE

JOIRECTZOM MUMBERS

s I
P Inv'=1
CTHE FORMART

CTO MEVE U

JAT RT2 TIME THE CARRY FLFG CORMTEIRS

LT

JOASTICE —~ BUTTOM READ

JEUTHOR = BILL MIMDORFF

COET IMPUT FROM FORT

ROUTIME READE AMD

S TOPSTICK AR IRERUTTOR

TRIS

CSOBITS COYTRIN THE

IF A SWITCH

Al ZERD BIT. iF

JIT FRODUCES A OMZ EIT.

fA=E RIGHT. LEFT.

T EIT2=RIGHT, BIT2=LEFT,
CBITE=FORMARD AND
JAT RTS TIME DF AND DY

gy =

[e=1 CMOVE RIGHTS ., Des=1

RO CHAMGE D).
CHOVE TOMWH BCREEM? .
JOHETTCK

THE SZREEH

JPOSITION TO MOWE TCWH

THE FIRE

FRESSEDL TR C=E THEM

INPUT/QUTPUT GUIDE

345

PADDLES

A paddle is connected fo both CIA #1 and the SIC chip (MOS 6581
Scund Interface Device) through o game port. The poddle value is read
via the SID registers 54297 (3D419) and 54298 ($D41A). PADDLES ARE
NOT RELIABLE WHEN READ FROM BASIC ALONE!!! The best way to use
poddles, trom BASIC or machine code, is fo use the following machine
language routire. . . . (8Y3 to it from BASIC then PEEK the memory
locations used by the subroutine).

1E1E
EEtisdobetiat st a s R R ER R LR EREE SRR EELIRRERES BB EE LS
1218 % FOUR =ACDDLE REFD ROUTIME <CAM ALSO BE USED

FCR TWO

12

o e o e o o e e e e e e
Lez@ ;AUTHOR - BILL HIMDORFF

1348 PORTA=$DCER

1@58 CIDDRA=$DCEZ

12E8 SI0=4D403

1ETE #=3C1an

1E2@ DUFFER #=%+11

120 POy #=%+2

LiE@ POLY #=8+32

1113 BTHR #=#+1

1128 BINE #=%4+1

1130 #=F_ 410

1148 POLRED

1156 LI #1 JFOR FOUR MODDLES
OF THO AMALOG JOYSTICKS

1180 POLRDE JERTRY POIMT FOR
QHE PRIF (CONDITION % 1ST3

1171 SF T

1186 LA CIDIRA JHET CURREMNT YALJE
OF DIE

119@ STR BJFFCER SOANE TT AkAY

1za6 LIA #&CE

1218 ETH CIDDRA JEET PORT A FOR

el | LIA #8858
1238 POLREDI
1E48 STR FORTA JADDRESS A PAIR OF
PRDDLES
LI #E0E SHATT AOMHTILE
LEED FOLRTZ
1278 HOP
1288 IEY
1293 BFL FDLRDZ
130 LDA S10+25 FGET B WALUE
13la STA PDLA .-
13ze DA SIDaas yGET Y YALLE

1324 ETR POLY. &

346 INPUT/OUTFUT GUIDE

1248 DA FORETE TIME TO RERD
FADDLE FIRE BUTTOHS

17“9 DA HFo SMARE TT THE SRME
3 OTHER PRIR

1260 STA BTHMA VRIT & 15PN #
b Bl [

il LI kel

1556 LEH JALL FAIRE QoMES
1388 BFL POLEDL 2l

| =R LIA BUFFER

1418 TR CIDDRFE JRESTORE FREWTON
YALLIE OF TIDR

[Sl DA PORTE- 3 JFOF ZHD PAIA -
(I ZTF RBTHE JBIT 2 1% PDL Hy

BLT &8 PEL W
L i LT

1 45E RTS
145 JEMD

The paddles can oe read by using the tollowing BASIC pregram:

18 Ce=] 281055 (REM SET PADDLE ROUTIHE START
11 REM FOKE IH THE PADILE READIMNG ROLTIME
18 FORT=ATOSD RERDN POKECHT A HERT

=] REM CALL THE PADDLE ROUTIME

1 PFEKKE+ SENREM O SETOREUILE OME YRLLE

CEEMM 4 Tt i
aE TREM: ¥ i THREE "
Gl PawPCERCC 206 REM 0 z FOUR "
&1 REM REFRD FIRE BLITTOM STRTUS
S Sl=PEEKCC+26] b BE=PEER (4260

TEOFREIMTFL.FZ.P%, F4REM FRINT PADILE VWA_LES

Mé REM PRINT FIRE BUTTON STRTUES
o IWT PRIMT"FIRE A "iS1."FIRE B ' .52

S0 FORM=ITODE HEXT REM WALT A WHILE

9@ FRINT'2':FPRINTGOTO 28:REM CLEAR SCREEM AMD Tg
FGSTH

A RN DHTHA FOR MACKIME Z0DE ROJTIHE

o8 [HTﬁlszﬁi;ianl?a_E,EEEJ14|JHJ153.1591192,1414

141 =, 13*
138 TRATAIEE, €4, 202, 16,222, 173,38, 182, 141, 2,828,173,
i

220, 14
T4E L= THE, 135,88, 95

INPUT/QUTPUT GUICE 347

LIGHT PEN

The light per input latches the current screen position into u pair of
registers (LFX, LPY) on a low-going edge. The X position register 19
($13) will certain the 8 MSB of the X position at the time of fronsition.
Since the X position is defined by a 512-state rounter (9 bits), rasolution
to 2 horizontal dots is provided. Similarly, the Y pasition is latched in its
recister 20 (£14), but hera 8 birs pravide single raoster raeolution within
the visible display. The light per latch may be triggered anly once pei
frame, and subsequent trggers within the same frome will have no
effect. Therefore, you must take several samples before turning the pen
to the screen {3 or more sumples averags), depending upon the char-
acteristics of yvour light pen.

RS-232 INTERFACE DESCRIPTION

GENERAL OUTLINE

The Commodore 64 has o built-in R5-232 intarfoce fur connection to
cny RS-232 madem, printer, ar ether device, To connect a device to the
Commodore 64, all you need 's a cable and a little bit of programming,

R3-23Z on the Commadore &4 is set-up in the standard RS-232 for-
mat, but the vaoltages are TTL levels (0 to 5V) rather than the normal
RS-232 —12 70 12 volr range. The cable betwasn the Cammodere 64
ond the RS 232 device should take care of the necessary voltage con-
versions. The Commeodore RS-232 interface carrridge handles this prop-
erly.

The RS-232 interface soffware can be accessed from BASIC or from
the KERMAL for machine language programming.

RE-232 on the BASIC level uses the normal BASIC commands: OPEN,
CLOSE, CrAD, INPUT#, GET#, PRINT#, and the reserved variabie ST.
INPUT# and GET# fetch data from the receiving buffer, while PRINT#
ond CMDO place date into the fransmitting butter. The use of thess com-
mands {and examples) will be describec in more delcil later in this
cnapter.

Ths R5-232 KERNAL byte and bit level hendlers run under the cantral
of the 6526 CIA #2 device timers and interrupts. The 6526 chip gener-

348 INPUT/OUTPUT GUIDE

ates NMI (Nen Maskakle Interrupt) requests for RS-232 processing. This
allows background RS-232 processing to take place during BASIC and
machine langucge programs. There are built-in hold-offs in the KERNAL,
casselte, and serial bus routines 1o prevent the disruprion of data star-
cge or transmission by the NMIis that are generated by the RS-232
routines, During cassette or serial bus activities, data can NOT be re-
ceived from RS 232 devices. But because these hold-offs are only local
(assuming you're careful akout your programming) ne interfarenca
should result.

There are twec buffers in the Commodore 64 R3-232 interfoce to help
prevent the loss of data when tramsmitting or rece’ving R3-232 inferma-
liorn,

The Commodore 64 RS-232 KERNAL buffers consict of two first in/
first-out (FIFO) buffers, each 256 bytes long, at the top of memary. The
OPENing of an R5 232 channel automctically allocates 512 bytes of
memory far these buffers. If there is not enough free spoce beyond the
end of your BASIC program no error message will be printed, anc the
end of your program will be destroyed. SO BE CAREFUL!

These bufters are automatically removed by using the CLOSE com
muand,

OPENING AN RS-232 CHANNEL

Crly one RE-232 channel should be cpen ot any time; a second OPEN
statement will cause the buffer pointers to be resst. Any characters in
either the fransmit buffer or the receive ouffer will be lost,

Up to 4 characters can be sent in the filename field. Tke first rwo are
the control und command register characlers; the other rwo are re-
served for future system optiens. Bauc rate, parity, ond other options
can be selecied through this featurs.

No error-checking is done en the centrol word to detect a nen
implemented baud rate. Any illegal control word will cause the system
output to cperate at a very slow rotz (below 50 baud).

BASIC SYNTAX:

OFEN Ifn, 2,0/ <control -egister>-<commeand register>=<opt oaud
low==<Zapt baud high="

[fr1— The logical fle number (Ifn) then can be any number from 1
through 255. But be cware of the fact that if you choose a logical file
number that is greater than 127, ther o line feec will follow all carriage
returns.

INPUT/QUTPUT GUIDE 349

gE
BAUD RATE
olololo|userRrate [NU
STOP BITS 0|00 50 BAUD
0-1 STOP 8IT !
1.2 STOP BITS 019(1 75
0|01 110
0|10 134.5
Gl 1|0 150
l111 300
WORD LENGTH ol1l1 600
EIT DATA |
G| 5| WORDLENGTH | 1jof0 1200
0 8 BITS 1100 (1800} 2400
01 7 BITS A 0T 2400
1|0 6 BITS 10| 3600 INI]
_—'
T 7 o BITS 1.1 |0 4800 [N
1{1]o0 7200 [NI]
UNUSED —
il B 9600 (N1}
117 |1 19200 [N1]
Figure é-1. Centrol Register Map.
< ecantral register > —Is a single byte churucter (see Figure 6-1, Con-

trol Register Map) required to specity the baud rates. If the lower 4 bits
of the baud rate is equal to zerc (0), the <Zopt baud low><opt baud
high> characters give you o rate based on the following:

<opt boud low>=<system frequency/rate/2—100-<opt oaud

high>*256

<opt boud high=>=INT((system frequency/rate/2—100)/256

350 INPUT/OUTPUT GUIDE

(flellal 2]

PARITY OPTIONS HANDSHAKE
B-(I.T BelT B5IT OPERATICNS 0-3 LINE
o |PARITY DISABLED, NONE 1-X LINE
GENERATED/RECEIVED
o | o | 1 |ODD PARITY
RECEIVER/TRANSMITTER
o |1 |5 [EVEN PARITY
RECEIVERITRANSMITTER
1 | o | 1 |MARK TRANSMITTED
PARITY CHECK DISABLED
1+ |1 [1 [SPACE TRANSMITTED
PARITY CHECK DISABLED

DUPLEX

0-FULL DUPLEX
1-HALF DUPLEX

UNUSED

UNUSED

UNUSED
Figure 6-2. Command Register Map.

The formulas above are based on the fact that:

system frequency = 1.02273E6 NTSC (North American TV stan-

dard)
= 0.98525E& PAL (U.K. and meost European TV

standard)

<ecommand register>—1Is a single byte character (see Figure 6-2,
Command Register Map) that defines other terminal parameters. This
character is NQOT required.

INFUT/OUTPUT GUIDE 351

KERNAL ENTRY:

OPEN (3FFCQ) (See KERNAL specifications for more information an
entry conditions and instructions.)

IMPORTANT NOTE: In o BASIC program, the RS-232 OPEM command should be per- f
formed before creating any variobles or arrays becouse an automatic CLR is par-
formed when on RS-232 channel is CPENed (Thie is due to the allocation of 512 bytes ‘
at the top ot rnernorr.',l Alsg remember that your program will be desd*rovyed if 512

bytes of space are not ovoilable at the fime of the OPEN statement, ‘

GETTING DATA FROM AN RS-232 CHANNEL

When getting dota from an RS-232 channal, the Commodore 64 re-
ceiver buffer will hold up to 255 characters before the butfer overflows.
This is indicated in the R5-232 status ward (ST in BASIC, or RSSTAT in
machine language). If an overflow occurs, then all characters received
during a full buffer condition, fram that point on, are lost. Obviously, it
pays to keep the buffer as clear as possible.

If you wish to receive R5-232 data at high speeds (BASIC can anly go
so fast, especiclly considering garbage collects. This can cause the re-
ceiver buffer to overflow), you will have to use mochine languoge
routines to handle this type of data burst.

BASIC SYNTAX:

Recommended: GET#Ifn, <string variable >
NOT Recommended: INPUT#lfn ,<wvariable list>

KERNAL ENTRIES:

CHKIN ($FFC6)— See Memory Map for mere information an entry and
exit conditions.

GETIN ($FFE4)—See Memory Map for more information on entry and
exit conditions.

CHRIN ($FFCF)— See Memory Map for more information an entry and
exit conditions,

353 INPUT/OUTPUT CUIDE

NOTES:

If the waord length is less thon 8 bils, all unused bil(s) will be assigned o value of
Zero,

If a GET# does not find any cora In the buffer, the character ™ (o null) is returned.

If INPUT# is used, then the system will hong in @ waiting condition until a non-null
rhararter and e fallawing carriage return is received. Therefore, f the Clear To Send
{CT5) ar DataSsatte Ready (D3R) lina(s) disappear during character INFUT#, the sys-
tern will heing in o RESTORE-anly state. Thizs is why the INPUT# and CHRIN routines
are NCT recommendad .

The routine CHEIN handles the x-line handshake which follows the ELA stardard
(August 1979) for RS-232-C interfaces. (The Request To Send (RTS), CTS, and Re
ceived line signal (DCD) lines are implemenred with the Cemmodore 64 computer
defined as the Data Terminal device.)

SENDING DATA TO AN RS-232 CHANNEL

When sending data, the output buffer can hold 255 characters before
a full buffer hold-off occurs. The eystem will wait in the CHROUT routine

until transmission is dllowed or the and kevs
are used to recover the system through o WARM START.

BASIC SYNTAX:

CMD lfn—acts same cs in the BASIC specifications.
PRINT#lfr, <variable list>

KERNAL ENTRIES:

CHKOUT ($FFC9)—See Memory Map for more information on entry
and exit canditions.

CHROUT ($FFD2)— See Memory Map for more information on entry
conditions.

INPUT/OUTPUT GUIDE 353

IMPORTANT MOTES: There is no carriage return delay built inte the output ckannel.
This meuns that o norma’ 25-232 printer cannet correctly print, unless some farm of
hold-off {(usking the Commodore é4 to wait or internal buffering is implemented by
the printer. The hold-off can easily bs implemented in your pregram. If o CTS (a-ling)
hondshoke is implemented, ihe Commuodore éd buffer will fill, and then ho'd-off more
ourput until transmission is alowed by the RS-232 davice. X-line hondshaking is o
handshoke routine thar uses multi-lines for receiving and transmirting dare.

The routing CHROU | hancles the x-line handshake, whick follows the EIA stanccrd
(August 1979) far RS-232-C interfaces. The RTS, CT5, anc DCD lines are implemented
with the Commarara Ad dsfined a: the Data Terminal Device.

CLOSING AN RS-232 DATA CHANNEL

Closing an RS-23? file discards all data in the buffers at the time of
execution (whether or not it had been transmitted or printed out), stops

all R5-23Z transmitting and receiving, sets the RTS and transmitted dato
(Sgut) lines high, and removas both R$-232 bufters.

BASIC SYNTAX:
CLOSE Hn

KERNAL ENTRY:

CLOSE ($FFC3)—See Memory Map far more infarmatian on entry and
exit conditions.

]—NOTE; Care should be token to ensure ull duje is transmitted before closing the
| channel. A way o check this from BASIC is:

| 100 SS=ST: IF(S5=0 OR $5=8) THEN 100
| 110 CLOSE lfn

354 INPUT/OUTPUT GUIDE

Table 6-1. User-Port Lines

(6526 DLVICE #2 Loc, $DD0O0—SDDOF)
|
PIM | 6526 INY/
D PTION

b D ESCRI ElA ABVY ouT MODES
C | P30 |RECEIVED DATA (BB) 8- N [12
D PB1 |REQUEST TO SEND ICA) RTS ouT | 1*2
E | P32 |DATA TERMINAL READY | iCD) | DTR | OUT| 1%*2
F PB3 |RING INDICATOR CE) Rl IN 3

H PB4 |RECEIVED LINE SIGNAL | (CF) DCD IN 2

J PB5 |UNASSIGNED £ 1 ARK IN)

K PB6 |CLEAR TO SEND (CB) CTS IN 2

L PB7 |DATA 5ET READY (CC) DSR IN 2

B |FLAGZ2 |RCCEIVED DATA (BB} Sin IN 12
M| PAZ | TRANSMITIED DATA (BA) Sl ouT| 12
A | GNO |PROTECTIVE GROUND | (AA) GND 12

| N | GND |SIGNAL GROUND (AB;} GND 123
| MQDES:

1) 3-LINE INTERFACE (5,,5qut.GND)
2) X-LINE INTERFACF
3) USER AVAILABLE ONLY (Unused/unimplemented in code.)

* These lines cre held high during 3-LINE mcde.

[7] [6] ..)] [4] [3] [2] [1] [0] {Machine Lang. —RSSTAT
a G % _PARITY ERROR BIT

i FRAMING ERROR BIT
RECEIVER BUFFEEK OVEREUN BIT
RECEIVER BUFFER—EMPTY
(USE 1O TEST AFTER A GET#)
CTS SIGNAL MISSING BIT
LINUSED BIT
DSR SIGNAL MISSING BIT
BREAK DETECTED BIT

Figure 6-3. RS-232 Status Regisier.

INPUT/OUTPUT GUIDE 355

NOTES:

If the BIT=0, then no errar has been derecred.

The R3-237 status register can be reod from BASIC using the variable 57,

If ST is read by BASIC or by using the KERNAL HEADS] roufine the R:-232 status
word s cleared when you exit. If multiple uses of tha STATUS ward are necessary the
5T should be assigned te annther variahle For examplae:

SR=5T: REM ASSIGNS 5T TO SR

Tha RS-237 status it read (ond cleared) only when the RS-?32 channsl was the last
axtarnal /0 used.

SAMPLE BASIC PROGRAMS

18 REM THI1S PROCRAN SEMDE AHD RECEIVES DHTH
TOAFROM H SILEMNT J4m

11 REM TERIMIMAL MODIFIED FOR FET ASCILI

28 REM T1 SILEMT 7@@ SET-UFP: Zog BAUD. V-BIT ASCIL.
MARE PARTITY .,

21 REEM FULL DUFLEX

38 FEM SAME SET-UP AT COMFUTER LSING S-LTHE
INTERFACE

1889 OFEM 2,2, 3, CHRSCEHEZVACHEE(E32+1 2580 REM QOFE-

THE CHAHHEL

118 GETH2.A$:REM TUEM OM THE RECEIYER CHRMHEL
(TOSE A HULL2

Z88 mEM MAIM LOCP

21@ GET Bd REM GET FROM COMPUTER KEY30RRID

2@ IF EB#$<>"" THEW FRIMT#2Z,B¥:; 'REHM IF A KEY

PRESSEL, SEMD TO TERMIMFL

2@ GETH2,C$:REM GET A KEY FROM THE TERMIMAL

248 FRIMT BE:CE:REM FRIMT RLL IMFUTE TO COMPUTER
SURE=M

230 SR=ST. IF SRE=@ 0OF SR=5 THEM 288 REM CHECK
ATATUS. IF GOCD THEM CORTIMUE

288 REM ERROR REPORTING

318 PRIHT "ERROR:® "i

320 IF Sk AHD 1 THEW FRIMT “FHRITY"

338 IF SR AWD 2 THEM PRINT "FRAME"

346 IF SR AWD 4 THEM PRINT "RECEINER EBUFFER FULL"
338 IF SR AMD 128 THEN FPRIHT "EREAK"

368 IF <PEEKCE7T32 AND 1) THEM 368:REEM WAIT UMTIL
ALL ZHARD TRAMZSMITTED

279 CLOSE 2' EMD

356 IMPUT/QUTPUT GUIDE

égTEEH THIZ FROGEAM SEMOS HMD EECE [MES TEUE ASCII
a8 OFEM 5,2, 3. CHR$(G)

118 DIM FRHO2ZSED, THIESS

203 FOR J=22 TO &£ THOIh=l 1 HEn,

219 THOIZE)=12: TH 2B =8 RY=12:CT=0

22A FOR J=65 TO H6K=J+22 TX010=k T HEX]

238 FOR J=%. TO 35 TUCTIr=7 NEKXKT

2498 FOR J=193 TO 218:K=J~128: THC)=k i MEXT
290 Thild4e)=15:Tui13530=16

260 FOR J=8 T2 235

278 E=TH))

288 [F KaDBTHEN Fatki=J Fhik+l280=T

298 MEXT

3@0 FEIMT " "CHEE(147)

310 GETHI. A%

Zz@ IF AF=""0OF ST<o8 THEM 368

298 PRIMT " "CAR#< 1572 iCHRECFACRSO(AEN 22
248 IF FHOASCOAFI =34 THEW POKZZ12. @

258 GOTO 218

366 PRIMTCHREFCORM " "CHRFCISV 2 CHREC14ED) (GET A%
7MW IF HECSY ' THEMFR IMTH#I CHREFCTHOHSCIREX 30
HE@ CT=CT+1

399 IF CT=8 THEWCT=R:RY=1&4-RY

418 G0TOE18

RECEIVER/TRANSMITTER BUFFER BASE LOCATION
POINTERS

$00F7 —RIBUF—A two-byie pointer o the Receiver Buffer buse loca-
tion.

$00F9-ROBUF—A two-byte pointer tc the Transmitter Buffer bose
ccation.

The two locations abeve are set up by the OPEN KERNAL routine, each
oointing to a differert 256-byte buffer. They are de-allocated by writing
a zero inta the high order bytes (300F8 and $00FA), which is dane by the
CLOSE KERNAL entry. They may alse be allocated/de-allocated by the
machine langucge programmer for his/her own purposes, removing/
creating only the ouffer(s) required. When using o machine language
program that ellocates these buffers, care must be raken to make sure
that the icp of memary ooinfers stay correct, especially if BASIC pro-
grams are axpected to run ar the same fime.

IMPUT/OUTPUT GUIDE 357

ZERO-PAGE MEMORY LOCATIONS AND USAGE FOR
RS-232 SYSTEM INTERFACE

$00A7 - INBIT—Receiver input bit temp storage.
$00AB-BITCl—Recaiver bit count in.
$00A9—RINONE—Receiver flag Start bit check,
$00AA-RIDATA —Receiver byre bufferfassembly location.
$00AB—RIPRTY —Receiver parity bit storage.

$00B4-BITTS— Transmitter bil counl oul.

$00B5 -~ NXTBIT—Transmitter next kit to be sent.
$00B5—RODATA—Trunsmitter byte buffer/disassembly location.

All the above zero-page locations are used locally and are only given
as a guide to understand the associated routines. These cannot be used
directly by the BASIC or KERNAL level programmer to do RS-232 type
things. The system RS-232 routines must be used.

NONZERO-PAGE MEMORY LOCATIONS AND USAGE FOR
RS-232 SYSTEM INTERFACE

General R5-232 storage:

$0293 _MS51CTR —Pseudo 6551 control register (see Figure 6-1).

$0294-M51COR—Pseudo 6551 commund register (see Figure 6-2),

$0295-M51AJB—Two bytes following the control and command
regislers in the file name field. These locations contain the
baud rate for the stort of the bit test during the interface
activity, which, in turn, is used te calculote baud rate.

$0297 —RSSTAT—The RS-232 status register (see Figure 6-3).

$0298—BITNUM —The number of bits 10 be sent/received.

$0299-BAUDOF—Two bytes thar are equal to the time of ene bit
cell. (Based on system clock/boud rate.)

358 INPUT/QUTPUT GUIDE

$029B—RIDBE—The byte index ta the end of the receiver FIFQ
butfer,

$029C—RIDBS—The byte incex to tha start of the receiver FIFO
buffer.

$029D-ROUBS —The byfe index fo the siarr of the fransmitter FIFO
buffer,

$029E—RODBE—Tha oyte index to the end of the transmiter FIFOQ
buffer.

$02A1-ENABL—Holds current acrive interrupts in the ClA #2 ICR.
When kit 4 is turned on means that the system is waiting for
the Recelver Edge. When bit 1 is turned on then rhe system is
receiving data. When bit 0 is turned on then the system is
transmitting data,

THE USER PORT

The user port is meant to connect the Commodore 64 to the outside
world. By using the lines available at this port, ycu can connect the
Commodore 64 to a printer, a Votrax Type and Talk, ¢ MODEM, even
another camputer.

The por! un the Commodore 64 is directly connected fo one of the
6526 CIA chips. By programming, the CIA will connect to many other
devices.

PORT PIN DESCRIPTION

123 456 7 8 9 101112

[A

A BCDETFHUJNKLMN

INPUT/OUTPUT GUIDE 359

PORT PIN DESCRIPTION

PIN

TOP SIDE : DESCRIPTION MOTES

1 | GROUND

2 +5v (100 mA MAX.)

3 RESET By grounding this pin, the Commodore
é4 will do o COLD START, resetting
comgletely. The pointers to a BASIC
program will ke reset, but memory will
not be cleared. This is also o RESET
output for the external devices.

4 CNTI1 Serial port counter from CIA #1 (SEE
ClA SPECS).

5 SP1 Serial part from CIA #1 (SEE 6526 ClA
SPECS).

6 CNT2 !Serial port counter from CIA #2 (SEE
ClA SPECS).

7 5P2 Serial port from CIA #1 (SEE 6526 ClA
SPECS).

8 PC2 Handshaking line from CIA #2 (SEE
CIA SPECS).

9 SERIAL This pin is connected to the ATN line of

ATN the serial bus.

10 9 VAC +phase | Connecred directly to the Commadore

11 9 VAL —phase |64 transformer (50 mA MAX.).

12 GND

BOTTOM SIDE

A GND The Commodore 54 gives you control

B FLAG2 over PORT B on CIA chip #1. Eight

£ PBO lines for input or output are available,

D PB1 as well os 2 lines for handshoking with

E PB2 an outside device. The /O lines for

F PB3 PORT B are controlled by two loca-

H PB4 tions. One is the PORT itself, and is lo-

J PB5 cated at 56577 (SDDO1 HEX). Naturally

K PB6 you PEEK it to read an INPUT, or POKE

L PB7 it to set an OUTPUT. Each of the eight |

M PA2 I/O lines coan be set up as either an

N GND INPUT or an OUTPUT by setting the

DATA DIRECTION REGISTER properly.

360

INPUT/QUTPUT GUIDE

The DATA DIRECTION REGISTER has its location ot 56579 ($DD0O3
hex). Each of the eighl lines in the PORT has a BIT in the eight-Lit DATA
DIRECTION REGISTER (DDR) which controls whether that iine will be an
input or en output. If a bit in the DDR is a ONE, the corresponding line
of the PORT will be an OUTPUT. If o bit in the DDR is o ZERO, the
corresponding line ol the PCRT will be an INPUT. For sxample, if bit 3 of
the DDR is set to 1, then line 3 of the PORT will ke an cutput. A furthar
example:

If the DDR s set like this:

BIT#: 76543210
VALUE: 00111000

You can see that lines 5,4, and 3 will be outputs since those bits are
ones. The rest of the lines will be inputs, since those lines are zeros.
To PEEK cr POKE tne USER port, it is nccessary to use both the DDR
and the PORT itself.
Remember that the PEEK and POKE statements want ¢ numboer from
0—255. The numbers given in the example must be translated into dec-
imal before they can ke used. The value would be:

2242V 4+ 2* =32+ 16+ 8=56

Notice *hat the bit # for the DDR is the same number that = 2 raised to
a power lo lurn the bit value on,

(16 = 2[4=2x2x2x2, 8 = 213=2X2%2)

The two other lines, FLAG] and PA2 are different from the rest of the
USER PORT. These two lines cre mainly for HANDSHAKING, and are
programmed differently from port B.

Hondshaking is needed when two devices communicate. Since one
device may run at a different speed than another device it is necessary
ta give the devices same way of knowing what the other device is doing.
Even when the devices are cperating at the same speed, handshaking is
necessary ro ler the other know when dota is to be sent, and if it hus
been received. The FLAG1 line has specicl characteristics which make it
well suitad for handshaking.

ELAGCT is a negative edge sensitive input which can be used as a
general purpose interrupt input. Any negative transition on the FLAG line
will set the FLAG interrupt kit. If the FLAG interrupt iz enabled, this will

INPUT/OUTPUT GUIDE 361

cause an INTERRUPT REQUEST. If the FLAG bit is not enabled, it can be
polled from the interrupr register under progrem rantral.

PA2 is bit 2 of PORT A of the CIA. It is centrolled like any other bit in
the part. The port is locoted ar 56576 (SDDO0). The data direction regis-
ter is located ot 56578 ($DD02.)

FOR MORE INFORMATION ON THE 6526 SEE THE CHIP SPECIFICA-
TIONS IN APPENDIX M,

THE SERIAL BUS

The serial bus is a daisy chain arrangement designed to let the Com-
modore &4 communicate with devices such as the VIC-1541 DISK DRIVE
and the VIC-1525 GRAPHICS PRINTER. The advantage of the serial bus
is that more than one device can ke connected to the port. Up 10 5
devices can be connected to the serial bus at one time.

There are three types of operation over a serial bus—CONTROL,
TALK, and LISTEN. A CONTROLLER device is one which contrels operaticn
of the serial bus. A TALKER transmits datc onto the bus. A LISTENER
receivas data from tha bus,

The Commodere ¢4 is the controller of the kus. It clso acts es o
TALKER (when sending cata te the printer, for axample) and as & LIS-
TENER (wher loading a program from the disk drive, for example).
Other devices may be either [ISTENERS (the printer), TALKERS, or both
(the disk drive). Only the Commodcre 64 can act as the controller.

All devices connected on the serinl bus will receive oll the dato
transmitted over the bus. To allow the Commadore 64 to route data to its
intended destination, each device has a bus ADDRESS. By using this
device address, the Commodore 64 can control access to the bus. Ad
dresses on the serial bus range from 4 to 31,

The Commeodore é4 can COMMANED c particular device to TALK or
LISTEN. When the Commodore 64 commends o device to TALK, the de-
vice will begin putting deta onto the serial bus. When the Commoadore
64 commands o device to LISTEN, the device addressed will ger ready 1c
receive data (from the Commodore é4 or from another device on the
bus). Only one device can TALK un the bus al a time; otherwise, the dula
will collide and the system will crash in confusion However, any number

of devices can LISTEN at the same time to one TALKER.

362 INPUT/OUTRUT CUIDE

COMMON SERIAL BUS ADDRESSES

NUMBER DEVICE \
4015 VIC-1525 GRAPHIC PRINTER
8 VIC-1541 DISK DRIVE

Other device addresses are possible. Each device has its own ad-
dress, Certain devices (like the Commodare 64 printer) provide a choice
hetween two addresses for the convenience of the user,

The SECONDARY ADDRESS is to let the Commodore 64 transmit setup
information te o device. For example, to OPEN a connection on the bus
to the printer, and have it print in UPPER/LOWER cose, use the following:

OPEN 1,4,7

where,
1 is the logical file number (the numoer you PRINT# to),
4 is the ACDRESS of the printer, and
7 is the SECONDARY ADDRESS that tells the printer to go into UPFER/
LOWER cose mode.

There are & lines used in serial bus operation—3 Input and 3 autput.
Tne 3 input lines bring data, control, and timing signals into the Com
modore 64. The 3 output lines send dutu, control, and timing signals
from the Commodore 64 to external devices on the serial bus.

SERIAL BUS PINOUTS

PIN DESCRIPTION

1 SERIAL SRQ IN

2 GND

3 SERIAL ATN IN/OUT
4 SERIAL CLK IN/CUT
5 SERIAL DATA IN/OUT
b NO COMNNECTION

INFUT/OUTPUT GUIDE 363

SERIAL SRQ@ IN: (SERIAL SERVICE REQUEST IN)

Any device on the serial bus cun bring this signal LOW when it re-
quires atention from the Commodore 64, The Commadore &4 will then
take care of the device. (See Figure 6-4).

— : _ NORMAL
r-; BYTE SENT UNDER ATTENTION (TU DEVIGES) | |-DATA BYTES

7 ;‘
LTAT 51 | TE;WMU-I —{Trl-

o RONNE | Dollsliafisl sl]

|

B
-
=

LO

=

y DATA VALID L'TF'
LISTENER READY-FOR-DATA LISTENER DATA-ACCEPTED
END-ORIDENTIFY HANDSHAKE (LAST BYTE IN MESSAGE)
ATN
TALKER READY.TO-SEND TALKER SENDING
_ 3
CLOCK |||[|| ||||H|||||||||| |
—-Tos Ts+|4+Tv _ | [
0ATA |4][5]]€] |_| | | |

MSBE
_‘]TH !*TYE-'I-EI* Ty - TF L—-erFn
LISTENER READY-FOR-DATA
EOLTIMEOUT HANDSHAKE SYSTEM LINE
LISTEMER READY-FOR.DATA RELEASE
TALK-ATTENTION TURN ARDUND (TALKER AND LISTENER REVERSED)

ATN | DEVICE ACKNOWLEDGES IT IS NOW TALKER

| TALKER READY-TO-SEND
CLOCK ||H|||| ‘ Tut
| *lan-,* Toe Tm"“ Nl |

oata |al|s]]ell7] TT< ITsI_ILIlzllzIMiallillﬂ |

M3B | LSB MSB
I Te| H i 5 O

READY FOR DATA
BEGOMES LISTENER, GLOGK = HIGH, DATA LOW

Figure 6-4. Serial

364 INPUT/OUTPUT GUIDE

SERIAL ATN IN/OUT: (SERIAL ATTENTION IN/OUT)

The Commodore &4 uses this signal ta srart @ cammand sequence for
o device an tha serial bus. When the Commodore 64 brings this signal
LOW, all other devices on the bus star: listening for the Commodcre 64
to transmit an nddress. The device addressed must respond in o preset
period of time; otherwise, the Commodore 64 will assume that the de-
vice addressed is not an the bus, and will return an error in the STATUS
WORD. (See Figure 6-4).

TALKER READY-TQ-SEND

TALKER SEMDING
] Ts The
Tne 4Ty |—1‘reai— MR
el BIlGle llefld LLfs
LEE M

B | .J |

¥

CATA VALID ~ITe el Th I

LISTENER HEADY-FOR-DATA LISTENER DATA-AGGEFTED

Jrl

SERIAL BUS TIMING

Description Symbol | Min. Typ. Max.
ATN RE3PONSE (REGUIREDY! Tat - 1000
LISTEMER HOLD-DFF Ty b . o
MON-EUI HESPONSE TO RFDZ THE — 4005 | 20Cus
BIT SET-UP TALKER® T 20ps | 70ps —
DATA VAL'D Ty 20ps | 20ps —
FRAME HANDSHAKE? TE] 20 | 1000ps
FRAME TC SELEASE OF ATN TH 20us
BETWEEN BYTES TIME Tgg | 100us | — -
FOI RESPONSE [IME Tyg | 200us | 280us | —
EQI RESPONSZ HOLD TIMES? Tel 60ps
TALKER AESPOMSE LIMIT TR 0 Apus | BOps
BY I E-ACKNOWLEDGE® TrR 20ps | 30ps —
TALK-ATTENTICN NELEASE Ttk | 20ps | 30ps | 100us
TALK-ATTENTION ACKNOWI|FNGF Toc 0 — =
TALK-ATTENTICN ACK. HOLD Tna | B0ps - -
EOI ACKNOWILEDGE Ter | 60ks = -

Notes:

1. i maximum time exceadad, device not present errar.

2, If maximum time exceaded, EQOIl rasponse required

3.1 maamum time exceeded, frame arror,

4, Ty end Tpg minimum must be BOps for external dov ce to beo a walker
5. Tg; minimum must ba 8Jus for external device 1o be a listaner

Bus Timing.

INPUT/OUTPUT GUIDE 365

SERIAL CLK IN/OUT; (SERIAL CLOCK IN/OUT)

This signal is used for timing the dota sent on the serial bus. (See
Figure 6-4).

SERIAL DATA IN/OUT:

Data on the serial bus is transmitted one bit at a time on this line, (See
Figure 6-4.)

THE EXPANSION PORT

The expansion connector is a 44-pin (22/22) female edge connector on
the back of the Commodore 64. With the Cammodore &4 facing you, the
expansion connector is an the far right of the back of the computar. To
use the cornector, o 44-pin (22/22) male edge connector is required.

This port is used for expansions of the Cemmodore 64 system which
require access to the address bus or the data bus of the computer.
Caution is necessory when using the expansion bus, becouse it's possi-
ble to damage the Commedore 64 by o malfunction of your equioment.

The expansion bus is arranged as follows:

ZAAWWIEITIEIS1413121110 % B .7 8 54 3 21

J A EEREEEEEE®R
ZY XWYUTSRARPNMLKJHFEDGBA

The signals availakle on the connector ore as follows:

NAME |PIN DESCRIPTION

GND 1 Systerm ground

+5VDC| 2 (Total USER PORT and CARTRIDGE devices can

+5VDC| 3 draw no more than 450 mA.)

RQ 4 |Interrupt Request line to 6502 (active low)

RIW 5 |Read/Write

DoT

CLOCK 6 |8.18 MHz video dol clock

@ 7 |0 block 1 @ $DE0D—$DEFF (active low) unbuffered 11O

GAME 8 |active low Is #tl input

EXROM | 9 |active low Is ttl input

/o2 10 (IO block 2 @ $DFO0— $DFFF (active low) buffed Is 1l
output

366 INPUT/OUTPUT GUIDE

Name i

DESCRIPTION

ROML
BA
DMA

D7
Do
D5
D4

D2

GND
GND
ROMH
RESET
NMmI

h2
A15
Ald
A13
| Aa12
A1l
| AT0
A9
A8
A7
Ab
A5
Ad
A3
A2
Al
A0
GND

14
15
16
17
18
19
20
2
22

N w

o

NALXScC 4ROV ZErA—-Inm

BK decoded RAM/ROM klock @ %8000 (active low)
buffered Is 1l ourput

Bus available signal from the VIC-II chip
unkuffered 1 Is load max,

Direct memory access regquest line (octive 'ow input)
Is 1l input

Data bus bit 7
Data bus bit 6
Data bus bit 5
Data bus bit 4 , unbuffersd, 1 |s #l load max
Data bus bit 3
Data bus bit 2
Date bus hit 1
Doto bus bit 0
System ground

8K decoded RAM/ROM block @ $E000 buffered

&502 RESET pin [active low) butf’ed tl out/unbuff'ed in
A#502 Non Maskable Interruor (active low) buff’ed il out,
urbuff'ed in

Phase 2 system clock
Address bus bit 15 W
Address bus bit 14
Addrese bus bit 13
Address bus bil 12
Address bus bit 11
Address bus bit 10
Address bus hit @
Address bus bit 8 , unbuffered, 1 I tl load max
Address bus hit 7
Address bus kit 6
Address hus bir 5
Address bus bit 4
Address bhus hit 3
Address bus bir 2
Address bus hit 1
Address bus bit 0 _
System ground

Overbar meuns active low

INPUT/QUTPUT GUIDE 367

Following is @ description of some important lines on the expansion
oort:

Fins 1,22,A Z are connected to the system ground.

Pin 6 is the DOT CLOCK. This is the 8.18-MHz video dot clock. All
systemn timing is derived from this clock.

Pin 12 is the BA (BUS AVAILABLE) signal from the VIC-II chip. This line
will go low 3 cycles before the VIC-II 1akes over the system busses, and
remains low until the VIC-II is finished fetching disploy information.

Pin 13 is the DMA (DIRECT MEMOCRY ACCESS) line. When this line is
pulled low, the oddress bus, the data bus, anc the Read/Write line of
the 6510 processor chip enter high-impedance state made. This allows
an external processor to take control of the system busses. This line
should only be pulled low when the &2 clock is low. Alsu, since Ihe
VIC-II chip will confinue to perfarm display DMA, the external device
must confarm to the VIC-Il timing. (See VIC-II timing diagram.) This lire
is pulled up on the Commodora 64.

Z-80 MICROPROCESSOR CARTRIDGE

Reading this book and using your computer has shown you just how
versatile your Commodare 64 really is. But what makes this machine
even more capabkle of meeting your neeos is the addition of perisheral
equipmeni. Peripherals are things like Datassetta™ recorders, disk
drives, printers, and modems. All these items con be added to your
Commodore é4 through the various ports and sockets on the back of
your machine. The thing that mckes Commodore peripherals se¢ goed is
the fact that our peripherals are “intelligent.” That means that they don's
take up valuakle Randem Access Memeory spoce when they're in use.
You're free lo use oll 64K of memory in your Commodore 64,

Ancther advantage of your Commodore 64 is the fact most progroms
you write on your Commodore 64 todouy will be upwardly compaticle
with any new Commodore computer you buy in the future. This is par-
tially because of the qualities of the computer’s Operating System (OS).

However, there is one thing that the Commeodore OS can’t do: make
your programs compatible with a computer made by another company.

368 INPUT/OUTPUT GUIDE

Most ot the tima you won't even have to think about using cnether com-
pany's compuler, because your Cornmodore 64 is so easy to use. But for
the occasional user who wants to take acvanioge of software thet may
nol be avciluble in Commodore 64 format we hove created a Commo-
dore CPIME cartridge.

CP/M® is not a “computer dependent” operating system. Instead it
uses some of the memory space normally availakle for proagramming to
run its own operating system. Thers are advanicges and disadvantages
to this. The disadvantages are that the programs you write will hove to
bz shortzr than the progrems you can write using the Commedore 64's
built-in operating system. In additian, yau con NOT use the Commaodore
64's powerful screen editing capabilities. The advantages are that you
can now use a large amount of sofrware that hos been specifically de-
signed for CP/ME and the Z-80 microprocessor, and the programs that
you write using the CF/M® apercting system can be transported and run
on any other computer that has CP/M® and o Z-80 card.

By the way, most computers that have a Z-80 microprocessor require
that you go inside the computer to actuclly install o Z2-80 card. With this
method you nave to be very careful not ro disturb the delicate circuitry
that runs the rest of the computer. The Commodore CP/M® cartridge
eliminatres this hassle because our Z-80 carfridge plugs intu the back of
your Commodere 64 guickly and easily, without any messy wires that

can cause pl’UbIb‘lllS |-:lier.

USING COMMODORE CP/M®
The Commaodore Z-80 cartriddlge et's you run programs designed for a

Z-80 micruprocessor ar your Commeadore 64, The cartridge is provided
with @ diskette confoining the Commodore CP/M® nperating system.

RUNNING COMMODORE CP/M®
To run CP/MY:
1) LOAD the CP/M® program from your disk drive.

2) Tyoe RUN.

3) Hit the key.

INPUT/QUTPUT GUIDE 369

At this point the 64K bytes of RAM in the Commodore 64 are accessi-
ble by the buil-in 6510 central processor, OR 48K bytas of RAM are
available for the Z-80 central processor. You can shift back and forth
between these two processers, but you can NOT use them af the same
tfime n a single program. This is possible because of your Commedore
64's sophisticated timing mechanism.

Below is the memory address transiation thet is performed on the
Z-80 cartridge. You should notice that by adding 4096 bytes to the
memory locations used in CP/M® $1000 (hex) you equal the memory
addresses of the normal Commodore 64 operating system. The corre-
spondence between Z-80 and 6510 memory addresses is as follows:

370

INPUT/OUTPUT GUIDE

Z-80 ADDRESSES 6510 ADDRESSES
DECIMAL HEX DECIMAL HEX

0000-4095 000C—0FFF 4096-8191 1000-1FFF

4096—-8191 1000—1FFF 819212287 2000—2FFF

819212287 2000-2FFF 12288-16383 3000—3FFF
12288-16383 300C—3FFF 1638420479 4000 4FFF
16384-20479 4000—4FFF 20480—-24575 5000- 5FFF
20480-24575 5000— 5FFF 24576—28671 6000—&FFF
2457628671 6000—6FFF 28672-32767 7000-7FFF
2867233767 7000—7FFF 32768-36863 B8000— 8FFF
3276836863 B00OO—BFFF 36864—-40959 9000—-9FFF
36864 -40959 Y000 —9FFF 40960—45055 AD00—AFFF }
40960—-45055 AD0O—AFFF 4505649151 BOOD-BFFF |
45056—4Y9151 BOOO—BFFF 4915253247 CO00—-CFFF |
4915253247 C000—CFFF 5324857343 DO0O-DFFF |
5324857343 DOOO— DFFF 57344-61439 EODO—EFFF |
57344 61439 EODQ - EFFF 61440 65535 FOOO - FFFF I
61440—-65535 FOOO—FFFF | 0000—-4095 0000-OFFF

To TURN ON the Z-80 and TURN OFF the 6510 chip, 1type in the fallow-
ing program:

1a EQM THIS FROGRAM IS 70 BE USED WITH THE 70 CRRED
2EOREM 1T FIRST STORES 220 DATHA AT #1088
o B Anl m s

8 REM THEM IT TURMS OFF THE s&518 TR S 34D EMABLES
8 REM THE ZE@ CARD. THE ZEQ CARD MUST BE TURMED
OFF

e REY TO RECHNDLE THE G518 SYSTEM.

e RIM STORE Zo@ JATA

113 RERAD B OREM GET SIZE OF 226 CODE TO 3B MOVED
128 FIR I=483& TO 409¢+E-1REM MOVE CODE

140 RERD A POKE 1 A
1eE MEST I

2T REM RUN 289 CODE
218 PORE 56000k 187 o TLEH OF G318 IRG S

S PORE BSQBZ. B8 ¢ RER TLIRM OM 208 ChRD

SE POCE SERR3. 185 0 RENM TURM OH 6316 IRRS LMEHN
AR DOHE

=2¢@ EMD

lé8ge REM 288 MWCHINE LPHGUAGE CODE DRTA SECTION
1318 DATA 18 ¢ REM SIZE OF DITF TO BE PASSED

1183 REM 220 TURM O ZUDE

1110 TATF 6B 0E.06 @ =EM OUR 280 CAZD REQUIRES
TUREH OF TIME AT #0008

1280 REM ZE0 TASK DATA HERE

1218 TOATH 33 @2.245% 0 RER LT MU MM G0 DGR B (IR
SCREEM S

28 DATA =2 ¢ REM IHS HL ¢ INCREMEMT THA™ _OCATIOND
REM g S5 F-TUREN DOFF IATH HERS

TATE €2, 81 © REM LD ALK

DATH S@, @3, 206 ¢ REM LD CHHM M 120 LIEETION
UFLTFL 18, 1, 1 Bl RMOF MOP S ROF

DATA 153, 08,82 - REM JMF #ogEs

For more details uboul Cummodore CP/M® and the Z-80 microproces-
sor look for the ccrtridge and the Z-BO Reference Guice at your local
Commoduore compuler dealer.,

INPUT/QUTPUT GUIDE 371

INPUT/QUTPUT GUIDE

APPENDICES

APPENDIX A

ABBREVIATIONS FOR
BASIC KEYWORDS

As o time-saver when typing in programs end commands, Commo-
dore 64 BASIC allows the user to abbreviate-most keywaords. The ah-
breviation for PRINT is a question mark. The abbreviations for ather
wards are made by typing the first one or twa letters of the ward, fol-
lowed by the SHIFTed next letter of the word. If the cbbreviations are

used in a pragram line, the keyword will LIST in the full form.

Locks like
Com- Abbrevi- this on Com- Abbrevi-
mand afion screen mand ation
ABS A B a1l END N sqiF
AND A Eillig N AZ EXP [SHIFT I
asc AEEs A[Y FN NONE
ATN A EURE T A[I:] FOR FELlay O
cirs c @+ <L FRE 3 R
cose cEmEo <] GET G E
CLR c B c[] GET# NONE
cvo c EEm N cosus o IR s
cont c Elo <[] coro G o
cos NONE cos IF NONE
DATA D A D[a] INPUT NONE
DEF o @E: o ineuT# | (SRR N
DIM (ol SHIFT M DE:] INT NONE
374 APPENDIX A

Looks like
this on
screen

e

Looks like Looks like

Com- Abbrevi- this on Com- Abbrevi- this on
mand ation screen mand ation screen
LEFTH (B SHIFT g LEQ RIGHTS Ll SHIFT R B
LEN NONE LEN RND REE N R
LET L E L RUN R u Rr[4
LIST (I SHIFT L m SAVE s Bl A s
toan L EEE O L D SGN s @ - S|
LOG NONE oG SIN s EEl | s K]
MID$ mEnER | M R_-l SPC(s El&S P 5 D
NEW ~ NONE NEW SQR s Q s @
NExT N [EEED E N [STATUS ST ST
notT NEBBo N[stee TR ¢ st
ON NONE ON STOP s ElE T s]
oreN OEIE] P o] stRe ST (EIER R st
OR NONE O 5YS s@@ s []
PEEK Gl stirr g =] TAB(1l shiFT Y T
POKE rElE © P[] TAN NONE TAN
POS NONE PC THen T (EXGER H T[]
PRINT ? ? TIME Tl I
PRINT# P [EIED R 2 TIMES TS TI$
READ ? Bl ¢ R USR v ELES s U
REM NONE REM VAL v EER A v (&)
restOrRe re (AR S Re (] veriry v (XD E v
ReTURN - Re [EIRD 7 Re[[] warr w EIED A W]

APPENDIX A 375

APPENDIX B

SCREEN DISPLAY CODES

The following chert lists all of the characters ouilt inte the Commodore
64 character sets. It shows which numbers should be POKEd inta screen
memoery (locations 1024-2023) 1o get a desired character. Also shown is
which character corresponds to a number PEEKed frem the screen.

Two character sets are available, but only one set at o time. This
means that you cannot hove characters from one set on the screen af
the same time you have characters from the other set displayed. The
sets are switched by holding down the and keys simul-
taneously.

From BASIC, POKE 53272,21 will switch to upper cose mode and
POKE 53272,23 switches to lower case.

Any number on the chart may also be displayed in REVERSE. The
reverse character code may ba obtained by edding 128 to the values
shown.

I1f you want to display o solid circle ot location 1504, POKE the code
for the circle (81) into location 1504: POKE 1504,81.

There is a corresponding memory lccotion to contral the color of each
character displayed on the screen (locations 55296-56295). Te chenge
the color of the circle 1o yellow (color code 7) you would POKE the corra-
sponding memeory location (55776) with the character color: POKE
55776,7.

Refer to Appendix D for the camplete screen and coler memory maps,
along with color codes.

NOTE: The following POKEs disploy the same symbol in set 1 and 2: 1, 27—64,
?1-93, 96—-104, 106~127, 123-127.

SCREEN CODES

SET1 SET2 POKE_I SET1 BSET2 POKE [SET1 SET2 POKE

@ 0 C c 3 F f 6
A a 1 D d 4 G q 7
B b 2 E e 5 H h 8

376 APPEMNDIX 8

POKE

u
w

o
w

.
o

[}
w0

=]
w0

5

-
M~

o
M~

(1]
M~

<
~

Te]
P~

w
I~

N

mw
~

L=z}
~

Q
o

.-I
W

o
w

4 wn ©
%888

~
o

N
©

&

— o
o

m <CcmOOWWLETIT-—-=¥ 132 000KmiE->>2TX>N

o

E @B D0NO008EN00VNOD®OOEXOR B H
Y hBB9TYITILILIIR SN IBELRB8 YR
™~

l

w

m%&,{).+-_ - O — N M % D o M~ o D _.<_>?E
w

#looraoroer 223 RARIRENRRBESBI 8 8
L

nl.luk]mnﬂpqr.stn-u.wunyz

® (w4

- 2
nIJKLMNDPQHSTUVWXYZ[E]T,_‘WI % @
L]

377

APPEMNDIX B

8ET1 SET2 POKE| BET1 S8ET2 POKE | S8ET1 BETZ POKE
[0 oa ([A 105 | LI 17
B s | 106 | LN 118
N N | [F 107 | O 119

86 | [o 108 | ™ 120
D o7 | [H 109 | |om 121
= 8 | A] 1o | 1 M 122
=] s | [111 | ml 123
] 100 A 112 | [W 122
[] 101 | = 113 | H] 125
B 102 | | 114 | M] 126
1 103 | H] 15 | My 127
= 104 | I 116

Codes from 128-255 are reversed images of codes 0-127.

378 APPENDIX B

APPENDIX C

ASCIl AND CHR$ CODES

This appendix shows you what characters will appear if you PRINT
CHR$(X), for all possible velues of X. It will alsc show the values cb-
tained by typing PRINT ASC(“x"), where x is any character you can type.
This is useful in evaluating the character received in a GET statement,
converting upper/lower case, and printing character based commands
(like switch tc upper/lower case) that could not be enclosed in quotes.

PRINTS CHRS PRINTS CHRS PRINTS CHRS PRINTS CHRS
0 ﬂ 17 i 34 3 51
1 n 1B # 35 4 52
2 | 9 9] &8 3 5 53
s | 8 20 | % 37 6 54
4 21 & 38 7 55
2 5 22 - 30 8 56
3 23 (40 9 57
7 24) a1 | 58
nisaeces TN (& 25 * 42 | i 59
ensaes [EIER (G0 26 + 43 & 60
10 27 : 4 | = 61
11 m 2B - 45 | = 62
12 29 48 ? 63
13 30 / 47 @ e
RN <« | B 3| o 4 A 65
15 32 1 49 | B €6
16 ! 33 2 50 c 67

APPENDIX C 379

PRINTS CHRS | PRINTS CHRS | PRINTE CHRE | PRINTS CHRs
D 68 | (4 97 | [126 | Geys 1ss
E e | []] e | N 127 | B 158
I T IS R 126 | @ 157
G 71 5 100 Orange 129 158
H 72 | 1o 130 | IR 159

- B 102 131 160
J 74 [0 103 132 |] 16
K 7 | [] 104 | f 133 | [162
L 76 K] 106 | 3 184 | [] 163
M o N 106 | 15 135 L] 164
N 76 |] 107 | 7 138 [J] 185
o 7¢ |[J 18| t2 37| BE 165
P g0 [N 109 | 4 138 | [1 167
Q 8 ||/ 10! 6 130 | & 18
R 82 | [11 w© 140 | W] 169
g 83 | [] 112 | EEE 41 (1 170
% 84 | @ 113 EENE 142 | [H 171
U 85 |] 114 143 w172
v g6 | [V 115 s | Y 173
w g7 | [116 145 Rl 174
X g8 | [A 117 146 | wal 175
Y Be @ 118 147 E 176
z w0 [O 19 148 | M 177
[g1 @ 120 Brown 149 E 178
£ g2 Fﬂ 121 Lt. Red 150 B_—J 179
] o3 | [® 122 | eyt 181 | [180
1t e | B o123 | eme 12| [189
— 85 E_’ 124 L1, Green 153 EI 182
H s | 125 | weewe 54 | [183

3ao APPENDIX C

PRINTS CHRS PRINTS CHRS PRINTSE CHFR$ PRINTS CHRS
™ 184 | [] 188 | (M 188 | M] 4g0
o 85 | @] 187 [E] 18 | M 1s

CODES 192-223 SAME AS 96-127
CODES 224-254 SAME AS 160-190
CODE 255 SAME AS 126

APPENDIX C

381

APPENDIX D

SCREEN AND COLOR MEMORY MAPS

The following charts list which memory locations contrel placing char-
acters on the screen, and the locations used to change individuel char-
acter cclors, as well as showing character eonlar codas.

SCREEN MEMORY MAP

COLUNN
o] 10 20 a 3

b4

1023 ——= l "
1064
1104
1144
1184 |
1224 i
1264
Li0d .
1244 | |
L
1424 T

1464 W Hw
1504 '
144
1584
1624 |
1664
1904
1744
178
132
186 { B
190/ |
1942 T
L] | 2

noy

2023

382 APPEMDIX D

The actual values 1o POKE into a cclor memory location to change a
character’s color are:

@ BLACK 8 ORANGE

1 WHITE 9 BROWN

2 RED 19 Llight RED

3 CYAN 11 GRAY 1

4 PURPLE 12 GRAY 2

5 GREEN 13 Licht GREEN
6 BLUE 14 Light BLUE
7 YELLOW 15 GRAY 3

For example, to change the color of a charocter located at 1he upper
left-hand corner cf the screen to rad, type: POKE 55296,2.

COLOR MEMORY MAP

COLUMN
U 0 & 3 EE}

25335
f

0296 —
9336 i | 1
EB176
55116
s L O
55496
55536 1 |
0576 | |
5616 | 111
55656 [= -
bbbih il 11 1) &
55135 | | -
55175 . [
55815
THa55 |
553895 |
55933
33413 |
56013
i |
rl
36143 A
5R173
56215
56253 : 2

56295

AFPENDIX D 383

APPENDIX E

MUSIC NOTE VALUES

This appendix contains a complete list of Note#, actual note, and the
values to be POKEd into the HI FREQ and LOW FREQ registers of the

sound chip te produce the indicuted notle.

MUSICAL NOTE OSCILLATOR FREQ
NOTE OCTAVE DECIMAL HI Low
0 Cc-0 268 1 12
1 C#-0 284 1 28
2 D-0 307 1 45
3 D#—-0 318 1 62
4 E-0 a37 1 81
5 F—0 358 1 102
6 F#-0 379 1 123
7 G-0 401 1 145
8 G#-C 425 1 169
9 A0 45] 1 195
10 A# -0 477 1 221
11 B-0 506 1 250
16 =l 536 2 24
17 C#-1 568 2 56
18 D-1 602] 90
19 D#-1 637 2 125
20 E—1 675 2 163
21 F—1 716 2 204
22 F#—1 758 7 246
23 G-1 803 3 35
24 G#—1 851 3 83
25 A-1 202 3 134
26 AF—1 I 955 3 187
27 B 1 1012 3 244
32 c-2 1072 4 48

384 APPENDIX E

MUSICAL NOTE

OSCILLATOR FREQ

MOTE OCTAVE DECIMAL HI LOW
33 C#-2 1136 4 |12
34 D-2 1204 4 180
35 D#-2 1275 4 751
36 E-2 1351 5 7
37 F—2 1432 5 152
38 F#-2 1517 5 237
39 G-2 1607 6 71
40 G# -2 1703 & 167
41 A-2 1804 7 12
42 A# -2 1911 7 119
43 B-2 2025 7 233
48 Cc-3 2145 8 97
49 C#-3 2273 8 225
50 D-3 2408 9 104
51 D#-3 2551 g 247
52 E-3 2703 10 1423
53 F-3 2864 1 48
54 F#-3 3034 11 218
55 6-3 3215 12 143
56 G#-13 3406 13 78
57 A-3 3408 14 24
58 A# -3 3823 14 239
59 B-3 4050 15 210
64 C—4 4291 16 195
65 CH—4 4547 17 195
b6 D-4 4817 18 209
67 D#—4 5103 19 239
68 E—4 5407 21 31
69 F-4 5728 22 96
70 Fi#—4 6069 23 181
71 G—4 6430 25 30
72 G#—4 6812 26 156
73 A—4 7217 28 49
74 A#—4 7647 29 223
75 B—4 8101 31 165
80 C-5 B583 33 135
81 C#-5 9094 35 134

APPEMDIX E

385

MUSICAL NOTE

OSCILLATOR FREQ

NOTE OCTAVE DECIMAL HL | LOW
82 D-5 9634 37 | 162
83 D#-5 10207 39 | 223
84 E-5 10814 42 62
85 F—5 11457 44 193
86 F#-5 12139 47 107
87 G-5 12860 50 50
88 G#-5 13625 53 57
89 A-5 14435 56 99
20 A# 5 15294 59 190
91 B-5 16203 63 75
04 c-6 17167 &7 15
97 C#-6 18188 71 12
98 D-6 10269 75 &9
99 D#-6 20415 79 191
100 E-6 21629 84 | 125
101 F-6 22915 89 131
102 F#—6 24278 94 214
103 G-6 25721 100 121
104 G#—-6 27251 106 115
105 AB 28871 112 199
106 A#—06 30588 119 124
107 BE—56 32407 126 151
112 c-7 34334 134 30
133 C#-7 36376 142 24
114 D-7 38539 150 139
115 D#-7 40830 159 126
116 E-7 43258 168 250
15 F-7 45830 179 &
118 F# 7 48556 189 172
119 G-7 51443 200 243
120 CH#-7 54502 212 230
121 A-7 57743 225 143
122 A#E-7 61176 238 248
123 B—7 64814 253 46
386 APPENDIX E

FILTER SETTINGS

Location Confents
54293 Low cutott frequency (0—7)
54294 High cutott trequercy (0—255)
54295 Resonance (bits 4—7)

Filter voice 3 (bit 2)

Fiter voice 2 (bit 1)

Filter voice 1 (bit 0)
5£296 High poss (hit &)

Bandpass (bit 5)
Low pass (hit 4)
Volume [bits 0—3)

AFPENDIX E

387

APPENDIX F

BIBLIOGRAPHY

Addison-Wesley

Compute

Cowbaoy Computing

Creative Cemputing

Dilithium Prass

Faulk Baker Associates

Hayden Book Co.

388 APPENDIX F

“BASIC and the Personal Computer”, Dwyer
and Critchfield

“Compule’s First Book of PET/CBM”

“Feed Me, I'm Your PET Computer”’, Carol Al-
exander

“Looking Good with Your PET", Caral Alexan-
der

“Teacher's PET—Plans, Quizzes, and An-
swers”

"Getting Acquainted With Your VIC 20",
T. Hartnell

“BASIC Basic-English Dictionary for the PET”,
Larry Noonan

“PET BASIC”, Tom Rugg and Phil Feldman

“MOS Programming Manuval”, MOS Technol-
ogy

“BASIC From the Ground Ug"”, David E. Simon
| Speck BASIC ro My PET”, Aubrey Jones, Jr.
“library of PET Subroutines”, Nick Hampshire
"PET Graphics”, Nick Hampshire

"BASIC Conversions Handbook, Apple, TRS-
BO, and PET", Dovid A. Brain, Phillip R.
Oviatt, Paul J. Paquin, and Chandler P. Stone

Howard W. Sams

Little, Brown & Co.

McGraw-Hill

Osborne/McGraw-Hill

F. C. Publications

“The Howard W. Sams Crash Course in Mi-
crocomputers”, Louis E. Frenzel, Jr.

“Mostly BASIC: Applications for Your PET",
Howard Berenbon

“PET Interfccing”, James M. Downey cind Ste-
ven M. Ragers

“VIC 20 Programmer's Reference Guide”, A,
Finkel, P. Higginbottom, MN. Harris, and M.
Tomeczyk

“Computer Gomes for Businesses, Schools,
and Homes", J. Victor Nagigion, and William
S. Hodges

“The Computer Tutor: Learning Activitias far
Homes and Schools”, Gary W. Orwig, Univer-
sity of Central Flarida, and William S, Hodges

“Hands-On BASIC With o PET”, Herbert D.
Peckman

“"Home and Office Use of VisiCaolc', D.
Castewtz, and L. Chisauki

“PET/CBM Personal Computer Guide”, Carrol
S. Donghue

“PET Fun and Games”, R. leffries and G.
Fisher

“PET and the |EEE", A. Osborne and C.
Danahue

“Some Common BASIC Pregrams for the PET”,
L. Poole, M. Borchers, and C. Donahue

"QOsherne CP/M User Guide”, Thom Hogan
“CBM Professional Camputer Guide”
“Tha PET Personcl Guide”

“The 8086 Boouk”, Russel Rector und George
Alexy

“Beginning Self-Teaching Compurer Lessons™

AFPENDIX F 389

Prentice-Hall

Reston Publishing Co.

Telmas Courseware
Ratings

Total Information Ser-
vices

“The PET Personul Computer for Beginners”,
5. Dunn and V. Morgean

“PET ond the IEEE 488 Bus (GPIB)”, Eugene
Fisher and C. W. Jenscn

“PET BASIC—Training Your PET Caomputer”,

Ramon Zamorc, Wm. F. Carrie, und B.
Allbrecht

“PET Games and Recreation”, M. Ogelshy, L.
Lindsey, and D. Kunkin

“PET BASIC”, Richerd Huskell
“VIC Games ond Recrsation™

"BASIC and the Personal Computer’, T. A.
Dwyer, and M. Critchfield

“Understanding Your PET/CBM, Vel 1, BASIC
Programming”

“Understanding Your VIC"”, David Schuliz

Commodore Mageozines provide you with the mast up-to-date infor-

mation for your Commodore 64, Two of the most popular publicotions
that you should seriously consider subscribing to are:

COMMODORE —The Micrccemputer Magazine is published ki-monthly
and is available by subscription ($15.00 per vear, U.S., and $25.00 per

vear, worldwide),

POWER/PLAY —The Home Computer Magazine is published quarterly
and is available by subscription ($10.00 per year, U.5., and $15,00 per

vear worldwide).

390 APPENDIX F

APPENDIX G

VIC CHIP REGISTER MAP

53248 ($DDO0) Starting (Base) Address

Register # ‘) '
ec Hex DB7 | DB& | DBS | DB4 | D83 | DB2 | DBT | DBO
0 0 S)x7 SOX0 [SPRITE 3 X
Comoonent
1 I isov7 SOYO | SPRITE O Y
| Componer'f_
2 2 BIX7 S1XC | SPRITE 1 X
3 3 BIY? S1Y0 | SPRITE 1 Y
4 4 ST S2X0 | SPRIIE 2 X
5 5 nmv S2Y0 |SPRITE 2 Y
6 o [3X7 S3X0 | SPRITE 3 X
77 [savi S3YO |SPRITE 3 ¥
8 B [s4x7 $4X0 |SPRITE 4 X
o 9 fsv7 P SAYO [SPRITE 4 ¥
10 A [ssx7 $5X0 |SPRITE 5 X
1 B [35Y7 S5Y0 | SPRITE 5 Y
12 € (867 h $EX0 |SFRITC & X
13 D Y7 S&YO |SFRITE 6 ¥
4 E [37X7 57X0 |SPRITE 7 %
Companent
15 F [s1v7 S7Y0 |SPRITE 7 ¥
Component
16 10 [57XE | S6K8| S5XH| S4X8 | SIXB | S2X8 | S1%8| SOX8 |MSB of X
COORD
17 11 [RCB | ECM | BMM | BLNK | RSEL [YscL2 |vscLi|ysclo |) SCROU
18 12 RC7 | RC& | RCS | RC4 | RC3 | RC2 | RCY | RCO RASTER
19 13 |IPx7 LPX0 LGHT PEN X
0 14 PY7 | LPYO |LIGHT PEN Y

APPEMDIX G a9

Register # |
Dec Hex |[DE7 'DBS6 | CB5 | DB4 | DB3 | DB2Z |DB1 |DBO
i

21 15 |SE7 SE0 [SPRITE

| ENABLE
[ON/OHF)

X SCROLL

: MODE

23 17 [|SEXY7 SEXY0|SPRITE

[EXPAND Y

22 14 |[N.C. N.C. RST | MCA | CSEL | XS5CL2 | XSCL| X8C0

V512 | V811 | vs10 | €B13 | CB12 |cB11 |N.C. |SCREEN and
| Character
Memcry Base
Mddress

25 19 [IRQ | M.C. | N.C, | N.C. LPIRQ| ISSC |ISEC | RIRQ |[Intarrupt
Request's

24 18 [VS13

26 1A |N.C. |N.C. | N.C. | N.C. | MLPI | MISSC |MISBC[MRIRQ)| Interrupt
Request
‘ MASKS

27 18 |BSF7 ‘ BSPO |Backerounc-
Sorite
PRIORITY

28 1C [3Cm/ SCMO | MULTICOLCR
5PRITE
SELECT

20 1D |SEXXT SFEXX0O|SPRITE
EXPAND X

30 1E | SsC7| S5CO |Sprite-Sprite
COLLISION

3 1F |SBC? SBCO |Sprite-
Backgrourd |
COLLISION |

392 APPENDIX &

Register # Reg s-er #
Dec Hex Color Dec Hex Cﬂ' or
32 20 BOADER COLOR B 27 SPRITE 0 COLOF
i BACKGROUND ~ "
3 21 SeEORE 43 20 SPRITE * COLOR
o BACKGROUND 2
34 22 COLOR 1 M4 29 SPF!.ITF 2 COLOR
N - BACKGROUND . ST _
35 3 CO.OR 2 42 2A SFRITE 5 COLOR
j BACKGROUND -
36 24 COLOR 3 43 2B SFRITE 4 COLOR
i SPRITE z
i 25 WULTICOLOR 3 4-4 20 SFRITE & COLCR
’ SPAITE ;
28 26 MULTICCLOR 1 43 20 SFRITE 8 COLCR
A6 2E SPRITE 7 COLCR
Dec Hex Color Dec Hex Color
0 0 BLACK B 8 ORANGE
1 1 WHITE 9 9 BROWN
2 2 RED 16 A L~ HED
3 3 STAN 11 B GRAY 1
4 4 PURFLE 12 C GRAY ?
5 5 AAFFN 13 D LT GREENM
3 i3 BLUE 14 E LT BLUE
7 7 YELLOW 1E F GRAY 3
LEGEMND:;

OMNLY COLORS (-7 MAY BE USED IN MULTICO_OR CHARACTER MODE

APPENDIX G

393

APPENDIX H

DERIVING MATHEMATICAL FUNCTIONS

Functions that are not intrinsic to Commodore 64 BASIC may be calcu-
lated as follows:

FUNCTION BASIC EQUIVALENT

SECANT SEC(X)= 1/COS'X)

COSECANT CSCIKI= 1S NX)

COTANGFNT COTX)= 1TANIX)

INVERSE SINE ARCSINIX)=ATN(X/SQR— X " X+1))

INVERSE COSINE ARCCOS(X)=—ATN(X/SQR

(=X"% +1) +7/2

IMVERSE SECANT ARCSEC(X)=ATN(X/SQR(X™ X — 1))

INVERSE COSECANT ARCCSC(XI=ATN(X/SQR(X* X =11}
+(SGN(X)—1*7/2

INVERSE COTANGENT ARCOT(X)— ATN(%)~ /2

1 'YPERBOLIC SINE SINH(X)=(CXP(X) EXP{)2

HYPERBOLIC COSINE COSH{X)=(EXM{X)+EXP{— X2

FYPERBOLIC TANGENT TANH(KI=EXP{ X)/(EXP(x) | EXP
(—X)E2+1

HYPERBOLIC SECANT SECH(X)= 2/(EXP(X)+EXPi— X))

FYPERBOLIC COSECANT CSCHX)= 2HEXP(XI—EXP(—X))

FYPERBOLIC COIANGEN | COTHX)= 2XP(= X)(EXPIX)
—EXP(—XN"2+ |

INVERSF HYPERBOLIC SINE ARCSINAX)=LOGIX +SQRX* X+1))

INVFRSF HYPFRBOLIC COSINE ARCCOSHX)=LOGX - 5QRIX*X— 1)

INVERSE HYPERBOLIC TANGENT ARCTANH(O)=10G((1+ X (1 —X)/?

INVERSE HYPERBOLIC SECANT ARCSECH(X)=LOG(/SQR

: (=X X+ 1)+ 1/%)

INVERSE HYPERBOLIC COSECANT ARCCECH(X)=LOG((SGN(X)"SQR
(XX =1/x)

INVIRSE HYPLRBOLIC COTAN- ARCCOTH(X)=LOG((X+ 1) X —1)/2

GENT

394 APPENDIX H

APPENDIX |

PINOUTS FOR INPUT/QUTPUT DEVICES

This appendix is designed to show you what connections may be
made tc the Commodore 64.

1) Came /O
2) Carrridge Slet
3} Audio/Video

Contrel Port 1

Pin Type
JOYAD
Joya)
Jovaz
JOYA3
POT AY

BUTTON AJLP

+EV
et N1o]
POT AX

e B A A S

Note

ALY, BOmA

Control Port 2

Pin Type
J2YBO
JOYBl
JOoYB2
JOYB3
POT BY

BJTTON B

+5V
GNE
POT BX

-‘ﬂm\lﬂ-maum—

Naota

A, S0mA

4) Sericl /O (Disk/Printer)
5) Modulator Qutput

&) Cassette

7) Usar Part

AFPENDIX 1 395

Cartridge Expansion Slot

| Pin Type

GND —‘

45V

+5V

RQ

RIW

Dot Clock

1o 1

GAME

EXROM

1o 2
ROML

=T - - T

2
3

Type
GND
ROMH
RESET
AT
s 02
AlS
Al4
A1
Alz
Al
M AlC

IMMOon ®@P

-

ZT AWNU T SHFNMLKJHFEDC BA

Audio/Video

L Pn Typs

LUMINANCE
GNC
AUDIO OUT
VIDEQ CUT
AUDIO IN

[I N X1

221201918 17181514 1312111089 8 7 B 5 4 3 2

Pin Type |
12 BA
13 TMA
14 o7z
15 D&
16 Cs
17 C4
18 C3
19 [wyrd
20 [P}]
21 Co
22 GND
Pin Type
N a9

P A3

=] a7

S A/

T A5

] a4
v A3
w A2

4 Al

Y AD

z GND

Ser

ial I/O

-l
3

Type

SERIAL SRQIN

GND

SERIAL ATN IN/OUT
SERIAL CLK IN/OUT
SERIAL DATA IN/OUT
RESET

€ h b €3 K -

396

APPENDIX |

Cassette

Pin Type
Al GND
B-2 + 35V
-3 CASSETTE MOTOR
D=4 CASSETTE READ
E-5 CASSETTE -WRITE
F-6 LASSE(IE SENSE
User I/O
Pin Type Note
1 GND
? + 5\ MAX 100 mA
3 RESET
4 CNT1
5 SP1
[CNT2
& 5P2
8 PC2
g SER. ATN IN
10 o VAC MAX . 100 mA
1 2 VAC MAX, 10C mA
12 (o] N o]
Pin Type Mote
A GND
B FLAG2
C PBO
o] PBI1
E PB2
F P83
H PB4
b =5
K F36
L Pa7
M PAZ
N GNLC
12 3 4 5 6 7 B 3101112
I E N NS E NS EENEN]

DR BN BN BN BN BN B R BN I BN BN

A BCDEFHJKLMN

1 2 3 4 5 6

A BCDETF

APPENDIX | 397

APPENDIX J

CONVERTING STANDARD
BASIC PROGRAMS TO
COMMODORE 64 BASIC

If you have programs written in @ BASIC other thon Commadore
BASIC, some minor adjustments may be necessary before running them
on the Commodors-64. We've included some hints fo make the conver-
sion easier.

String Dimensions

Delete all statements that are used to declare the length of strings. A
statemnent such as DIM A$(l,)), which dimensions © string array for J
elements of length |, should be converted to the CTemmodore BASIC
staternent DIM AS(J).

Some BASICs use o camma ar an ampersand far string concatenation.
Each of these must ke changed to a plus sign, which is the Commodore
BASIC cperotor for string cancotenatian.

In Commodore 64 BASIC, the MID$, RIGHT$, and LEFT$ functicns are
used to take substrings of strings. Forms such as A$(l) fo access the Ith
character in A$, or A$(l J) to take a substring of A$ from position | to J,
must be changed as follows:

Other BASIC Commodore 64 BASIC
AS(l) = X$ A$ = LEFTH(AS,1—1)—X$+MID$(AS,11 1)
AS(,0) = X$ A$ = IEFTS{AS,1— 1)—X$+MID$(AS 1+ 1)

Multiple Assignments
To set B and C equal to zerp, some BASICs aollow statements of the
form:

13 LET B=C=¢

398 APPENDIX J

Commodore 64 BASIC would interpret the seccrd equal sign as a

lagical aperator and set B = —1 if C = 0. Instead, convert this state-
ment to:
18 C=0: b=¢

Multiple Statements

Sorne BASICs use a backslash (\) ro separate multiple sratements on
a line. With Commodore 64 BASIC, separcte all statements by a colon
£,
MAT Functions

Programs using the MAT funcrions available on some BASICs must be
rewritten using FOR. . .MEXT loops to execute properhy.

APPENDIX 1 399

APPENDIX K

ERROR MESSAGES

This appendix contains a complete list of the error messages gener-
ated by the Commodore-é4, with a description of causes.

BAD DATA Siring data was received frem an open file, but the pro-
gram was expecting numeric dara,

BAD SUBSCRIPT The program was trying o reference an element of
an array whose number is outside of rhe range specifiec in the DIM
slatement.

BREAK Program exscution wes stopped because you hit the key-

CAN'T CONTINUE The CONT command will not work, either because
the program was never RUN, therc hos beern an error, or a line has
beern edired.

DEVICE NOT PRESENT The required /O device was nct available far
an OPEN, CLOSE, CMD, PRINT#, INPUT#, or GET#.

DIVISION BY ZERO Division by zero is a mathemarical oddity end rot
allowed,

EXTRA IGNORED Iloo many items of data were typed in response to
an INPUT statement. Only the first few items were accepted,

FILE NOT FOUND If you were looking for a file an tape, and END-GF-
TAPE marker was found. If you were looking on disk, no file with thot
name exists.

FILE NOT OPEN The file specified in @ CLOSE, CMD, PRINT#, INPUT#,
or GET#, must first be OPENed,

FILE OPEN An attempt was made to open a file using the number of
an olready cpen file.

FORMULA TOO COMPLEX The string expression being evaluated
shou'd be split into at least two parts for the system 10 wark with, aor a
formula has too many parentheses,

ILLEGAL DIRECT The INPUT statement can only be used within o pro-
gram, and not in direct mode.

ILLEGAL QUANTITY A numbner used as the argument of a function or
statement is out of the allowable range.

400 APPENDIX K

LOAD There is a problem with the program on rape.

NEXT WITHOUT FOR This is caused by either ‘ncerrectly nesting loops
or having u variable nume in o NEXT statrement that doesn‘t correspond
with one in a FOR staterment.

NOT INPUT FILE An atteripr was made to INPUT or GET data from a
file which was specified to be for output only.

NOT OUTPUT FILE An attempt was made to PRINT dota to a file which
was specitied as input only.

OUT OF DATA A READ statement was executed out thera is no dara
left unREAD in a DATA statement.

OUT OF MEMORY There is no mcre RAM avcilable for program or
variables. This may also oczur when too many FOR loops have been
nested, or when there are too many GOSUBs in effect.

OVERFLOW The result ot ¢ computation is larger than the largest
number allowed, which is 1.70741884E | 38,

REDIM'D ARRAY An erray moy only be DiMensioned snee. If an array
varioble is used before that array is DIM'd, an cutomatic DIM operation
ie performed on that array setting the number of elaments to ten, and
any subsequent DIMs will cause this error.

REDO FROM START Chaoracter data was typed in during an INPUT
staterment when numeric da‘a was expected. Just re-type thz entry so
that it is correct, and the program will continue by itself.

RETURN WITHOUT GOSUB A RETURN statement was encountered,
and na GOSUE command has been issued.

STRING TOO LONG A string can contain up to 255 characters,
PSYNTAX ERROR A statement is unrecognizable by the Commodors
64. A missing or extra parenthesis, misspelled ksywards, etc.

TYPE MISMATCH This error occurs when a number is used ir place of a
string, or vice-versa.

UNDEFD FUNCTION A user defined function was referenced, but it
has never been defined using the DEF FN statement,

UNDEFD STATEMENT An attempt was maode to GOTO or GOSUB or
RUN a line numbcr that doesn’t exist.

VERIFY The program on tape or disk does not maich the progrom cur-
rently in memory.

AFPENDIX K 401

APPENDIX L

6510 MICROPROCESSOR CHIP
SPECIFICATIONS

DESCRIPTION

The 6510 is a low-cost microcomputer system copohle of solving o
broad range of small-systems and peripheral-cantrol problems at
minimum cost fo the user.

An 8-bit Bi-Directional I/O Port is lccated on-chip with the Output Reg-
ister at Address 0000 and the Dota-Direction Register at Address 0001.
The 1/Q Port is bit-by-bit pregrammable.

The Three-State sixteen-bit Adcress Bus allows Direct Memory Access-
ing (DMA) and multiprocessor sysiems sharing @ common memory.

The internal processer architecture is identical to the MOS Technnlogy
6502 to provide software compatibility.

FEATURES OF THE 6510 . ..

Eight-Bit Bi-Directicnal I/O Port

Single +5-volt supply

N-channel, silicon gate, depletion load techrology
Eight-bit parallel processing

56 Instructicns

Decimal and binary arithmetic

Thirteen addressing moces

True indexing capability

Programmable stack pointer

Variakle lengih stack

Interrupt capability

Cight-Bit Bi-Directional Data Bus

Addressable memory range of up to 65K bytes
Direct memory access capability

Bus compotible with M&800

Pipeline architecture

1-MHz and 2-MHz operation

Use with any lype or speed memory

402 APPEMNDIX L

PIN CONFIGURATION

Mal
L1

E 48 o
T o 0o

FEEEEEEE]

3 IN

DB,

]
o
(=]

DBy

i}
33

i n__un_ [
m
2 a

=] a

— 2

o 'S

HIBR

Py

29

[e

g o A w &
FEEEE
o o i~ (39 <d

CMND

"
-
3

6510

I | | | | | N S |

u. 0 G
fal __H m E c A A
o - < >

iy IN

= Il=1l=]

<

EIEIE]

<

L2ll=ll=1l=1[=]

£ 3

< < <

L&]
o

o

403

APPENDIX L

N REE

¢

404

P DATA
l_ - DIFECTION Py---F,
AEGLTER
i
N PERIPHERAL i, FERIPHFFAL
T INT
(‘> HOEEISTER ('"} NBSEFFEHF?E
AEC
FEZ AR fw
i .19_5'\. E 2 INTERRLPT
NEEH:IEI‘ LOGIE
1 INDER =
AEGIETER
€
= |
= [
— TE
& EfH AesisTER |
Er i (1])
L | g !
2 b
m | | =2 INSTRUCTION
@ < DECODE
E | A ey my, OUT
(a]
(s}
< | — s
w | = 4
i : A
= A 4
w 2)
u z
W I e ;
Xz dry [N
L - PEH ==
E FROCESSOF
- ETATUS
- REGISTER
—] INPLIT
- JATA
LATCH
— O
L——v- A
MATE BLIS INSTRUCT 0
BJFFER feit—] | REGISTER
o s i s Ll G2 |) .
1 11* yrsYY
o
. - 0
LEGENL D,
£ == 0y DaTa
ﬂ BAITLNE » D, e
> O,
| = 1817 UNE = U,
- D,

6510 BLOCK DIAGRAM

APPENDIX L

6510 CHARACTERISTICS

MAXIMUM RATINGS

RATING SYMBOL VALUE UNIT
SUPPLY VOLTAGE Veg | —0.31c +7.0 Voe
INPUT VOLTAGE Vin _:— —-0.3 10 +7.0 Vi
OPERATING TEMPERATURE | Ta 0tc +70 °C
STORAGE TEMPERATURE Tovd —55t0 +150 | °C

—

MOTE: This cevice contains input protection agains: damage cue to high static volt-
oges or electric fields; however, precautions should be token to ovaid application of

voltages higher than the maximum rafing.

ELECTRICAL CHARACTERISTICS
(VCEC =50V £5%, V55 =0, T, = 0° to +70°C)

CHARACTERISTIC SYM-l MIN, [TYP.| MAX. [UNIT
g S i
Inpur HTg_thaEge B —‘
by, baim Vi |Vee — 0.2] — |Vge + 1.0V VDC
Input High Voltage
RES, Pg-P, IRQ, Data Vgs + 2.0| — o Ve
Input Low Volloge
b, b Vi |Vas — 0.3 — | Vgg + 0.2 | Ve
RES, P-P; IRQ, Data - — | Vg +:0:0 | Voe
Input Leakage Current
(Vi — Ot 5.25V, Ve = 5.25V)
Logic Iin — —_ 2.5 LA
&b, baim — — 100 TN
Three State (Otf State) Input Currant
(Vin = 0.4 10 2.4V, Voo = 5.25Y)
Data Lines Irs == = 10 JLA
Qutput High Voltoge I
(lo = —100Ape, Vee = 4.75Y)
Data, AD-Als, RIW, Ps-F7 Vou |Vss + 2.4 — — Ve

APPENDIX L 405

CHARACTERISTIC 1:;: MIN. (TYP. MAX. UNIT

Out Low Voliage W T
(lor = 1.8mAyc, Voo = 4.75V)

Data, AQ-A1S, RIW, Py-Py VoL S — | Ves + 0.4 | Ve

S e =

Power Supply Current lee — 125 mA
Capacitance C of
Vin = 0, Ta = 25°C, f = 1MH2)

Logic, Py-Py i — == 10

Data ot R 15

AD-A15, RIW Coutt — — 12

&, Cih, — 30 50

hs Cihy — 50 80

CLOCK TIMING

’4- Ty —
L o

| Fvon—ozv
o1 IN | A \
. a A -

~ Toi= =
Vo 02V -
i g i PWHa, :
TFL- H "|TFI=' 2
= Taws —= | Than- o
= i S 3. 2,
RAW / 20y
| Tyy = =
1
ADDRESS o
FROM >(2 [
mPU MOV | } <
n Taps == Tasw - ‘
= Teor o |
DATA 227_}_
FROM
P
MEMORY . 2 e 1 AU
re—— Tppg, =]
PERIPHERAL
NATA
IIJ_\ES I
ADDRESS /T Vec—-02v
ENABLE
CONTROL TIMING FOR READING DATA FROM

MEMORY OR PERIPHERALS

404 APPENDIX L

CLOCK TIMING

Tevg ——

e FWHA,
- 0. B
[uCG 0.2V

i
0.2

1IN

o] Tp e

: Tp—~] n
Vg — 0.2V
#z IN in?'ﬁr
: PWHG, LS
= Tel= "I'F!"“ vz e

~ Tans '!
) |
w T e i
. e s
ADDRESS e Peos
FROM >< M X
MPU : =
S, — ke
DATA AL 3.0\-").—_
FROM pe; |2
MEMORY G =t
PERIPHERAL
DATA iy o

ADDRESS VL(.._—UE""—

TIMING FOR WRITING DATA TO
MEMORY OR PERIPHERALS

APPENDIX L 407

80t

7 XION3deY

AC CHARACTERISTICS

ELECTRICAL CHARACTERISTICS (Voo = 5V £5%, Vgs = 0 V, T, = 0°=70°C)

CLOCK TIMING TMHz TIMING 2 MHz TIMING
CHARACTERISTIC SYMBOL | MIN. TYP. MAX. MIN. TYP. MAX. UMNITS
Cycle Time Teve 1000 _ _— 500 — —_— ns
Clock Pulse Width tf;l] PWH¢1 | 430 215 - ns
{(Measured at Vee — 0.2V) b2 PWHdh2 | 470 — — 235 — — ns
Fall Time, Rise Time
(Measured from 0.2V to Vgg — 0.2V) Tg, Th —_ — 25 — — 15 ns
lﬁay Time between Clocks
(M_easured at 0.2V) ' To 0 = = 1] — — ns
READ/WRITE TIMING (LOAD = 1TTL) 1 MHz TIMING 2 MH: TIMING
CHARACTERISTIC SYMBOL | MIN. TYP. MAX. MIN TYP. MAX._ JNITS—-
Read/Write Setup Time from 6508 | Taws — 100 300 — 100 150 ns
Address Setup Time from 6_508_ Taos 100 EO_ = 100 150 ns
Memory Read Access Time Tace — — A75 — — 300 ns

1 X1AH31ddY

&0F

Data Stability Time Period Tosy |00 — — 50 ns
Data Hold Time-Read Tur — — ns
Data Hold Time-Write Thw 10 30 — 10 30 ne
Data Setup Time from 6510 Tuos . 150 200 —_ 74 100 ns
Address Hold Time Tha 10 30 10 30 ns
R/W Hold Time Thrw 10 30 — 10 30 ns
Delay Time, Address valid to

@2 positive transition Tacw 180 — — ns
Delay Time, &2 positive fransition

to Data valid on bus leor — —_ 395 ns
Deloy Time, Data valid to ¢2

negative transition Tosy 300 — — ns
Deluy Time, R/W neygalive Iransition

to 2 paositive transition Twe 130 — — ns
Delay Time, &2 negualive Iransition

to Peripheral Dato valid Teow - 1 s
Peripheral Data Serup Time Teosy 300 — — ns
Address Enable Setup Time Taes 60 50 ns

SIGNAL DESCRIPTION
Clocks (b, ds)

The 6510 requires o two-phase non-overlapping clock that runs at the
Yee vollage level,

Address Bus (A;-A;;)

These outputs are TTL compatible, capable of driving one standard
TTL lead and 130 pf.

Data Bus (Dq-D5;)

Eight pirs cre used for the data bus. This is a Bi-Directional bus,
transferring data fo and from rthe devize and peripherals. The outputs are
tri-stcte buffers capable of driving one standard TTL load and 130 pf.

Reset

This input is used to reset or start the microprocessor fram o power
down condition. During the time that this line is held low, writing to or
from the microprocessor is inhibited. When o positive edge is detectzd
on the input, the microprocessor will immediately begin the reset
sequence.

After o system initialization time of six cleck cycles, the mosk inferrupt
Aag will be set and the microprocessor will load the program counter
from the memory vector locations FFFC und FFFD. This is the start loco-
tion for pragram control.

After Vg reaches 4.75 volts in o oower-up roufine, resel must be held
low for at least rwo clock eycles. At this time the R/W signal will becama
valid.

When the reset signal goes high following these twa clock cyeles, the
microprocessor will proceed with the normal reset procedure detailed
above,

Interrupt Request ﬂRE!)

This TTL level input requests that an Interrupt saquence begin within
the microprocessor. The microprocessor will complete the current in-
struction being execuied belore recognizing the reguest. At that fime,
the interrupt mask bit 'n the Status Code Register will be examined. If
the interrupt mask flag is ner set, the micropracesssr will begin an inter-
rupt sequence. The Program Counter and Frocessor Status Register are
stored In the stack. The microprocessor will then set the interrupt mask

410 APPENDIX L

flag high so that no further interrupts moy cccur. Ar the end of this
cycle, the progrem counter low will be loaded from address FFFE, and
program counter high from location FFFF, therefore transferring pro-
gram control to the memory vector located at these oddresses,

Address Enable Control (AEC)

The Address Bus is valid cnly when the Address Enable Control line is
high. When low, the Address Bus is in a high-impedance state. This
feature cllows easy DMA and multiprocessar systems.

IO Port [Pn'Ps)

Six pins are used for the periphercl port, which con transter data to
or from peripheral devices. The Ouloul Regisler is lucaled in RAM al
Address 0001, and the Data Direction Register is at Address 0000. The
outputs are copable ar driving cne standard TTL load anc 130 pf.

Read/Write (R/W)

This signal is generated by the microprocessor to control the diraction
of data trarsfers on the Dato Bus. This line is high except when the
microprocessor ie writing te memory or a peripheral device,

ADDRESSING MODES

ACCUMULATOR ADDRESSING —This form of addressing is reprasented
with o one byte instruction, implying un operation on the accumulator.

IMMEDIATE ADDRESSING —In immedicte addressing, the operand is
cantained in the second byte of the rstruction, with ro further memory
addressing required.

ABSOLUTE ADDRESSING —In absolute addressing, the second byte of
the instruction specifies the eight low order kits of the effective address
while the third byte soecifies the eight high arcer bits. Thus, the absalute
addressing mode allows access to the entire 65K bytes of addressable
memory,

ZERO PAGE ADDRESSING —The zero page instructions allow for shorrer
code ond executicr times by only fetching the second byte of the in-
struction ond assuming a zere high address byre. Careful use cf the
zero page can result in significant increase in code efficiency.

APPENDIX L 411

INDEXED ZERQO PAGE ADDRESSING :XI Y |'r|dexir|g)—'|'his ferm of
addressing is used in conjurction with the index register and is referred
to as "Zero Page, X" or "Zero Page, Y/ The effective address is colcu-
lated by adding the second kyta to the contents of the index ragister.
Since this is a form of “Zero Page” addressing, the content of the sec-
ond byte references a Ilocation in prge zera. Additonally, due to the
"Zero Page” addressing nature of this mode, no carry is added to the
high order & bits of memory and crossing of page haundaries does not
occur.

INDEXED ABSOLUTE ADDRESSING —(X, Y indexing)—This form eof
addressing is used in conjunction with X and Y index register and is
refarrad to as "Aksclute, X, and “Absolute, ¥ The etfactive addrese ic
formed by adding the contents of X and ¥ to the address contained in
the secand and third bytes of the instruction. This made ollows the index
register to contain the index ar count value ard the instruction to contain
the bose addrass. This type of indexing allows any ‘ocation refarencing
and the index to medify multiple fields resulting in recuced coding and
execution t'me.

IMPLIED ADDRESSING—In the implied addressing mode, the address
cantaining the operand is implicitly stated in the operation esde of the
instruction.

RELATIVE ADDRESSING — Relative cddressing is used only with branch
instruclions und esiublishes u destination for the conditional branch.

The second byte of the instruction becomss the operand which is an
"Offset” added to the contents of the lower eight bits of the pragram
countor when the counter is set at the next instruction. The range of the
offset is —128 10 +127 bytes from the next instruction.

INDEXED INDIRECT ADDRESSING — i, indexed indirect addressing (re-
farred to as [Indirect, X]), the second byte of the instruction is added to
the contents of the X index register, discerding the carry. The result of
this addition paints to & memary locotion on page zero whaose eantents is
the low order eight bits of the effective address. The next memaory loca-
tion in page zero contains the high order eighr kits of the effective ad-
drzss. Both memory locations specitying the high ard low order bytes of
the effective address must be in page zero.

INDIRECT INDEXED ADDRESSING — In indirect indexed addressing (re-
ferrad to as [Indirect], ¥), the second byte of the instruction peints to @
memory location in page zero. The contents of this memory location is

412 APPENDIX L

cdded fo the conlents of the Y index register, the result being the low
order eight bits of the effective address. The carry from this addition is
odded to the contents of the next page zzro memory location, the result
being the high order eight bits of the effective address.

ABSOLUTE INDIRECT —The second byte of tha instruction contains the
low order eight bits of a memory location. The high order eight bits of
thal memory location is contained in the third byre of the instruction. The
contents of the fully specified memory location ic the low order byre cf
the effective address. The next memory location contains the high order
byte of the eftective address which ic loaded into the sixteen kits of the
program counter,

INSTRUCTION SET—ALPHABETIC
SEQUENCE

ADC Add Memory to Accumulator with Carry
AND “AND Memary with Accumulatar
ASL Shift Left Cre Bit (Memory or Accumulatar)

BCC Branch on Cerry Clear
BCS Branch on Curry Sel

REQ) Branch on Result Zero

BIT Test Bits in Memory with Accumulator
BMI Bronch on Result Minus

BENE Branch on Result not Zero

BPI Branch on Resu't Plus

BRK Force Break

BVC Branch on Overflow Clear

BVS Branch on Cverflow Set

CLC Clear Carry Flag

CLD Clear Decimal Mode

CLI Clear Interrupt Disable Bit

CLv Clear Overflow Flag

CMP Camoare Memory and Accumulator
CPX Compare Memory and Index X
CPY Compara Memory and Index Y

APPENDIX L 413

DEC
DEX
DEY

EOR

INC
INX
INY

IMP
J5R

LDA
LDX
LDy
LSk

NOFP

QORA

PHA
PHP
PLA
PLP

ROL
ROR
RTI
RTS

SBC
SEC
SED
SEI
STA
STX
STY

414

Decrement Memury by One
Decrement Index X by One
Decrement Index Y by One

“Exclusive-OR"” Memory with Accumuloter

Increment Memcry by One
Increment Index X by One
Increment Index Y by One

Jump to New Location
Jump fto New Location Saving Return Address

Lood Accumulator with Memaory

Load. Index X with Memory

Load Index Y with Memory

Shitt One Bit Right (Memory or Accumulator)

Mo Operation
"OR" Memory with Accumulctor

Fush Accumulator on Stock
Fush Processor Status on Stack
Pull Accumulator from Stock
Full Processor Status from Stack

Rotale One Bit Left (Mzmory or Accumulator)
Rotate One Bit Right (Memary or Accumulator)
Return from Interruot

Return from Subroutine

Subtract Memory fram Accumulator with Borrow
Set Carry Hag

Set Decimal Mode

Set Interrupt Disable Status

Store Accumulatar in Memory

Store Index X in Memory

Store Index Y in Memary

APPENDIX L

TAX Transter Accumuletor to Index X
TAY Transfer Accumulctor 10 Index Y
TSX Transfer Stack Pointer to Index X
TXA Transfer Index X to Accumulatar
TXS Transfer Index X to Stack Register
TYA Transfer Index ¥ to Accumulator

PROGRAMMING MODEL

7 0
[A | AccumuLATOR A
7 0
[v | INDEX REGISTER ¥
| X] NDEXREGISTER X
18 7 C
[PoH] PCL | PROGRAMCOUNTER — “PC"
87 0
(1] s | STACK POINTER “g"
7 0
[N v] [B[o]1]Z]C] PROCESSOR STATUS REG "P"
| I
|
: CARRY 1 = TRUE
! ZERO 1 = RESULT ZERO
IRQ DISABLE 1 = DISABLE
L » DECIMALMODE 1 = TRUE
BRK COMMAND
-~ OVERFLOW 1 = TRUE
» NEGATIVE 1= NEG

APPENDIX L 415

oLF

1 XIONIddy

INSTRUCTIONS Irvnidinte| Asaslute | Zero Pege | Accum. | Implied | (hie) & (el 7| E Page, §| Abs. K Alar Reawve | Incirec! |Z. Poge. Y |CONDITION CODES
Hnimnnle| Cperation i L e e I e L R R e AR B R R L R R T R o e e e e I T
ADC | A+mec—n (0 m (69 2] 2fec] 4 |2[38 3|2 61[5 | 2|r1|s|a[rs | z{rc] a af7e]afs IR p———
AND AN = IS HEBERERERE 21 o3 afzsn 4]2ac] s gfac|a]a oo —— — -
ASL o7 i1) EERENEZBE il o zfig 7 al T e rr ===
BCC BRAMCH ON C=0 @ | i = ool 2] 2 e
ECS BFANGH Oh =1 @ | Bl 2| 2 it ot
BED BRAMEH ON T=1 i@ | | S IET R T T O P st
BIT AfM BRRE R | [P = W =t
EMI BEANGH UM =1 1) 30] 2] 2 e
BNE BEANGH DK Z2=0 1 | I R D e
EPL | EFRANCH OR N=0 @ | I E e ———— :
EHK {seekg. 1) | oo 711 e A
ove BRANCH Oh ¥=0 1) |] | Tk T 5 i e
EVE BRAMCH OK V=1 (2 | | 72l 2] | I
CLG 0=C IBEBE | i | e L
GLD 0-—~C | |oel 2|1 ! | JEE——
oLl 0| BREBE | | e
CLv [y] b B EE | = %
CMP A-M) e 2] 2o 4 | afus] afe HEBHEEHBEDEREEEERE - ———
P, EL el 2| 2|ec] 4 [2|ea| 3]2 Vo = — =
[Y —M STHEEEOEEEE Bl T
LEC M- CE| 6 | 2 |CE| 5|2 DB & 3 o = ———
DEX | X—t=X I Ty Do
(= Yty] Bal 2 1 B g
EOH AN =4 i J4gl2f2]snf 4] 3]45] 3] 2 ar| 5|25 5[zZ[as[4 [z]an[4 nlmafa] s e e
ING Mol EE| 3| a|e|| o |2 Fe] 6 | Z|FE| 7 3 e e e
X LS 4 cgl-x 1 R st ==
INY Tri=y (NN] I A =
JP JUMP TO HEW LOT REIE sl ¥ | | mF—————
JSR | (SeeFig. 2 |UMP EUE 200 &3 | - — — ——
LDA M~) jag 2] 2]ar] 4] =as[3]2 | [[a3f5|z2[B1]5|2|85 4 |2]ec|s afacia]3 | [~ ~ -— -

NOILND3IX3 's300D dO—13S NOILINAELSNI

INSTRUCTIONS Immedlate| Absolute Zere Fage| Accuim Popliod | jind; % | (el]Y |2 Pege, X Abs K Abs ¥ | geaive | ineirct |2 Page, ¥ [COMDMTION COLES

Mremaonic Operation HPN-I'OF'IN&D?NUDPN#ODN#OPNI'OFNlClr‘N W OPI NN oP[Nja O k| #|CP|K| #loP| NI W[N 2 © gy
L0y M= o [a2] 2] 2 [aE] 4] 3 As[a2 (EOE sl
LoY =7 i A2 2aSi 4] 3 A3 2 Bij 4|2 B804 A — — =
L3R 0—{7 e ENEEEEMEE MOEEEE Ty e r ===
NOP MO OPERATION [E8| 21 oo
ORA A A=A gl 2| zfoc|a]a os[a] 2 w| sl 2[n]a] 2]slale ola] 3 afa] 3 P ————
HA A My 8 1.8 PRI D i M e) N R U i [s A 5 s
BHE PMg S_1+5 1l o3 2|1 T St -
PLA S+ 1=5 Mzt 6341 5 e b B
FLF B+ 1-8 M-I 23 4|1 (FESTOSEL)
AOL T L I S| 6|3 6] 6| 2[2A 2|1 a3(e| 2|3l 7|3 e i
ROR [M r— GE{6 |3 85| 5] 2|64] 2] 1 HREBEBE B et
ATl (See Fig. 1) ATAN INT 421 6|1 iRESTDiEI:I]
Are [Sae Fig. 1) ATAN SUB a3 G| 1 _— — — — -
586 A—M-Ca it A 2z| 2 [FIla]a es]al 7 E1| Bl 2|Fils|lalrs|alalFq a2 Faja]a oo (- — o
SEC =4 A2 e
SED 10 Folz(1 o e i
e T 7321 sl
SR Bl BJ|l4|3B5| 32 G| 62|96 2[a5 4] 2(90(5]|3 3|3 e e S
ST o 8E(4|3 Be(3 |z] 4 T e =
=Ty Y] = 1 ETTIENE] o442 e E T el
TAY A—H ARl 2|1 T R
Tay By Al 2] | - —— — =
TS Gk | 1 Bal 7|1 ' ,——— |
TA KA | A EIR B o e
THE K=5 | FE ESEE AR R EE A SRR N R T
TYA ¥ A o9l 2] 1 P e ——
{1 £D2 | TO 4" IF PAGE BIUNJERY 15 CF % INDEX i + ADD w WMODIFFD

12 AD0 | 10 “H" IF BRANCH QCCURS TC SM‘IE F'hGE ¥ INDEX Y - BUBTRAGT — NOT MORIFIED
A 2 TOUN" IF BRANCH QOCURS TC DIFFERENT PRGE. & AGTUMIILATCR A ANID M MEMORY BITT

13 CAIFY HOT = O M MEWOEY PER EFFECTIVE ADDRSSS W OR Mg MEWORY BITE

14 17 N OECMAL MODE 2 FLAG 1S INVALIN W, MEMORY PEFR S™AK POIMTER ¥ EXCLISIVE DR M NO, CYCLES
ACSLMULATOR MUST AF CHFMHFT FIOE FEAOASSULT # NO.IVTEE

1 XIAN3ddV

L1l

NOTE; COMMODORE SEMICONDUCTOR GROUP cannot assume lichility for the use of undefined DP CODES.

SINIWIZINDIY AYOWIW “IWIL

6510 MEMORY MAP

FFEFF
A
ACDRESSABLE
EXTERMAL
MEMORY
|~
; -~
ol 2
ngog STACK
DIFF -—-4— POINTER
T l STACK ‘ INITIALIZED
l Page 1
o100
DOFF
Page 0
QUTRUT REGISTER noct Used For
Internal
0000 DATA DIRECTIOM REGISTER 2000 IO Port

APPLICATIONS NOTES

Locating the Output Register at the internal I/O Port in Page Zerc
enhances the powerful Zero Page Addressing instructions of the 6510.

By assigning the /@ Pins as inputs (using the Data Direction Register)
the user has the ability 1o change the contents of address 0001 (the
Output Register) using peripheral devices. The ability to change these
conlents using peripheral inputs, together with Zero Page Indirect Ad-
dressing instructions, allows novel and versatile programming tech-
niques not possible earlier.

COMMODORE SEMICONDUCTOR GROUP reserves the right to make changes to any

products herein 1o improve reliabiliry, functien or desicn. COMMODORE SEMICON-

DUCTCOR GROUP dces nor assume any llabiliry arising out of the application ar use of

any product or circulr dascribed herein; neither dozs it convey ony license under its
parent rights nor the rights of others.

418 APPENDIX L

APPENDIX M

6526 COMPLEX INTERFACE ADAPTER
(CIA) CHIP SPECIFICATIONS

DESCRIPTION

The 6526 Complex Interface Adapter (CIA) is a 65XX bus compatible
peripheral interface device with extremely flexible timing and I/O

capabilities.
FEATURES

16 Individually programmable 1/O lines

8 or 16-Bit handshcking on read or write

2 independeni, linkable 16-Bit interval fimers

24-hour (AM/PM) time of day clock with programmecble alarm
8-Bit shift register for serial /O

2TTL Load cupubility

CMOS compatible /O lines

1 or 2 MHez operation available

® ® o O e o

APFENDIX M 419

PIN CONFIGURATION

©r

i
S S

RES

%mmmm%nm,iﬁs_m_c

__|__|__|__|__|__|__|_ij_|__|__|__|_]

39| BP
3| RSq
RS,

41][CNT

IBE

3

6526

= ﬂz__a__a__s__|:|__|=|:|:|=|__|__|_D_|__L_L_|__|_

uD B B B
H mn m M M :n.n n g A g o 7 A n & m

L 7 = v...L

APPENDIX M

420

G526

BLOCK DIAGRAM

DQ_nD‘,-
O
l DATA BLIS BLIFFERS —I

%
|

[P ¥
PRA BUFFERS [> PAQ-PAT

SRS SEAIAL |
SP BUFFER "' " eoar [;
ooRA

e ol | T
i BUFFE -] ™| RAIFFER rc
| B Sam— 1
= gy 4 FRE | BuFFERS 2 PBo-PBY
TOD ——» I
2 BUFER aan [—— [
DORB

|

= TIMER B
-

— GnB
Flae — > ARG | |
= i BUrFCn ' e
= aas —> TM:R 4
_ o [T N 1
IfG BUFFZR MASk
LHA

CHIP ACCESS CONTROL

| |
YEST IV

R/W @2 CS RS3 RS2 RS1 RSO RES

APFENDIX M 421

MAXIMUM RATINGS

Supply Voltags, V¢c —0.3V to +7.0V
Input/Qutputr Voltage, Vg —0.3V to +7.0V
Operating Temperature, Ty 0° C to 70° C
Storage Temperature, Tgrg —545° C to 150° C

All inputs contain protection circuilry lo prevent dumage due to high
static discharges. Care should be exercised fo prevent unnecessary ap-
plication of voltages in excess of the allowable limits.,

COMMENT

Stresses chove those listed under “Absolute Maximum Ratings” may
couse permanent damage to the device. These are stress ratings only.
Functional cperction of this device at these or any olher conditions
cabove those indicated in the operational sections of this specification is
nct implied and exposure to cbselute maximum rating conditions for
extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS (Ve *+ 5%, Vee = O V, T,
= 0-70°C)

CHARACTERISTIC SYMBOL| MIN_| TYP. | MAX. |UNIT
Input High Voltage Vg |+2.4| — Vee v
Input Low Voltage Vo |—0.3] — —_ v
Input Leakege Current, iy el R
U|"=V5$ + 5V

(TOD, RIW, TIAG,d2,

RES, RSO-RS3, CS)

422 APPENDIX M

CHARACTERISTIC SYMBOL MIN.| TYP. | MAX. UNITT
Port Inpur Pull-up Rasistance Rp 31 |50 — K2

Qutpur Leakage Current for l1sy — |£1.0 (% l0,0| LA

High Impedance State (Three

State); Viy — 4V to 2.4V;
(DRO—-DE7, SP, CNT, IRQ)

Output High Voltage Yoy +2.4| — Vee v
Vee=MIN, | gap <
—2001A (PAO-PA7, PC
PBO—-PB7, DBO—DB7)

Qutput Low Valtage Voo | — | — |+0.40| V
Vee= MIN, loap < 3.2 mA
Qurput High Current (Sourcing); low |—200—1000 — A

Ven = 2.4V (PAOD—EA/,
PEO-PBY, PC, DBO—DB7

Qutput Low Current (Sinking); lge | 3.2 | — = mA
Voo < .4V (PAO—-PA7, PC,
PEO—-PB/, DBO-DB7)

Input Capacitance Cin — 7 10 pf
Qutput Capacitance Cour | — 7 10 pf
Power Supply Current lee | — 70 100 | mA

APPENDIX M 423

vy

W KION3ddY

@2 INPUT

PERIPHERAL
DATA OUT

cs

RSZ-ASC

R/WY

DATA IN
DB r-0BU

6526 WRITE TIMING DIAGRAM

TR

Ty

]

TCHw .

Touw

Y

J

l‘-—-—_———‘ Twry ——————

TACS

AE

— TRWS TRWH —»]

v

ToH

pe—— Tpg —————f

W MIAN3ddY

STy

Bz INPUT

PORT IN

£s

R53-AS0

Rw

DaTa QU
DB7-DBO

1ps

6526 READ TIMING DIAGRAM

Ly

< TWCs

TaDs TADH 3
—] —— [CO —y TRWH —te ‘:‘\
TRwWS =1 P
VITITTIE
N2
- Taco =z Tnn—rJ

6526 INTERFACE SIGNALS

¢2—Clock Input

The h2 clock is a TIL compatible input used for internal device opera-
tion and as a timing reference for communicating with the system data
hus.

C5—Chip Select Input

The CS input controls the activity of the 6526. A low level on CS while
2 is high causes the devic:e_m respond fo signals on the R/W and ad-
dress (RS) lines. A high on CS prevents these lines from controlling the
6526. The CS line is normally activated (low) at ¢2 by the appropriate
address combkination.

R/W —Read/Write Input

The R/W signal is normally supplied by the microprocessor and con-
trols the direction of data transfers of the 6526. A high on R/W indicates
a read (data transfer out of the 6526), while a low indicates a write
[data transter into the &526).

RS3—-RSO— Address Inputs

The address inputs select the internal registers as described by the
Register Map.

DBE7-BD0—Daia Bus Inputs/Quiputs

The eight data bus pins transfer information between the 6526 and
the system data bus. These pins are high impedance inputs unless C5 is
low and R/W and 2 are high to read the device. During this read, the
data bus output buffers are enabled, driving the data from the selected
register onto the systern data bus.

IRQ— Interrupt Request Output

IRQ is an open drain output normally connected to the processor inter-
rupt input. An external pullup resistor holds the signal high, allowing
multiple 1RQ outputs to be connected together. The IRQ cutput is nor-
mally off (high impedance) ond is oclivated low os indicated in the
functional description.

426 APPENDIX M

RES — Reset Input

A low on the RES pin resets all internal registers. The port pins ara set
os inputs and port registers to zero (although a read of the ports will
return all highs because of passive pullups) The timer control registers

are set to zero and the timer latches to all ones. All other registers are
rasat to zero.

6526 TIMING CHARACTERISTICS

TMHz 2MH
Symbal |Charactaristic MIN MAX MIN MAX Unit
$2 Clack
Teve Cycle Time 1000 | 20,000 500 20,000 ns
Ta. Te |Rise and Fall Time | — 25 — 25 rs
Teuw |Clock Pulse Width
{High) 420 | 10,000 | 200 | 10,000 ns
Teuw | Clock Pulse Width
(Low) 420 10,000 200 10,000 ns
Writa Cyele
Teo 'Qutput Delay
From ¢? — 1000 — 500 ns
Twcs CS low
while @2 high 420 — 200 — ns
Taps |Address Setup Time | O —_ 0 — ns
Taon |Address Hold Time | 10 — 6] — ns |
Tews |R/W Setup Time 0 — 0 — ns
Tewn |R/W Hold Time 0 — 0 — ns
Tes Data Bus Setup
Time 150 — 75 = ns
Tow Data Bus Hold Time | 0 — 0 — ns |
Read Cycle
Tes Part Setup Time 300 — 150 — ns
Twes(2)|CS low
while $2 high 4720 —— 20 — ns
Taps |Address Setup Time | 0 - 0 ns
Tapn |Address Hald Time 10 — 5 — ns
Tews |R/IW Setup Time 0 — 0 — ns
Trwn |RAW Hold Time 0 —_ 0 — ns
APPENDIX M 427

]Ml_‘iz 2MHe

Symbeol | Characteristic MIN MAX MIN MAX Unit
Tace |Data Access fram

RS3-RS0O - 550 - - 2758 ns
Teo(3) |Data Access from

Ccs — 320 — 150 ns
Tog Dutc Release Time 50 J -= 25 — ne
MOTES: 1 —All timings are referenced from Yy max and VW, min on inputs and Vg,

mane and Yo min on cutputs.

2 —Tyes is measured from the later of ¢2 high or Z5 low. CS must bz low at
least until the end of ¢2 high.

3—Tp is meosured from the later of $2 aigh or C§ low.
Valid data iz ovailable only after the later of Tage or Toge

REGISTER MAP

RS3| RS2| RST| RSO| REG| NAME

ololo| o] o Pra PERIPHERAL DATA REG A
oloflo] 1] 1 "prB PERIPHERAL DATA REG B
olo| 1] o] 2 borRA DATA DIRLCTION REG A

o[o] 1] 1] 3 DORB DATA DIRECTION REG B
oj1r]o] o] & Txnl0 TIMER A LOW REGISTER
ol1[of1]5 TAH TIMER A HIGH REGISTER

o] 1 1 8]) TB LO TIMER B LOW REGISTER

ol 1| 1] 1|7 TBH |TIMER B HIGH REGISTER
1ol o] o| 8 TODIOTHS| 10THS OF SECONDS REGISTER |
11 ol o] 1] 9 TODSEC |SECONDS REGISTER

11 o[1]] A [TOD MIN | MINUTES REGISTER

1o 1] 1] B [TODHR [HOURS—AM/PM RECISTER

1] 1] 0o] o] ¢ [sbR SERIAL DATA REGISTER

111 lo] 1] o |Icr INTERRUPT CONTROL REGISTER
11| 1] ol E |cra | CONTROI REG A .
R 1| F [cre CONTROL REG B

428

APPENDIX M

6526 FUNCTIONAL DESCRIPTION

1/O Ports (PRA, PRB, DDRA, DDRB).

Ports A and B each consist of an 8-bir Periphera Datc Regisrer (PR)
and an 8-bit Data Direction Register (DDR). If a bit in the DDR is set to @
one, the corresponding bir in the PR is an output; if o DDR bit is set 70 @
zero, the corresponding PR bit is defined as an input, On o READ, the PR
reflects the information present on the acival purl pins (PAO—PA7Z,
PBO—PE7) fer both input and output kits. Port A and Port B hove passive
pull-up devices as well as active pull-ups, providing both CMOS and TTL
campetibility. Both ports have two TTL load drive capcohility. In addition
lo normul /O vperation, PBé and PB7 also provide timer output func-
tions.

Handshaking

Handshaking on data transfers can be accomplished using the PC
output pin and the FLAG input pin. PC will go low for ona cycle following
a reed or write of PORT B. This signal can be used to indicate “data
ready” ot PORT B or “data occepred” from PORT B. Handshaking on
16 kit date transfere {using both PORT A and PORT B) i possible by
always reading or writing PORT A firsi. FLAG is o negative edge sensi-
tive input which con be used for receiving the PC output fram another
6526, or s o generygl purposa interrupt input, Any negafive transition of
FLAG will set the FLAG interrupt bit.

REG| NAME oo, ol B B[] B.] By
0 PRA PA, |PA: |PAs |PA, |PAs |PAs |PA, |PA
1 PRB PB, |PB, |PBs |PB. |PB, |PR, |PB, |PB,
2 DDRA DPA, [DPA, | DPA, | DPA, | DPA, | DPA, | DPA, | DPA,
3 DDRE DP8, |DPB, | DPB, | DPB, [DPB, | DPE, [DPR, | DPR,

Interval Timers (Timer A, Timer B)

Each interval timer consists of a 16-bit reac-only Timer Counter and a
16-hit write-only Timer Latch. Dato written fo the timer are latched in the
Timer Latch, while data read from the timer are the present contents of
tha Time Counter. The timers can be used independently or linked for
extended operations. The various timer modes allow generation of long
time dalays, variable width pulses, pulse trains and varioble frequency

APPENDIX M 429

waveforms. Ulilizing the CNT input, the rimers can count externcl pulses
or measure frequency, pulse width and delay times of external signals.
Each limer has an asscciated confrol register, providing independent
control of the tollowing tunctions:

Start/Stop

A control bir allows the timer to be storted or stopped by the micro-
processor at any time.

PB On/Off:

A control bit allows the timer output to appear on a PORT B cutput
line (PBS for TIMER A und PB7 for TIMER B). This function overrides the
DDKB centrol bit and torces the appropriate PB line to an cutput.

Teggle/Pulse

A contrel bit selects the output applied to PORT B. On every timar
underflow the output can either toggle or generate a single positive
pulse of one cycle duration. The Toggle output is set high whenever rhe
timer is started and is set low by RES.

One-Shot/Continuous

A control bit selects either timer mode. In one-shot mode, the timer
will count down from the lotched value to zero, generate an interrugt,
reload the latched value, then stop. In confinuous mode, the timer will
count fram the latched value to zero, generate an interrupt, reload the
lotched volue and repeat the procedure continuously.

Force Lood

A strobe bit allows the timer lasch to be loaded into the timer counter
at ony time, whether the timer is running or nof,

Input Mode:

Control bits allow selection of the clock used to decrement the timer.
TIMER A can count $2 clock pulses or external pulses applied to the CNT
pin. TIMER B can count &2 pulses, external CNT pulses, TIMER A under-
flow pulses or TIMER A underflow pulses while the CNT pin is held high.

The timer latch is loaded into the timer on any timer underflow, on a
farce load or following a write to the high byte of the prescaler while the
timer is stopped. If the timer is running, a write to the high byte will load
the timer latch, but not reload the counter.

430 APPEMDIX M

READ (TIMER)
REG NAME

4 TA LO | TAL; | TALy | TALy | TAL, | TALs | TAL | TAL, | TAL
5 TA HI | TAH;| TAHg| TAH, | TAH, | TAHa| TAH2| TAH:| TAH,
6 T8 LO | TBL, |TBL |TBL, |TBL, | TBL, | TBL, | TBL, | TBL,

7 T8 HI TBH+ | TBHs | TEHs | TBH4 | TBH5 | TBH, | TBH,| TBH,

WRITE (PRESCALER)
REG NAME

4 TALO | PAL, |PAL [PALs |PAL |PALs [PAL, | PAL, | PAL

TA HI PAH; | PAHg |FAH; | PAH. | PAHs | PAH, | PAH,| PAH,

5
6 | TBLO | PBL. |PBL; |PELs |PBL, PBL; |PBL, | PBL, |PBL,
7 TB HI PBH, |PBH; |PBH; |PRH, PBH, | PBH, | PBH, | PBH,

Time of Day Clock (TOD)

The TOD clock is u special purpose timer lor real-tfime appications.
TOD consists of a 24-hour (AM/PM) clock with 1/10th second resolution. It
is organized into 4 registers. 10ths of seconds, Seconds, Minures and
Hours. The AMJ/PM flag is in the MSB of the Hours register for easy hit
testing. Each register reads out in BCD format to simplify conversion for
driving displays, etc. The clack requires an external 60 Hz ar 50 Hr
(programmable) TTL level input on the TOD pn for cccurate time-
keeping. In addition to time-keeping, a programmakle ALARM is oro-
vided for generating an inte-rupt at a dasired time. The ALARM registers
are located ckthe saome addresses as the corresponding TOD registers.
Mceess to the ALARM is governed by o Control Register bit. The ALARM
is wrire-only; any read of o TOD adcress will read time regardless of the
state of the ALARM access bit.

A specific sequence ol events must be lollowed lor preper seiting ard
reading of TOD. TOD is automatically stopped whanever a write to the
Hours register cecurs. The clock will not start again until alier a write 1o
the 10ths of seconds register. This assures TOD will alwaoys start ot the
desired time. Since a carry from one stage ‘o the next can occur at any
time with respect to o read operaticn, a lotchirg tunctien is included o
keep all Time Of Day infarmotion constant during o reud sequence, All
four TOD registers latch on o read of Hours and remain latched until
attzr o read of 10ths of seconds. The TOD clock continues fo count when

APPENDIX M 431

the gutput registers are latched. If only one register is to ke read, there
is no carry problem and the register can be read “on the fly,” provided
that any read of Hours is followed by a read of 10ths of seconds 10
disable the lotching.

READ

REG NAME

8 |TODIOTHS| 0 0 0 0 P I A (S R
9 |TOD SEC |0 | SH, | SHp | SH, | SLg | Sls | SLp | SL,
A |TODMIN [0 | MH, | MH, | MH, | MLg | MLy | ML, | ML,
B |[TODHR |PM | 0 0 HH | HL, | HL, | HLx | HL,
WRITE

CRB,=0 TOD

CRB,=1 ALARM
(SAME FORMAT AS READ)

Serial Port (SDR)

The serial port is a buffered, 8-bit synchronous shift register system. A
contral bit selecrs input or output mode. In input mode, data on the 5P
pin is shifted into the shift register on the rising edge of the signal
applied to the CNT pin. After 8 CNT pulses, the dota in the shift register
is dumped into the Serial Data Register and an interrupt is generatad. In
the output mode, TIMER A s used for the baud rate generator, Data is
shifted out on the SP pin ot V2 the underflow rate of TIMER A. The
maximum boud rate possible is ¢p2 divided by 4, but the maximum use-
akle baud rate will be determined b, line loading and the speed ot
which the receiver responds to input data. Transmissicn will start follow-
ing a write to the Serial Data Regisler (provided TIMER A is running and
in continucus mode). The clock signal derived from TIMER A appears os
an output an the CNT pin. The data in the Serial Data Register will be
loaded into the shift register then shft out to the SP pin when a CNT
pulse wccurs. Dota shifted cut becomes valid on the falling edge of CNT
and ramains valid until the next falling edge. After 8 CNT pulses, an
interrupt is generated to indicate more data can be sent. If the Serial
Deta Register was lnaded with new infarmation prior te this interrupt,
the new data will automatically be lcaded into the shift register and
transmission will continue. If the microprocassor stays one byte ahecd of
the shift register, transmission will be continuous. If no further data is to
oe transmitted, after the Bth CNT pulse, CNT will raturn high and SP will

432 AFPENDIX M

remain at the level of the last data bit transmitted, SDR data is shitted
out M3B first ard serial input dota should also apwear in this Tormal.

The kidirectioncl capakility of the Serial Pert and CNT clock allows
many 6526 devices to be connected to a common serial communication
bus on which cre 6526 ccts as o mastar, sourcing data and shift clack,
while all other 6526 chips act as slaves. Both CNT and SP outputs are
open drain to allow such a commen bus. Protacol far masterfslave
selection con be transmitted over the serial bus, or via dedicated hand-
shaking lines.

REG MNAME

Fc SDR S, S | S 8a Sa 5; 5, 50_]

Interrupt Conrral (ICR)

Therz are five sources of interrupts on the 6526 underflow from TIMER
A, underflow from TIMER B, TOD ALARM, Serial Port fullempty and
FLAG. A single register provides masking and interrupt information. The
interrupt Control Register consists of o write-only MA3SK register and o
read-only DATA register. Any interrupt will set the carresponding bit in
the DATA register. Any interrupt whicn is enabled by the MASK register
will set the IR bit (MSB) of the DATA register and bring the IRG pin low.
In a muti-chip system, the IR bit can be polled ro detect which chip has
gererated on inferrupt request, The infterrupt DATA register is claarad
and the IRQ line returns high following o reud of the DATA regisker.
Since each interrupt sets an interrupt bit regardless of the MASK, and
each interrupt bil can be selectively masked o prevent the generation of

a processor interrupt, it is pessible to intermix polled interrupts with true
interrupts. However, pelling the IR it will cause the DATA register to
clear, therefore, it is up to the user to preserve the information con-
tained in the DATA register if any polled interrupt: were present,

The MASK register provides convenient contral nf individual mask hirs.
When writing to the MASK register, if bit 7 (SET/CLEAR) of the deta
written is @ ZFRO, any mask bit wrirten with o one will be cleared, while
those mask bits written with o zero will be unaffected. It bit 7 of the
deta written is ¢ ONE, cny mask kit written with a one will be set, while
those mask bits written with a zerc will be unaffected. In order for an
interrupt flag 1o set Ik and generate an Interrupt Reguest, the corre-
sponding MASK bit must be set.

APPENDIX M 433

READ (INT DATA)

REG MNAME

D ICR

IR 0 0 FLG | SP ALRM|TB | TA

WRITE (INT MASK)

REG MNAME
b | ICR sic|x | x | G| sp | ALRM | TB | TA
CONTROL REGISTERS

There are twa control registers in the 6526, CRA ond CRB. CRA is
associated with TIMER A and CRB is associated with TIMER B. The regis-

ter format is as follows:

CRA:

Bit MName
0 START
1 PBON

2 OUTMODE
3 RUNMODE

4 LOAD
5 INMOCDE
6 SPMODE
7 TODIN

434 APPENDIX M

Function

1=START TIMER A, 0=STOP TIMER A. This bit is
owtematically reset when underflow occurs during
one-shot mede.

1=TIMER A output appears on PB6, 0=PB6 normal
operation,

1=TOGGLE, 0=PULSE

1 =0NE-SHOT, 0=CONTINUOUS

1=FORCE LOAD (this is a STROBE input, there is no
data storage, bit 4 will alwaoys read back o zero
and writing o zero has no effect).

1=TIMER A counts positive CNT transitions, 0=
TIMER A counts b2 pulses.

1=SERIAL PORT output (CNT sources shift clock),
0=SERIAL PORT input (external shift clock required).
1=50 Hz clock requirec on TOD pin for accurate
fime, 0=60 Hz clock required on TOD pin for accu-
rate time.

CRB:

Bit MName Function

(Bits CRBD-CRB4 are identical to CRA0-CRA4 for

TIMER B with the sxception that bit 1 controls the

output of TIMER B an PB7).

56 [INMODE Bits CRB5 and CRB& select one of four input modes
far TIMER B as:

CRBb6 CRB5

0 0 TIMER B counts $2 pulses.

0] TIMER B counts positive CNT
transistions.

1 0 TIMER B counts TIMER A
underflow pulses.

1] TIMER B counts TIMER A
underflow pulses while CNT is
high.

7 ALARM 1=vrriting to TOD registers sets ALARM, O=writing
to TOD registers sets TOD clock.
TOD SP N RUN OUT
REG MAME IN MODE MODE LOAD MODE MODE PBON START
E CRA o=a0Hz | G=INFUT O0=dh2 1=FORCE | O=CONT)] O=PULSE O=PBgOFF | D=3TOPF
LOAD
1=50F7 [1 =OUTPUT T=CNT | (5TROBE) | 1=D5. | 1=10GGLE| 1=PEa DN | 1=5TAKI
| TA]
RUN OUT
REG NAME ALARM IN MODE LOAD MODDE MODE PEON START
T |cre o-fop |0 | o=a2 '=FocE| 0=CoNT.[0=ruist [o0="E, oFF | 0-510P
1] 1=eNt | load
1 0—=TA
1= 1 1=CNT-TA (STRD3E) [1=D2.5. 1=TOGGLE | 1=PB; DM |1=5TART
ALARM
| T8]

All unused register bits are unaffected by a write and are forced to zero

on a read,

COMMODORE SEMICONDUCTOR GROUP roscrves the right to make changes to any

products herein to improve reliobility, function or design. COMMODORE SEMICON-
DUCTOR GROUP does not assurne any iability arising cul of the cpplication or use of
any product or circuit described herein; neither does it convey any license unde- its

patent rights nor the rights of athers.

APPENDIX M

435

APPENDIX N

6566/6567 (VIC-1l) CHIP
SPECIFICATIONS

The 6566/656/ are multi-purpose color video controller devicas for use
in both computer video terminals and video game applications. Both
devices contain 47 control registers which are accessed via a standord
8-bit microprocessor bus (65KX) and will access up to 16K of memory
for display infarmation. The varinus operating modes and options within
each mode are described.

CHARACTER DISPLAY MODE

In the character display mode, the 6566/6567 feiches CHARACTER
POINTERs from the VIDEQ MATRIX area of memory and translates the
pointers to character dot locction addresses in the 2048 byte CHAR-
ACTER BASE crea of memory. The video matrix is comprised of 1000
consecutive locations in memory which each contain an eight-hit char-
acter pointer. The location of the video matrix within memory is defined
by VM13—VMI10 in register 24 (S18) which are usad as the 4 MSB of the
video matrix address. The lower order 10 bits are provided by an inter-
nal counfer (VC3—WVCO0) which steps through the 1000 character Inco-
tions. Note that the 6566/6567 provides 14 address outputs; therefore,
additional system hardwore may be reguired for complete system
memory decodes.

CHARACTER POINTER ADDRESS

A13| A12| A11] A10|409 |A0B | A07 A05|At}5lnm|mz'[mz ao01 | aoo
VMIIVMIZIVMT TIVMIOVC? |VC8 | VCT v:;alvcs vc.a‘vcslvcz VC1 | vCo

4is APPENDIX N

The eight-bit character peointer permits up to 256 different character
definitions to be available simultaneously. Each character is an 8% 8 dot
matrix stored in the character base as sight consecutive bytes. The loca-
tion of the character base is defined by CB13—CB11 clso in register 24
($18) which ara used for the 3 most significent bits (MSB) of the char-
acter base address. The 11 lewer order addresses are formed by the
8-bit characrer painter fram the video matrix (D7—D0) which selects a
porticular character, and a 2 kit raster counter (RC2—RCO) which selects
one of the eight character bytes. The resulting characters are formatted
os 25 rows of 40 characters each. In addition to the 8-bit character
pointer, a 4-bit COLOR NYBBLE is ossocicted with each video matrix
location (the videa matrix memory must be 12 bits wide) which defines
one of sixteen calors for each character.

CHARACTER DATA ADDRESS

A13| A12| A11[ATD| 409 | A08 | AO7| AOb]AO.SI AD4| AC3| A02| AOY]Aoo_

CBIGICBIZ'CBIIFD? ‘na ‘Dﬁ ‘D-! ||33 |Dz ‘m ‘DG |nc2 RC1 ‘nco
STANDARD CHARACTER MODE (MCM = BMM = ECM = 0)

In the standcrd charccter mode, the & sequential bytes from the
characier bose are displaysd directly on the 8 lines in each character
regicn. A “0" bit causes the background #0Q color (from register 33
($21)) to be displayed while the color selected by the color nybkle
(foreground) is displayed for a 1" bit (see Color Code Table).

CHARACTER
FUNCTION BIT COLOR OISPLAYED
Background 0 Background #0 color
rregister 33 (321))
Foreground 1 Color selectec by 4-bit color nybble

Therefare, each character has a unique color determined by the 4-bit
colar nybble (1 af 168) and all characters share the common background

colar.

APPENDIX M 437

MULTI-COLOR CHARACTER MODE (MCM = 1, BMM = ECM
=0

Multi-color mode provides odditional color Nexibility allowing up to
four colors within each character but with reduced resolution. The
multi-color mode is selecied by setting the MCM bit in register 22 ($16¢)
te “1,” which causes the det daota stored in the character base to be
interpreted in a different manner. If the MSB of the colar nybble is o
“0," the character will be displayed as described in standard character
mode, dllowing the two modes to be inter-mixed (however, only the
lower arder 8 colors are available). When the MSB of the color nybble is
a “1” (if MCM:MSB(CM) — 1) the character bits are interpreted in the
multi-color mode:

CHARACTER
FUNCTION BIT PAIR COLOR DISPLAYED
Background 00 Background #0 Color
(register 33 ($21))
Background 01 Background #1 Color
(register 34 ($22))
Foreground 10 Background #2 Color
(register 35 ($23))
Foreground 1 Caler specified by 3 LSB
of color nybble

Since two bits are required to specify one dot color, the character is now
displayed as a 4 X 8 matrix with each dot twice the horizantal size as in
standard mode, Note, however, that each character region can now
contain 4 diffarent colors, two as foreground and two as background
(see MOB priority).

EXTENDED COLOR MODE (ECM = 1, BMM = MCM = 0)

The extended color mode allows the selection of individual back-
graund colors far each character region with the narmal 8 X 8 charactar
resclution. This mode is selected by setting the ECM bit of register 17
($11) ro *1.” The character dot data is displaved as in the standard
mode (foreground color determined by the colar nybble is displayed for

438 APPENDIX N

a “1" data bit), bul the 2 M3B of the character painter are used to salact
the background color for each character region as follows:

CHAR. POINTER
MS BIT PAIR BACKGROUND COLOR DISPLAYED FOR O BIT
oo Background #0 color (register 33 ($21))
01 Background #1 color (register 34 ($22))
10 Background #2 color (register 35 ($23))
11 Background #3 color (register 36 ($24))

Since the two MSB of the character pointers are used for color informa-
tion, only 64 different character definitions are available, The 6566/4567
will force CB10 and CB? to “0” regardless of the original pointer values,
so that anly the first 64 chararcter definitions will be occessed. With ex-
tended color mode each character has one of sixteen individually de-
fined foreground colors and one of the four availahle background
colors.

MNOTE: Extended color mode and multi-celar mode shauld not be enakled
simultaneausly.

BIT MAP MODE

In bit map mcde, the 6566/65¢7 fetches dara from memory in a dif-
terent fashion, so thal a one-to-one correspondence exists between
each displayed dol and a memory bit, The bit map mode provides a
screen resolution of 320H X 200V individually controlled display dots.
Bit map mode is selected by setting the BMM bit in register 17 (311) 1o @
“1.” The VIDEQ MAIRIX is still cccessed as in character mode, but the
video matrix data is no longer intergreted as character pointers, but
rather as color data. The VIDEO MATRIX COUNTER i then also used as
an address to fetch the dot data for display from the 8000-byte DISPLAY
BASE, The display base address is formed as follows:

A13|Mz |A11 | A10 | A02 | Acs AO?|A0&]A05| A04 | A03 | AO:]AN | A00

CB13‘VC9‘VCS ‘ vCc? J VCa ‘ VC5 VCJlVCS' VCZl vCl |\'C0‘ RC!‘I RC1 | RCO

APPENDIX N 439

VCx denctes the video mairix counter outputs, RCx denates the 3-hit
raster line counter and CB13 is from register 24 ($18). The video matrix
counter steps through the sume 40 locations for eight raster lines, con-
finuing to the next 40 locations every eighth line, while the raster counter
increments once for ecch horizontal video line (raster line). This address-
ing results in each eight sequential memory locatiens baing formatted as
an 8 X B dot block on the video display.

STANDARD BIT MAP MODE (BMM =1, MCM = 0]

When standard bit map mode is in use, the color information is de-
rived only from the data stared in the video matrix (the color nybhle is
disregarded). The 8 bits are divided into two 4-bit nykbles which allow
twa colors to he independently selected in each 8 X 8 dot hlock. When
a bit in the display memeory is @ “0” the color of the output dot is set by
the least significant (lower) nybble (LSN). Similarly, a display memary bit
of "1" selects the output color determined by the MEN (upper nybble).

DISPLAY COLOR

BIT |

0 Lower nybble of video maotrix pointer
1 Upper nybble ot video matrix painter

MULTI-COLOR BIT MAP MODE (BMM = MCM = 1)

Multi-colored bit map mode is selected by setting the MCM bit in
regisler 22 ($16) to o “1" in conjunction with the BMM bit. Multi-color
mode uses the same memory cccess sequances as standard kit map
mode, but interprets the dot data as follows:

BIT PAIR DISPLAY COLOR
80] Backaround #0 color l'register 33 ($21))
01 Upper nykble of video matrix pointer
10 Lower nybble of video matrix pointer
11 Video matrix color nybble

Note that the cclor nybble (DB11-DB8) IS used for the multi-color bit
maop mode. Again, as two bits are used to select one dat color, the

440 APFENDIX N

horizontal dot size is doukled, resulting in a screen resolution of 160H x
200V. Utilizing multi-color bit map mode, three independently selected
colors can be displayed in each 8 X 8 block in addition to the back-
ground color.

MOVABLE OBJECT BLOCKS

The movakle object block (MOB) is o special type of character which
can be displayed ot any one position on the screen without the block
constraints inherent in character and bit mup mode. Up to 8 unigue
MOBs can be displayed simultaneously, each dsfined by 63 bytes in
memory which are displayed os o 24%21 dol array (shown below). A
number of special features make MOBs especially suited for video
graphics and game applications,

MOB DISPLAY BLOCK

BYTE BYTE BYTE
00 01 02
03 04 05
57 58 59
60 &1 02

ENABLE

Each MOB can oe selectively enabled for display by sefting ils corre-
sponding enable bit (MnE] ta “1” in register 21 ($15). If the MnE bit is
"0 nec MOE operctions will accur invelving the disabled MOB,

POSITION

Each MOB is oositioned via its X and Y position register (see register
map) with a resolution of 512 horizontal and 256 vertical positions. The

APPENDIX N 441

positicn of @ MOE is determined by the upper-left corner of the array. X
locations 23 10 347 ($17-5157) and Y locations 50 to 249 ($32—3%F9) are
visible. Since not cll avcilable MOB paositions are entirely visible on the
screen, MOBs may be moved smacthly on and off the display screen.

COLOR

Each MOB has o separate 4-hit register to determine the MOB cclor.
The two MOB color modes are:

STANDARD MOB (MnMC = 0)

In the standard made, a “0” bit of MOB data allows eny background
dala 1o show through (transparent) anc o “1” bLil is displayed as the
MOB color determined by the corresponding MOB Color ragister.

MUITI-COLOR MOB (MnMC = 1)

Each MOB can be individually selected as o multi-color MOB via
MRMC bits in the MOB Multi-color register 28 ($1C). When the MnMC bit
is “1, the carresponding MOR is displayed in the multi-color mode. In
the multi-color mode, the MOB data is interpreted in pairs (similar to the
other multi-color mades) as follows:

BIT PAIR | COLOR DISPLAYED

00 Transparant

0] MOB Multi-color #0 (register 37 ($25))
10 MOB Color (registers 39-46 ($27-52E))
b MOB Mulli-color #1 (reuister 38 ($26))

Since two bits of datu are reguired for each color, the resolution of the
MOB is reduced to 12x27, with each herizontal dot expanded to twice
standard size so that the cverall MOB size does not chorge. Note that
up to 3 colors can be displayed in each MOBE (in addition to transparant)
but that twao of the colors are shared among all the MOBs in the multi-
color mode.

442 APPENDIX N

MAGNIFICATION

Each MOB can be selectively expunded (2x) in both the horizonral
and vertical directions. Two registers contain the control bite
(MnXE,MnYE) for the magnification contral:

R‘EGISTER| FUNCTION

23 ($17) |Horizontal expard MnXE—" |“=expand; “0"=normal
29 ($1D) |Vertical expand MnYE—"1“=expand; “0“=normal

When MOBs are expanded, no increase in resolution is reclized. The
same 24 X21 array (12X 21 if multi-colored) s displayed, but the overall
MCB dimension is deubled in the desired direction (the smallest MOB
dot may be up to 4x standard det dimension if @ MOB is both multi-
colored and expanded).

PRIORITY

The priority of ecch MOB may be individually controlled with respect
to the other displayed information from character or bit map modes.
The priority of each MOB is set by the corresponding bit (MnDP) of regis-
ter 27 (S1B) cs follows:

REG BIT PRIORITY TO CHARACTER OR BIT MAP DATA

0 Non-transparent MOB data will be displayed (MOB in front)
1 Non-transparent MOB data will be displayed only instead of
Bkgd #0 or multi-color bit poir 01 (MOB behind)

MOB —DISPLAY DATA PRIORITY

MnDP = 1 MnDP = 0
MOEnR Foreground
Foreground MOBn

Beckground Background

APPENDIX N 443

MOE data hits of “0” ["00” in multi-color mode) are transparent, always
permitting any other information to 5e displayed.

The MOBs have a fixed priarity with respect to each ather, with MOB
0 having the highest priority and MOB 7 the lowest. When MOB data
(except transparent dara) of rwa MOBs are coincident, the data from
the lower number MOB will be displayed. MOB vs. MOB dcta is
pricritized before priarity resolution with characrer or bit map data.

COLUSION DETECTION

Two hypes of MOB collision (coincidence) are detected, MOB to MOB
collision and MOB to disploy data collision:

1} A collision batween two MOBs cccurs whan non-transparent output

2)

444

data of two MOBs are coincident. Coincidence of MOB trunsparent
areas will not ganerate a collisien. When a collision occurs, the
MOB bits (MM in the MOB—MOE COLLISION register 30 ($1E) will
he set 1o “1” for both colliding MOBs. As a callision between two
{or more) MOBs cccurs, the MOB—MOEB collision kit for each cal-
lided MOB will be set. The callision hits remain set until a read of
the ccllision register, when all bits are automatically cleared.
IMOBs collisions are detected sven if positioned off-sereen.

The second type of collision is ¢ MOB -DATA collision between o
MOB and fareground display dara from the character or bit map
modes. The MOB-DATA COLLISION register 31 ($1F) has o bit
{MnD) for each MOB which is set fo “1" when both the MOB and
non-background display data are coincident. Again, the coinci-
dence of only transparent dota does not generate a collision. For
special applications, the display data from the 0—1 multicaler bit
palr also does not cause o collision. This feature permits their use
as background displey data withaut interfering with true MOB cal-
lisions. & MOB—DATA collision can occur off-screen in the horizon-
tal direction if cctual display data has been scrolled to an cff-
screen position (see scrolling). The MOB—DATA COLLISION register

also automctically cleare when read.

APPEMDIX N

The collision inferrupl luiches are set whenever the first bit of either
register is set fo “1.” Once any collision bit within a register is set high,
subsequent collisions will not set the interrupr larch until that eallisian
register has been clearad to all “0s" by a read.

MOB MEMORY ACCESS

The data for each MOE is stored in 63 consecutive oytes of memory.
Each block of MCB data is defined by u MOB pointer, located at the
end of the VIDED MATRIX. Only 1000 bytes of the video matrix are used
in the normal display modes, allowing the video matrix locations
1016-1023 (VM base+3$3F8 to VM base—%3FF) to be used for MOB
pointers 0 7, respectively. The eight-kit MOB pointer from Ihe video
mafrix together with the six bits from the MOB hyte counter (to address
63 bytes) define the entire 14—bit address field:

A13|A12|AT] |A10|A09;Aoa|Ao7\Aoa\A05|Ao4 Aos[A02|Am A00
MF?!MP&'MPS'MF&'MH MP?’MW |MPD‘MCBIMC&IMCHIMCQIMC1|MCC-

Where MPx are the MCB painter bits from the video matrix and MCx ara
the internally generated MOB counter bits. The MOB pointers are read
from the video malrix ul the end of every raster line. When the Y posi-
tion register of a MOB matches the current raster line count, the actual
fetches of MOB datu begin. Internal counters automatically step through
the 63 bytes of MUB daic, displaying three bytes on ecch raster lina.

OTHER FEATURES
SCREEN BLANKING

The display scresn may ke blanked by setting the DEN bit in register
17 ($11) to a “0" When the screen is blankad, the entire scraesn will be
filled with the exterior color as set in register 32 ($20). When klanking is
active, anly transparent (Phase 1) meamory cccesses are required, per-
mitting full processor ufilization of the system bus, MOE dcota, however,
will be accessed if the MOBs are not also disabled. Tha DEN bit must be

set 1o 1" for normal video display.

AFFENDIX N 45

ROW/COLUMN SELECT

The normal display consists of 25 rows of 40 characters ior character
regions) per row. For special display purposes, the display window may
be reduced to 24 rows and 38 characters. There is no change in the
format of the displayed information, except that characters (bits) adja-
cent o the exteriar barder area will now be covered by the border. The
select bits operate as follows:

RSEL MNUMBER OF ROWS | CSEL NUMBER OF COLUMNS
0 24 rows 0 38 columns
] 25 rows 1 40 columns

The RSEL bit is in register 17 ($11) and the CSEL bit is in register 22 [$16).
For standard display the larger displey windew is normally used, while
the smaller display window is normally used in conjunction with scroliing.

SCROLLING

The display date may be serolled up tc one entire character space in
both the herizental and vertical dirsction. When used in conjurction writh
the smuller displuy window iobovel, scrolling can be used to create a
smooth panning motion ot display data while updcting the system
memory only when o new character row (or column) is required. Scroll-
ing is also used to center a fixed display within the display windew,

BITS | REGISTER | FUNCTION
X2, X1,%0 ’ 22 (31¢) Horizontal Pusilion
Y2,Y1,Y0 7 ($11) Vertical Position
LIGHT PEN

The light pen input latches the current scresen position into o pair of
registers (LPX,LPY) on o low-going edge. The X pasition register 19 ($13]
will contain the 8 MSE of the X posilion al the lime ol transiton. 3ince
the X position is defined by o 512-state counter (9 bits) resolution to 2
horizontul dois is provided. Similarly, the ¥ position is ‘afched to its reg-

446 APPEMDIX N

ister 20 {($14) but here 8 bits pravide single raster resclution within the
visible display. The light pen latch may ke tricgered only once per
frame, and subsequent triggers within the same freme will heve ne
effect. Therefors, you must take several samples before turning the light
pen to the screen (3 or more samples, average), depending upon the
characteristics ot your light pen.

RASTER REGISTER

The raster register is a dual-function ragistar. A read of the raster
register 18 ($12) returns the lower 8 bits of the current raster position
{the MSB—RC8 is located in register 17 ($11)). The raster register can he
interrogated to imglement disploy changes cutside the visible crec to
preven| display flicker. The visible displey wirdow is from raster 51
through raster 251 ($033—30FB). A write to the raster bits (including
RCE) is latched for use in un internal raster compare. When the current
raster metcnas the written value, the roster interrupt latch is set.

INTERRUPT REGISTER

The interrupt register shaws the status of the four sources of interrupt.
An interrupt latch in register 25 (519 is set to 1" when an interrupt
source has generatec an interrupt request. The four sources of inlerrup
are:

LATCH| ENABLE
BIT BIT WHEN SET

IRST ERST Set when (raster count) = (stored rasfer count)

IMDC |EMDC |Set by MOB—DATA collision register (first collision only)]
IMMC |EMMC [Set by MOB-MOB ccllision register (first collision anly)
ILP ELP Set by negative fransition of LP input (once per frame)
IRQ Set high by latch set and enabled (invert of IRQ/ output)

To enable on interrupt request to set the IRQ/ cutput to “0/ the corre-
spunding interrupt enable kiv in register 26 ($14) must be set ta “1
Once an interrupt latch has been s=t, the latch may be clearsd only by
writing @ “1" 1o the desired latrh in the interrupt register. This feature
allows selective handling of video interrupts without softwars required to
“remember” active interrupts.

APPENDIX N 447

DYNAMIC RAM REFRESH

A dynamic ram retresh controller is built in to the 6556/6567 devices,
Five 8-kit row oddresses are refreshed every raster line, This rate
guarantees a maximum dslay of 2.02 ms between the refresh of any
single row oddress in o 128 refresh scheme. (The maximum delay is
3.66 ms in o 256 address refresh scheme.) This refresh is totally trans-
parent to the system, since the refresh occurs during Phase 1 of the
system clock. The 6567 gererates both RAS/ and CAS/ which are nor-
mally connecred directly 1o the dynamic rams. RAS/ and CAS/ are gen-
erated for every Phase 2 and every video data access (including refresh)
so that external clock generation Is not required.

THEORY OF OPERATION
SYSTEM INTERFACE

The 6566/6567 video controller devices interacl with the systemn data
bus in o special way, A 65XX system requires the system buses only
during the Phase 2 (clock high) portion of the cycle. The 6566/6567 de-
vices take advantage of this feature by ncrmally accessing system
memory during the Phuse 1 (clock low) portion of the clock cycle. There-
tfore, operafions such as character data fetches and memory retresh are
totally tronsparent to the processor and do not reduce the processor
throughput. The video chips provide the interfoce control signals re-
quired to mcintain this bus sharing.

The video devices provide the signal AEC (address encoble contral)
which is used to disakle the processor address bus drivers allewing the
videc device to access the address bus. AEC is active low which permits
direct connection to the AEC inpul of the 65XX family. The AEC signal is

448 APPENDIX N

normally activated during Phase 1 so that processor operation is not
affected. Because of this bus “shuring,” all memory accesses must be
complated in 1/2 eyele. Since the video chips provide & 1-MHz clock
(which must be used as system Phase 2), o memcry cycle is 500 ns
including address setup, dafa access and, dato satup ¢ the reading
device.

Certain operations of the 6566/6567 require data ot a faster rate than
avallable by reading only during the Phase 1 time; specifically, 1he uc-
cess of character pointers from the video meirix and the fetch of MOB
data. Therefore, the processor must be disabled and the dulu accessed
during the Phase 2 clack. This is azcomplished via the BA (bus availablz)
signal, The BA line is rermaly high but is brought low during Phase 1 to
indicate thar the videa chip will require a Phase ? data aceess. Three
Phase-2 times are allowed after BA low for the processor to complete
any current memaory accasses. On the fourth Phase 2 ofter BA low, the
AEC signal will remain ow during Phase 2 as the video chip fetches
dara. The BA line is normally connected ta the RDY input of a 65XX
precessor. The character pointer fetches cccur every eighth raster line
during the display window ond require 40 consecutive Phase 2 accesses
to fetch the video matrix pointzrs. The MOB data feiches require <
memory cccesses as Tollows:

PHASE| DATA | CONDITION

MOEB Pointer Every raster

MOB Byle 1 Each ruster while MOB is displayed
MOB Byte 2 Ezch raster while MOE is displayed
MODB DByte 3 Each rusier while MOB is displayed

N — bk -

The MCB pointers are fetched every other Phase 1 at the end of ecch
roster line. As required, the additional cycles aore vsed for MOB dato
fetches. Again, all necessary bus control is provided by the 6566/6567
devirces.

MEMORY INTERFACE

The two versions of the video interface chip, 6566 and 6567, differ in
address output corfigurations. The 6566 has thirteen fully decoded ad-

APPENDIX N 449

dresses for direct cornnection to the systemn address bus. The 4567 has
multiplexed addresses for direct cannection to 64K dynamic RAMs. The
least significant address bits, A06—AQQ, are present on AQ6—A00 while
RAS/ is brought low, while the most significant kits, A13—-A408, are pres-
ent on AD5-A00 while CAS/ is Lrought low. The pins A11—A07 un the
6567 ore static oddress outputs o cllow direct connection of these bits
to u conventional 16K (2K x8) ROM. (The lower order addresses require
external laiching.)

FROCESSOR INTERFACE

Aside ‘rom the special memaory accessaes described above, the 566/
6567 registers con be cccessed similar to any other periphercl device.
The following processor interface signals are provided:

DATA BUS (DBR7-DBO)

The eight data bus pins are the bi-directional data port, controlled by
CS/, RW, and Fhase 0. The data bus ean only be accessed while AEC
cnd Phase O are high and C5/ is low.

CHIP SELECT (CS/)

The chip select pin, CS/, is brought low to enable access to the device
registers in conjunction with the address and RW pins. CS/ low is recog-
nized only while AEC and Phase 0 are high.

READ/WRITE (R/W)

The read/write input, R/W, is used to determine the direction ot data
transfer on the dara bus, in conjunction with CS/. When R/W is high {1}
data is transferred from the celected register to the data bus output.
When RI'W is low (“0") dota presented on the data bus pins is loaded
into the selected register.

ADDRESS BUS (AD5-A00)

The lower six address pins, AE—AO, are ki-directional. During a pro-
cessor raad or write of the vidao device, these address pins are inputs.
The data on the address inputs selects the register for read or write as
defined in the register mep.

430 APPENDIX N

CLOCK QUT (PHO)

The clock output, Phase G, is the 1-MH7 clock used as the 65XX pro-
cessor Phase 0 in, All system bus activity is referenced to this clock, The
clock frequency s generated by dividing the B-MHz video input clock by
eight,

INTERRUPTS (IRQY/)

The interrupt cutput, IRGY/, is brought low when an enabled source of
interrupt occurs within the device. The IRG/ output is open drain, requir-
ing on exfternal pull-up resistor.

VIDEO INTERFACE

The video outpur signal from the 6566/6567 consists of twa signals
which must be externally mixed fogether. SYNC/LUM output contains all
the video dale, including horizontal and vertizal syncs, as well as the
luminance information of the video dieplay. SYNC/LUM is open drain,
requiring an external pull-up of 500 chms. The COLOR ourput contains
cill the chrominance information, including the color reference burst and
the coler of all display data. The COLOR oulpul is open source and
should be terminated with 1000 ohms to ground. Aftar appropriate mix
ing of these two signals, the resulting signal can directly drive a video
menitor or be fed te a madulatar far use with o standard telavision.

SUMMARY OF 6566/6567 BUS ACTIVITY

AEC PHO CS/ R'W ACTION
C 0 A X PHASE 1 FETCH, REFRESH
o I X X PHASE 2 FETCH (FROCESSOR OFF)
1 0 X X | NO ACTION
1 1 a 0 | WRITE TO SELECTED REGISTER
1 1 0 1 READ FROM SELECTED REGISTER
1 1 1 X NO ACTION

APPENDIX N 451

452

DEg

DB,
DRq
IRQY
LP

[3.9]
RW

AA

Voo
COLOR
SILUM
AEC
PHo
RAS/
CAS/

Veg

APPENDIX

PIN CONFIGURATION

-y - - - -
- -l wlly

EIEIEIEIEEEEEAE A=l S

-

Ny

6567

)
=l

= llsflelleIx]ls = [=]{e]le]le]lelle]l«]la]ls][«]le][e]]2]

W

=

» [\]
L] L &=

3

(Multiplexed addresses in parentheses)

Voo
DB,
DB,
DBqg
DBy
DByy
Adp

Ag

A

Az

Ag £17)
AclAqai
Aslhgp]
AalAqy)
AzlAqg)
Aqlhg)
Aglhg)
At
PHIN

PHCL

o -
- o T
F. o lin] %__ [=:] nmu i £ = = =] 7 1) sy

Drﬂ__l__l__l_j_..._]]_l__l_]jjj_l._j_l_j_ﬂ

e

PIN CONFIGURATION

6566

¥]

1

_L[_LE_ K __ ~| H_EEE[EEEEEEE

5 & 2 & B8

A o a 4 a A
o w < >

] (] o] _H [m}) D

pe,
PHIN
Vag

I

[s]

A : (8}
I
[

COLOR
SILUN

453

APPEMDIX N

145

N XION3ddV

REGISTER MAP

DESCRIPTION

: ADDRESS DB7 DB& DBS5 DB4 DB3 DB2 DB1 DBO
00 ($00) MOX7 MOX6 MOX5 MOX4 MOX3 MCOX2Z MOX1 MOEX0 MOB 0 X-position
01 ($01) MOY7 MOY6 MOYS MOY4 MOYZ MOY2 MOYT MOYO MOB O Y-position
02 ($02) MIX7 MIX6 MIX5 MIX4 MIX3I MIX2Z MIX1T MIX0 MOB 1 X-position
03 ($03) MIYZ7 MIYe MIYS MIY4 MIYS MIYZ MIYT MIYO MOB 1 Y-position
04 ($04) M2X7 M2X6 M2X5 M2X4 M2X3 M2X2 M2X1 M2X0 MOB 2 X-positian
05 ($05) M2Y7 M2Y6 M2Y5 M2Y4 M2Y3 MIZY2 M2YT M2Y0 MOB 2 Y-position
06 ($06) M3X7 M3X6 M3X5 M3X4 M3X3I M3IX2Z M3X1 M3IX0 MOR 3 X-position
07 ($07) M3Y7 M3Y6 M3Y5 M3Y4 M3Y3 M3IY2 M3YT M3YO0 MOB 3 Y-position
D8 ($08) MAXT MAXE M4X5 M4AX4 MAXI MAX2Z M4AX]T MAX0 MOB 4 X-position
02 ($09) M2Y7 M4YS MAYS M4Y4 M4AYS M4AY2 M4AYT M4Y0 MOB 4 Y-positicn
10 (%04A) MAXT MaXa MAEXS MEX4 MEX3 MSEX2 MAX] M5X0 MOB 5 X-position
11 ($0B) MSY7 M3Y6 MSYS MSY4 MSY3 MEY2Z MSYT M3Y0 MODB 5 Y-position
12 (%0C) M6X7 MoeXe6 MEXS M6EX4 MAXI MEXZ M6EXT MaX0 MOB 6 X-position
13 (%0D) M&Y7 MeYe M&EYS MéY4 MEYZ MEYZ MéEYT M&YOD MOB 6 Y-positicn
14 ($SOE) M7X7T M7X6 M7X5 M7X4 M7X3 M7X2 M7X1 M7X0 MOB 7 X-postian
15 ($0F) MZY7 M7Ye MZY5 M7Y4 MZY3 MZYZ M7Y1T MeYQD MOB 7 Y-position
16 (%10) M7X8 MBEXB JA5X8 M4XB3 M3XB MIXB MIXB MMOXB MSB of X-position
17 ($11) RC8H ECM BMM DECN RSEL Y2 Y1 Y0 See fexl
1B (512) RC7 RC& RCS RC4 RC3 RC2 RC1 RCO Raster register
12 ($13) LPXB LPX7 LPXé LPX5 LPX4 LPX3 LPX2 LPX1 Light Pen X
20 (S14) [PY7 LPY& LPY5 LPY4 LPY3 LPY2 LPY1 LPYOD Light Pen Y
21 (s15) M7E M6E M5SE M4E M3E MZE MIE MMOE MOB Enable
22 (S16) = = RES MCM CSEL X2 X1 X0 See text
23 ($17) MZYE MoYL MSYE M4YE M3YE M2ZYE MIYE MOYE MOB Y-expand

N XIgH3IddY

S5y

24
25
26
27
28
29
30
3

32
33
34
35
36
37
38
39
40
41

42
43
44
45
46

($78)
($19
($TA)
{$18B)
$1C)
($1D)
($1E)
i$1F)
$20)
($21)
$22)
($23)
($24)
$25)
($26)
$27)
$28)
$29)
($2A]
($2R)
($2C]
($2D]
($2E)

VM3
IRQ
M7DP
M7MC
M7XE
PATM
PA7D

VAT 2

MoDP
M&eMC
MoXE
M&M
MoD

VIAT]

VM10

M4DP
MAMC
M4XE
M4AM
M4D

CB13
ILP
ELP
M3DP
M3MC
M3XE
M3M
M3D
EC3
BOC3
B1C3
B2C3
B3CI
MMO3
MM13
MOC3
M1C3
M2C3
M3C3
MAC3
M5C3
M&C3
M7C3

CB12
IMMC
EMMC
MZOCP
M2MC
M2XE
M2M
M20
EC2
BOCZ
B1Cc2
B2C2
BaIC2
MMOD2
MM12
Mmoca
Micz2
M2C2
M3C2
MAC2
M5C2
M&eC2
M7C2

CB11
IMBC
EMBC
M1DP
M1 MC
M1 XE
MI1M
MID
EC1
B20C
31CI
B2C1
B3
MMOT
MM
MOC|
MI1CI
M2cCl
M3cC
MACI
M5CIT
Mé&C]
M7C]

IRST
ERST
MODF
MOMC
MOXE
MOM
MOD
ECO
BOCO
B1CO
B2CD
B3CO
MMOO
MM10
MOCO
M1C0
M2CQO
M3Co
M4C0
M5CO
M6COo
M7C0o

Mernory Pointers
Irterrupt Register
Enable Interrupt
MOB-DATA Priority
MOB Multicolor Szl
MOB X-expond
MOB-MOB Collision
MOB-DATA Caollision
Exterior Color

Bkgd #0 Color
Bkyd #1 Color
Bkgd #2 Color
Bkyd #3 Color
MOB Multicoler #0
MOB Multicolor #1
MOB 0 Color

MOB 1 Color

MOB 2 Color

MOB 3 Colar

MOB 4 Color

MOB 5 Color

MOB 6 Color

MOB 7 Color

FNDTE: A dash indicares o no connecr. All no connects are read as a “1."

COLOR CODES

D4 D3 D1 DO HEX | DEC COLOR

0 0 0 0 Q 0 | BlACK

0 0 0 1 1 || WHITE

e | 0 '. 0 2 2 | RED

0 0 i 1 3 3 | CYAN

a 1 0 1] 4 4 PURPLE

0 1 0 1 5] GREEN

0 1 1 0 6 6 | BLUE

0 1 1 1 7 7 | YELLOW

1 0 0 0 8 8 | ORANGE

1 0 0 i ¢ 9 | BROWN

1 0 1 0 A 10 | LT RED

1 0 1 1 B 11 | DARK GREY

1 1 0 0 C 12 | MED GREY

1 1 0 I D 13 | T GREEN

1 1 1 0 E 14 | T BLUE

1 1 1 | F 15 | 0 GRey
456 AFPENDIX N

APPENDIX O

6581 SOUND INTERFACE DEVICE (SID)
CHIP SPECIFICATIONS

CONCEPT

The 6581 Scund Interface Device (SID) is a single-chip, 3-voice elec-
trenic music synthesizer/sound effects generater compatikle with the
65XX ond similar microprocessor families. SID provides wide-range,
high-resolution control of pitch {frequency), tonz color (harmanic con-
+ent], and dynamics (volume). Specialized control circuitry minimizes
software overhead, tacilitating use in arcade/home videc games and

low-cost musical instruments.

FEATURES

® 3 TONE OSCILLATORS
Ronge: 0—4 kHz

® 4 WAVEFORMS PER OSCILLATCR
Triangle, Sawtocth,
Variable Pulse, Noise

3 AMPLITUDE MODULATORS
Range: 48 dB

® 3 ENVELOPE GENERATORS
Exponential response
Attock Rate: 2 ms—8 s
Decay Rate: & ms—24 s
Sustain Level: 0—peck volume
Release Rate: 6 ms—24 s

OSCILLATOR SYNCHRONIZATION

RING MODULATION

APPENDIX O 457

® PROGRAMMABLE FILTER

458

Cutoff range: 30 Hz—12 kHz

12 dBloctove Rolloff
Llow poss, Bandpass,

High pass, Notch outputs

Varicble Resonance

MASTER VOLUME CONTROL
2 A/D POT INTERFACES
RANDOM NUMBER/MODULATION GENERATOR
EXTERNAL AUDIO INPUT

PIN CONFIGURATION

CAPqa

CAP.g

CAP24

a

AR EEEC

Az

Ay

GND

Ly

6581
SID

28

6

Lalls][s]

P 151
HIBIE

(X
-

na
=]

-
(7]

=

FAEEIE

APPENDIX O

Vop

ALDID OUT

EXTIN

Vieo

POT X

POTY

D7

Ds

Dy

Dy

Dy

O XIaN3ddY

&5F

e
(2]

O
0y
De
Dg
2]

——ny =, _—
SYNZIA
—= & — PN
- -‘1 1
E OSCILLATORI et l:ygl.llhil.ng%tﬁ FILT 1
—] O WAVEFORM h! 1 ALl
. E GENERATOR 1 —] DIeE

— § apbg = ‘wliﬂﬁb
— ENVELOPL] ! v
—_— T GEMERATOR 1 5
i L

SYNCIRM FILTER
TONE - J A1
~ AMPLITUDE b,
OSCILLATCR! 1 MODULATOR _O,'G:”r?
WAVEFORM 1 g
GENFRATOR 2 |— :H:_—

I AR R @M i
e EMVELOPE | | BF
- ﬁ GENERATORZ2[5 HP
-] L

=2 > =1
= SYNUIHM w S
- TUNE ~1-1 AMPLITUDE ot
S OSCILLATCR! . > e N
a WAV) MODULATOR FiLT 3 VOLUME
e AVEFORW rr. 3 5 L
GENERATOR 2
Cs
AR =ILTEX
ENVELOPF
GENERATOR 3
6581 BLOCK DIAGRAM
POT ¥ — POTS - POT ¥

CAP;g
CaP.
CaPg
CAP,

AUDIO OUT

EXT IN

DESCRIPTION

The 6581 consists of three synthesizer "voices” which can be used
independently ar in canjunction with each other (or external audio
sources) to create complex sounds. Each voice consists of o Tone
Oscillatar/Wavefarm Generator, an Envelope Gererator and an
Amplitude Modulator. The Tone Oscil ator controls the pitch of the voice
over a wide range. The Oscillaror produces four wavefarms at the
selected frequency, with the unique harmonic content of 2ach waveform
providing simple control of tone color. The volume dynamics of the oscil-
lator are contralled by the Amplitude Modulator uncer the direction of
the Ernvelope Generator. When triggered, the Envelope Gensarator
creates an amplitude envelope with progrommable rates of increasing
and decreasing volume. In addition to the three voices, a programm-
able Filter is provided for gensrating complex, dynamic tone colors vic
subtractive synthesis.

SID allows the micropracessor to read the changing output of the thira
Oscillator and third Envelope Generctor. These outputs can be used as ¢
source of madulation information for creating vibrato, frequency/filter
sweeps and similar effects. The third oscillator can also act as a random
numker genarator for games, Two A/D converters are provided for inter-
facing SID with potentiometers. These con be used for “paddles” in ©
game enviranment or as front panel controls in o music synthesizer. SID
con process external audio signols, ollowing multiple SID chips 1o be
daisy-chained or mixed in complex polyphonic systems.

SID CONTROL REGISTERS

There are 29 eight-bit registers in SID which control the generation of
sound. These registers ure either WRITE-only or READ-anly und are listed
below in Table 1.

460 AFPEMDIX O

Q XIdMIdd ¥V

Lo

]

>

=0 = T I = = A |

4 =k ok mh B i i T = | DoC OoDoocC

i

“w o a

e S~ LT RN R R

L= = R

- o o o

ADDRESS
o
e

- - DO G 0 - S - = =

S T - T = T~ SR

[

P -

oo = - oo

e - — & & —

C = 0O = C = o

O NI P e

B - o [TR - TP . S |

[= - -

REG
(HEX)

o
0!
0z
0l
0
5
L}

g8 <

[sEN
5.3
oG
on

1
12
11
12
1
14

EATA
2 B % Dq D3 o5 By P
F3 Fe s i ‘3 P Fy g
Fig Fid Fu Fis Fy: :_1'{ Fs g
iy Pl P, Pl Pty v iy Fiy
Y, Py | Py My
NOISE TUL | 1~ | A~ | TesT | WHS [avee | GATE
Alfy ARy | AlFy | AlFg | UGYy DOY, | DY, | DGY
arhy SNy | &Ny, | 3tHp | A8 RSy | ALGy | Risy
5 Fe s Fa) 2 i) Fy
Fis Fi Fia F1z Fi Fie Fe i
P PW | PN | PW, | PW P, P, | Py
e e e . L T
NOISE [LIL | 11 | /AN | TEST W85 | oyNC | GATE
ATE, ATHy | ATKy | ATRy | D3v; DGYy | DOTy | DoY)
STH, SN, | STH; | ST, | RISy RIS, | RS, | AL,
i} e "5 Fy Fa Fz Fy Fe
Fiy Fu Fis Fig Fy- Fia Fe 8
Fiy | PG | PW, | P, PA, P, PW, | Py
— = = ewy ewg g | P
woist | TUL 14 A~ TIar | g SYNG | GATE
AThy | AThy ATH, AlFg Do% | Do%a OCY, Dovg
STHy | Sthy BTH; SIN HLsy | ALS; FALS; | RiSy
— = = - = Fom FCy O,
Foa | FG FCs Fil; FCy FC, FCy FGCy
NEEy | NS, A=H, AEBy FILTEX | FILT S FILT 2 FILT |
T30FF | HP BF LEovdl | wbl, v, wolg |
= PHy PR Firy By Bty =3 P,
Y, A A B, P, av, BY, BV,
25 D e Oy Oy e o Do
= ke ks 7 Ex E; B e

REC NamT
Vaice |

FACR LD
FRFAHI

Py LOC

P HI
CONTROL REG
ATTACKDECAY
SLETAINMRELZASE
Ve 2

FFEQ LD
FREQHI|

M LD

LT
CONTROL REG
ATTACK'OECAY
LLSTAINFRELZLSE
Wiz 3

FREQ LD
FREQHI

PW IO

P¥HI
CONTNOL NCG
ATTANKINFCAY
SLSAINHELZASE
Filvar

FCLO

FC HI

RESIFIL™
MOCENIL
Miee.

PO X

roT Y
EISEIGJHLRDOM
SNV,

NECG

TYPE
WRITE-ONLY
'WHTE.OMLY
'NIITE-ORLY
WATE-ORLY
WRITE-ORLY
MRITE-ONLY
WRTEORLY

WRITF-ORLY
WANE-ORLY
WIUTC-ORLY
WIATE-ONLY
‘NAUTE-ONLY
WRITE-ORLY
NUTE-OMLY

WHITE-ORLY
WRITE OMLY
WRITE.OR Y
NWAITE-OMLY
WAITC-OkLY
WRITE-O LY
WRITE-OKLY

WRITE-ORLY
‘NMAITE-ONLY
WRITE-ONLY
WRITE ORLY

HEAL-ONLY
READ-ONLY
AEADONLY
READ-OMLY

dow J2is1B3y @IS *1 9eL

SID REGISTER DESCRIPTION

VOICE 1
FREQ LO/FREQ HI (Registers 00,01)

Together these registers ferm a 16-bit number which linearly controls
the frequency of Oscillator 1. The frequency is determined by the follow-
ing equation:

Four = (Fq X Fo/16777216) Hz

Where F is the 16-bit number in the Frequency registers and Fg is the
system clock applied to the ¢)2 input (pin 6). For a standarg 1.0-MHz
cleck, the trequency is given ky:

Fout = (F, X D.059604645) Hz

A complete table ot values for gensrating B octaves of the equally
tempered musical scale with concert A (440 Hz] tuning is provided in
Appendix E. It should be noted that the frequency resolution of SID is
sufficient for any tuning scale and allows sweeping frem note to note
(portamento) with na discernable frequency steps.

PW LO/PW HI (Registers 02,03)

Together these registers form a 12-bit number (bits 4—7 of PW HI are
not used) which linearly contrals the Pulse Width (duty cycle) of the Pulse
wavetorm on Oscillator 1. The pulse width is determined by the follow-
ing equation;

PWout = (PW,/40.95) %

Where PWn is the 12-kit number in the Pulse Width registers.,

Tha pulse width raseluticn allaws the width to be smoothly swept with
no discernable stepping. Note that the Pulse waveform on Oscillator 7
must be selacted in order for the Pulse Width registers to have any au-
dible effect. A value of O or 4095 ($FF) in the Pulse Width registers will
produce a constant DC output, while & value of 2048 ($800) will produce

U sguure wave,

452 APPENDIX ©

CONTROL REGISTER (Regisier 04)

This register conrains eight control bits which select various opfions on
Osdillator 1,

GATE (Bit D): The GATE kit controls the Envelope Generator for Voice
I. When this bit is set to a one, the Envelope Generator is Gated
(triggered) and the ATTACK/CECAY/SUSTAIN cycle is initiated. When the
bit is reset to a zero, the RELEASE cycle begins. The Envelope Generator
controle the amplitude of Oscillator 1 oppearing at the auvdio output,
therefore, the GATE bit must be set (along with suitable envelope pa-
rameters) ‘or the selected output of Oscillator 1 to be oudible. A de
1ailed discussion of the Envelope Generator can be found at the end of
this Appendix.

SYNC (Bir 1): The SYNC bit, when set to o one, synchronizes the
tundamental frequency of Oscillater 1 with the fundamental frequency
of Oscillator 3, producing “Hard Sync” effects.

Varying the trequancy ot Oscillator 1 with respect to QOscillatar 3 pro-
duces o wide range of complex harmonic struclures from Voice 1 at the
trequency of Oscillator 3. In order for sync to occur, Oscillator 3 must be
set to some freguency other thun zero bul preferubly lower than the
trequency of Oscillater 1. Mo other parameters of Voice 3 have any
effect on sync.

RING MOD (Bit 2): The RING MOD bit, when set to o one, reploces
the Triangle woveform output of Oscillater 1 with o “Ring Modulated”
combination of Oscillators | and 3. Varying the frequency of QOscillator 1
with respect to Oscillator 3 produces o wide renge of non-hormaenic
overtone structures for creafing bell or gong sounds and for spaciol ef-
fects. In arder for ring modulation o be aucible, the Triangle waveform
of Oscillator 1 must be selected and Oscillator 3 must be set to some
frequency other than zero. Mo other porameters of Voice 3 have any
effect on ring modularion.

TEST (Bit 3): The TEST bit, when set to o one, resets and locks Oscil-
latar 1 ar zero unril the TEST kit is cleared. The Naise wavefarm autput
of Oscillator 1 is also reset and the Pulse waveform output is held at o
DC level. Normally this kit is used for testing purposes, however, it can
be used to synchronize Oscillator 1 te external events, allowing the
generation of highly complex woveforms under real-time software cor-
trol.

APPENDIX O 463

(Bit 4): When sat to a ane, the Trinngle woveform autput of QOscillator
1 is selected. The Triangle waveform is low in harmonics and has o
mellow, flute-like quality.

{Bit 5): When zet to o one, the Sawtooth waveform output of Oscil-
lator 1 is selected. The Sawtooth wavefarm is rich in even and odd
harmonics and has ¢ bright, orassy quality.

(Bit &): When set 10 a one, the Pulse wavefarm output of Oscillator 1
is selected. The harmonic content of this waveform can be odjusted by
the Pulse Width registers, praducing tere qualities ranging from a
bright, hollow square wave to a nasal, reedy pulse. Sweeping the pulse
width in real-time produces a dynamic “phasing” effect which adds a
sense of moticn to the sound. Rapidly jumping between different pulse
widths can produce interesting harmonic sequences.

MNOISE (Bit 7): When set to o onc, the Noize output waveform of
QOscillator 1 is selected. This output is o random signal which changes ar
the frequency of Oscillater 1. The sound quality can be varied from «
low rumbling to hissing white noise via the Oscillator 1 Frequency regis-
ters. Noise is useful in creating explosions, gunshots, jet engines, wind,
surf and other unpitched sounds, as well cs snare drums and cymhbals,
Sweeping the oscillator frequency with Noise selected produces a dra-
malic rushing effect.

One of the output waveforms must ke salectad for Oscillator 1 to ke
audible, however, it is NOT necessary to de-select waveforms to silence
the nutput of Voice 1. The amplitude of Voice 1 at the final output is o
function of the Envelope Generator only.

| NOTE: The ascillator output waveferms are NOT adeifive. If mare than ene cu..-rpl..ﬂ_.|
| waveferm is selsctad simultaneously, the result will be a logical AMDing of the l
wawvefarms. Although this technique can be used to generate ocditicnal waveforma
bevord the four listed abave, it must be vsed with care. If any other waveform is

selected while Noise is on, the Noise outpur can “lock up.” If this occurs, the Noise
output will remain silent until resel by the TEST bil or by bringing RES (pin 5) low.
|

464 APPENDIX O

ATTACK/DECAY (Register 05)

Bits 4 7 of this register [ATKO—ATK3Z) select 1 of 16 ATTACK rates for
the Vaice 1 Envelope Generufor. The ATTACK rate defermines how
rapidly the output of Voice 1 rises frem zera to peak omplitude when the
Envelope Generator is Gated. The 16 ATTACK rctes are listed in Table 2.

Bits 0—3 (DCYO—DCY3) select 1 of 16 DECAY rates Tor the Envelope
Generatar. The DECAY cycle follows the ATTACK cycle and the DECAY
rate determines how rapidly the ourput falls from rhe peck amplirude 1c
the selected SUSTAIN level The 16 DECAY rates are listed in Table 2.

SUSTAIN/RELEASE (Register 06)

Bits 4—7 of this regisrar (STNO=S3TN3) select 1 of 16 SUSTAIN levels for
the Envelope Generator. The SUSTAIN cycls follows the DECAY cycle cane
the output of Voice 1 will remalin af the selected SUSTAIN amplilude as
long as the Gate bit remains set. The SUSTAIN lavels range from zera fo
peak amplitude in 1& linear steps, with a SUSTAIN value of O selecting
zero amplitude end a SUSTAIN value of 15 (3F) celecting tha penk
amplitude. A SUSTAIN value of & would cause Yoice 1 to SUSTAIN af en
amplitude one-half the peak amplitude reached by the ATTACK cycla.

Bits 0—3 [RLS0—RLS3) selzct 1 of 14 RELEASE rates for the Envelope
Generator. The RELEASE cycle follows the SUSTAIN cycle when the Garte
bit is reset to zero. At this time, the outpur of Voice 1 will fall from the
SUSTAIN amplitude to zern amplitude ar the selected RELEASE rate. The
16 RELEASE rates are identical to the DECAY rates.

‘ NOTE: The =ycling of the Envclops Generator can be altered ot any poirt via the Gote
bit, The Envelope Generator con bs Goted and Felecsed without restriction For
erumple, if the Gate bi- is reset before the cnvelopes hae finishad the ATTACK cycle,
the RE.EASE cyce will immediately begin, starting from whatever amplitude had
been reuched. If the envelope s then Gated cgein (before the ELEASE eycle has
reached zero umplivde), onothe: ATTACK =zyele will begn, starting from whatever

amplitude hod been reuched. Ths technigue can be vsed to generate comalex
amplitude envelopes vio real-lime suftwaie contral,

APPENDIX © 465

Tabkle 2. Envelope Rates

YALUE ATTACK RATE DECAY/RELEASE RATF,_‘
DEC (HEX) (Time/Cyele) (Time/Cycle) l
0 (0) 2 ms 6 ms
1 n 8 ms 24 ms
2 (2) 16 ms 48 ms
3 (3) 24 ms 72 ms
4 (2 38 ms 114 ms
5 (5) 56 ms 168 ms
6 6) 68 ms 204 ms
7 (7) 80 ms 240 ms
8 (8) 100 ms 300 ms
9 i9) 250 ms 750 ms

10 (A) 500 ms 1.5 s
17 (B) 800 ms 245
12 (C) 1s 3s
13 (D) 3s 9 s
14 (E} 5s 15 8
15 (F) 8s 24 s

=
NOTEEnvelcpe rates are based on a 1.0-MHz 2 clock. For other @2 frequercies, |
multiply the given rate by 1| MHz/dh2. The rates refer tc the amount of time per cycle,
For example, given an ATTACK value o® 2, the ATTACK cycle wauld tcke 16 ms to rise
trom zern to peak amplitude. The DFCAY/RFIFASF -atec refar te *he amount of time
these cyrles would toke to fall fram peak amplitude to rern.

VOICE 2

Registers 07—=$0D control Voice 2 and are functionally identical to reg-
isters 00—0& with these exceptions:

1) When selected, SYNC synchronizes Oscillator 2 with Oscillator 1.
2) When selecied, RING MOD replaces the Triangle output of Oscil-
lator 2 with the ring modulated combination of Oscillatars 2 and 1.

464 APPENDIX O

VOICE 3

Registere $0E—3%14 contral Voice 3 and are functicnally identical to
registers 00—06& with these exceotions:

1) When selected, SYNC synchronices Oscillulur 3 with Oscillator 2.
2) When selected, RING MOD replaces the Triangle output of Oscil-
latar 3 with the ring medulated combination of Oscillaters 3 and 2.

Typical operation of a voice consists of selecting the desired parame-
tars: frequency, woveform, effects (SYNC, RING MOD) ond envelope
rates, then gating the voice whenever the scund is desired. The sound
can be sustained for ary length of time and terminated by clearing the
Gate kit. Lach voice can ke usad separately, with independent parame-
ters and gating, or in unison to creare a single, powerful voice. When
used in unison, a slight detuning of each escillater or tuning to musical
intervals creates a rich, animated sound.

FILTER
FC LO/FC HI (Registers $15,518)

Tagether thase registers form an 11-bit number (bits 3—7 of FC LO are
rot used) which linearly controls the Cuteff (or Center) Frequency of the
programmable Filter. The approximate Cutoff Frequency ranges from 30
Hz to 12 KHa.

RES/FIIT (Register $17)

Bits 4 7 of this register (RESO—RES3) control the resonance of the
filter. Resonance is a peakinu ellecl which emphasizes frequency com-
ponents at the Cutoff Frecuency ot the Filter, causing o sharper sounac.
There are 16 resonance settings ranging linearly from no resonance (0)
to maximum resoncnce (15 ar $F). Bits 0—3 determine which signals will
be rouled through the Filter:

EIIT 1 (Bit 0): When set to a zera, Voice 1 appears directly at the
audio output and the Filter hos no effect on it. When set to ¢ one, Voice
I will be processed through the Filter and the harmonic canfent of Voice
1 will bz altered according to the selectad Filter parameters.

FIIT 2 (Bit 1): Same as bit 0 for Voice 2.

FILT 3 (Bit 2): Same os bit 0 for Voice 3.

FITEX (Rit 3): Same cs bit O for External audio input (pin 26).

APPENDIX O 467

MODE/VOL (Register $18)

Bits 4—7 of this register select various Filter mode and output eptions:

LP (Bit 4): When set to a one, the Low-Pass output of the Filter is
selected and sent to the audio output. For o given Filter input signel, cll
frequency componenis below the Filter Cutoff Frequency cre passed
unaltered, while all frequency components chove the Cutoff are at-
tenuated at a rate of 12 dB/Octave. The Low-Pass mode produces full-
badied sounds.

BF (Bit 5): Sume ws kit 4 for the Bandpass output. All frequency
components above and below the Cutoff are attenuated at a rate of 6
dB/Octave. The Bundposs mode produces thin, open sounds.

HP (Bit 6): Same os bit 4 tor the High-Pass output. All frequency
components cbove the Cuteff are passed unaliered, while ull frequency
components helow the Cutoff are attenuated ot o rate of 12 dB/Octave.
The High-Pass mode produces tinny, buzzy sounds,

3 OFF (Bit 7): When sat to a one, the output of Voice 2 is disconnected
from the direct audio path. Setting Voice 3 to bypass the Filter (FILT 3 =
0) and setting 3 OFF to a nne prevents Vhice 3 frem reaching the oudio
output. Thiz allows Voice 3 to be used for modulation purposes without
any undesirable ourput.

‘ NOTE: The Mler vutout wodes ARL additive and multiple Fiter modes may be
selected simullansously, Fur example, both LF and HP modes con oe selected o
produce o Notch (or Band Reject) Filter response. In order for the Filter 1o hove any
audible effecr, ar leasr one Filter sutpur must be selected ond ar least one Voice must
be roured *hrough the Filrer. The Firer is, perhoops, the mest imporront element in 510
‘ as it allows the generatior of complex Torne colors via subtracrive syrthesis (the Filrer
is usad 1o eliminate specific frequency companents from a narmonically rich input
signal). Ihe best results ore ochizved oy varying the Lutaff Frequency in raal-fime.

Bits 0—2 (VOLO VOL3) select 1 of 16 overall Volume levels for the
final composite audia output. The output volume levels range from no
output (0) to maximum volume (15 or $F) in 16 linear steps. This contral
can be used es a static volume control for baloncing levels in multi-chip
systems or for creating dynamic velume etfects, such as Tremolo. Some
Volume level other than zero must be selected in order for SID to pro-
duce any sound.

458 APPENDIX O

MISCELLANEOUS
POTX (Register 519)

This register allows the microprocessor to read the pesition of the
patenticmater tied to POTX (pin 24), with values ranging from 0 at
minimum resistance, to 255 ($FF) at maximum resistance. The value is
always valld and is updated every 512 @2 clock cycles. See the Pin
Description section for information on pot and capaciter volues.

POTY (Register $1A)
Same as POTX for the pot siad ta POTY (pin 23).
0OSC 3/RANDOM (Register $1B)

This register allows the microprocessor to read the upper 8 output bits
of Oscillator 3, The character of the numbers generated is directly re-
lared to the waveform celected. If the Sawtooth waveform of Occillator
3 is selected, this register will present o series of numbers incrementing
from O o 255 (SFF) at a rate determined by the frequency ot Qscillator
3. If the Trigngle waveform is selected, the output will increment from 0
up to 245, then decrement down to 0. If the Pulse waveform is selected,
the cutput will jump between 0 and 255. Selecting the Noise waveform
will produce a series of randem numbers, therefare, this register can he
used os a random number generctor for games. There are numercus
timing and sequencing applications for the O5C 3 register, however, the
chief function is probably that of o mcdulation generator. The numbers
genercted by this register can be added, via software, 1o the Osclllator
or Filter Frequency registers or the Pulse Widih registers in realtime.
Many dynamic effects can ke generated in this marner. Sirer-like
sounds can ke created by adding the OSC 3 Sawtooth output to the
frequency control of another oscil ator. Syrthesizer “Sample ond Hold”
effects can be produced by edding the OSC 3 Noite output to the Filrer
Frequency contral registers, Vikrate can be produced by setting Oscil-
lator 3 to o frequeney around 7 Hz and adding the OSC 3 Triongle
output (with proper scaling) to the Frequency contfrol of ancther oscil-
latar. An unlimited range af effects are availahla hy altering the fre-
quency of Oscillator 3 and scaling the OSC 3 output. Normally, when
Oscillator 3 is used for modulation, the audio output of Voice 3 should

be eliminated (3 OFF — 1).

APPENDIX O 469

ENV 3 (Register S1C)

Same as OSC 3, out this register allows the micrcprocessor to read
the output of the Vaice 3 Envelope Generator. This sutput can be added
to the Tilter Frequency o produce harmonic envelopes, WAH-WAH, and
simlar effects. “Phaser” sounds con ke created by adding this cutput to
the frequency control registers of an oscillator. The Voice 3 Envelope
Generator must be Gated in order to produce any output from this regis-
ter. The OSC 3 reyister, however, ulwuys reflects the changing output of
the oscillotor and is not atfected in any way by the Envelope Generator.

SID PIN DESCRIPTION
CAP1A,CAP1B, (Pins 1,2)/ CAP2A,CAP2B (Pins 3,4)

These pins are used to connect the two integrating copacitors re-
quired by the programmable Filrer. C1 connects between pins 1 ana 2,
C2 between pins 3 and 4. Both copacitors should be the same value.
Normal operation of the Filter over the oudio range (approximarely 30
Hz 12 kHz) is accomplished with a value of 2200 pF for C1 and C2.
Polystyrene capacitors are preferred and in complex pclyphonic sys-
terns, where many SID chips must treck each other, matenzd capacitors
are recommended.

The trequency range of the Filer can be tailared te specific applica-
tions by the choice of capacitor values. For example, o low-cost game
may not require full high-frequency response. In this case, larger velues
far C1 and C2 could be chosen to provide more contral over the bass
trequencies at the Filter. The maximum Cutoff Frequency of the Filter is
aiven by:

FCrax = 2.6E—5/C

Where C is the capacitar value. The range of the Filter extends ? octaves
below the maximum Cutoff Frequency.

RES (Pin 5)

This TTL- evel input is the reset control fcr SID. Whan brought low fer
at least ten 2 cycles, all internal registers are reset to zero and the
audic output is silenced. This pin is normally connected to the reset lire
of the microprocessor or a power-on-clear circuit.

470 APPENDIXK ©

$2 (Pin &)

This TTl-level input is the master clock for SIO. All oscillator frequen-
cics and envelope rates are refersnced to this clock. ¢2 also controls
dara transfers between SID and the micropracessor. Data con only be
transferred when &2 is high. Essentially, 2 acts as a high-active chip
select as far as dota transfers are concerned. This pin is normally con-
nected to the system clock, with o nomincl operating frequency of 1.0
fMHz,

R/W (Pin 7)

This TTl-level input cantrals the direction of dara transfers hetween
SID anc the microprocessor. If the chip select conditions have been met,
a high an this line allows the microprocessor to Read data from the
selected SID register and a low allows the microprocessor to Write data
into the selected SID register. This pin is normally cannacted tn the sys-
tem Read/Write linc.

CS (Pin 8)

This TTL-level input is o low active chip select which controls data
transfers between SID and the microprocessor. CS must be low for any
transfer. A Read from the selacted SID ragistar can anly oceur if CS is
low, $2 is high and R/W is high. A Write to the selected SID register can
only occur if €5 is low, 2 is high and R/W is low. This pin is normally
connectec to address decoding circuitry, allowing SID o reside in the
memory moap of a syslem.

AO-A4 (Pins 9—13)

These TTl-lavel inpute are used to szlect one of the 29 SID ragisters.
Although enough addresses cre provided to select 1 of 32 registers, the
remaining three register locations are not used. A Write to any of these
three locations is ignored and a R=od returns invalid data. These pins
are normally connected to the corresponding address lines of the mi-
croprocessor so that SID moy be oddressed in the same marner as
memory.

GND (Pin 14)

For best results, the ground line between 51D and the power supply
should be separafe from ground lines to other digital circuitry. This will
minimize digital noise ct the audio output.

APPENDIX © 47

DO-D7 (Pins 15-22)

These bidirectional lines are used fo transfer datu behween 51D and
the microprocessor. They are TTL compatible in the input mode and ce-
pable of driving 2 TTL loads in the output mode. The date buffers ore
usuolly in the high-impedance off state. During a Write operation, the
data buffers remain in the off (input) stale und the microprocesscr
supplies data to 51D cver these lines. During o Recd operaticn, the dota
buffers turn or and SID supplies data to the microprocessor over these
lines. The pins are normally connected 1o the corresponding data lines of
the microprocessor.

POTX,POTY [Pins 24,23)

These pins cre inputs 1o the A/D converters used to digitize the posi-
tion of potentiometers. The conversion process is based on the time con-
stant of a capacitor tied from the POT pin to ground, charged by a
potentiometer tied from the POT pin to +5 valts. The component values
are determined by:

RC = 4.7E—4

Where R is the moximum resistance of the pot and C is the capacitor,

The larger the capacitor, the smaller the POT value jitter. The recom-
mended volues for R and C cre 470 k) and 1000 pF. Note that o
separate pot end cap are required for each POT pin.

Yee (Pin 25)

As with the GND line, a separate +5 VDC line should be run between
SID Vee ornd the power supply in order to minimize noise. A byposs
capacitor should be located close to the pin.

EXT IN (Pin 26)

This unuloy inpul ullows external audio signals to be mixed with the
audio output ot SID cr processed through the Filter. Typical scurces in-
clude voice, guitar, and organ. The input impedance of this pin is on the
order of 100 k{). Any signal applied directly 1o the pin should ride at a
DC level of 6 veolts and should not exceed 3 velts p—p. In order to pre-

472 AFPENDIX O

vent any inferference cuused by DC level differences, externc| signals
should be AC-coupled to EXT IN by an slectrolytic capacitor in the 110
#F range. As the direct audio path (FILTEX=0) has unity gain, EXT IN
can ba used to mx outputs of many SID chips by daisy-chaining. The
number of chips that can be chained in this manner is determined by the
amount of noise and distortion allowcble =it the final output, Note that
the output Volume control will affect not only the three SID voices, but
alsa any axternal inputs.

AUDIO OUT (Pin 27)

This open-svurce buffer is the Minul audio cutput of 5ID, comprised of
the three SID vaicas, the Filter and any external input. The output level is
set by the output Volume control and reaches a maximum of 2 volis p—p
at a DC level of & volts. A source resistor from AUDIO QUT to ground is
required for prope- aperation. The recammended resistance is 1 k{) for
a stondard autput impedance.

As the output of SID rides ot a &-veolt DC level, i+ should be AC-
coupled ro any nudia amplifier with an electrolytic capacitor in the 1-10
#F range.,

Voo (Pin 28B)

As with Vg, o separate +12 VDC line should be run ta 810 Vpp and
bypass capaciter should be used.

6581 SID CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS

RATING | SYMBOL VALUE UNITS
Supply Vnltage | Vop =03 1017 vDC
Supply Voltage Vee —0.3 to +7 VDC
Input Voltage {analog) Vina —0.3 0o +17 vDC
Input Voltage (digital) Ving —0.3 to +7 VDC
Operating Temperature Ta 0ro +70 “C
Storage Temperature Tsta —55 to +150 G

APPENDIX O 473

1744

O XIAN3dd¥

CHARACTERISTIC

ELECTRICAL CHARACTERISTICS (Vpp=12 VDC*£5%, V=5 VDC*5%, T,=0 to 70° C)

SYMBOL | MIN TYP MAX UNITS
Input High Voltage (RES, $2, R/W, CS, Vin 2 — Vee vDC
Input Low Voltage AD-A4, DO-D7) Vi 0.3 — a.8 VDC
Input Leakage Current (RES, ¢2, R/W, CS, bin — - 2.5 LA
AD-A4; Vi,=0-5 VDC)
Thrae-Siate (Off) (D0=D7; Vee=max) I1si —_— — 10 MA
Input Leakage Current Vin=0.4=2.4 VDC
Output High Veltage (DO—D7; Voc=min, Vou 2.4 — |Vge—0.7 | VDC
| cad=200 pA)
Output Low Voltage (D0—-D7; Vec=max, | VoL CND — 0.4 VDC
| load=3.2 mA)
Qutput High Current (D0—D7; Sourcing, | lon 200 = — A

VOH =2.4 VDC:‘

O XION3ddY

Siv

Output Low Current (DO—-D7; Sinking, lay 3.2 —_ — mA
Vo =0.4 VDC)
Input Capacitance (RES, ¢h2, RIw, CS, Cin — — 10 pF
AD—A4, DO-D7)
2ot Trigger Voltage (POTX, POTY) Vg — Mgt — VDC
Put Sink Current (POTX, POTY) lpot 500 — — LA
Input Impedance {EXT IN) Rin 100 150 - k()
Audio Input Voltage (EXT IN) Vi, 5.7 & 6.3 VDT
— 0.5 3 VAC
Audio Output Voltage (AUDIO OUT; 1 k]
loed, volure=max) Vit 5.7 & 6.3 vDC
One Voice cn: 0.4 0.5 0.6 VAC
All Voices on: 1.0 1.5 2.0 VAC
Power Supply Current (Vpp) lnp — 20 25 ma
Power Supply Current Veo) lec — 70 100 mA
Power Dissipation (Total) Pg — 600 1000 mW

6581 SID TIMING

Tore

- L] j Te: i — T
A T
/ -
. L-_Tm:'—-l TM_.———I
Pt AXAKXAX T
- JARRRARY 4—4|/_
X

‘Taze is measured from the latest occurring of o, CS, Ag-Ay

READ CYCLE
SYMBOL NAME L MIN | TYP MAX |UNITS
Tave Clock Cycle Time 1 — 20 s
Te ! Cleck High Pulse Width 450 | 500 |10,000 ns
Ta. ¢ Clock Rise/Fall Time — — 25 ns
Tag Read Set-Up Tima 0 S — ns
Tay Read Hold Time 0 = — ns
Tace Access Time — — 300 ne
| Tan Address Hold Time 0 | — — ns
| Ten Chip Select Hold Time 0 — — ns
Tok Data Held Time 20 o= — ns

476 APPENDIX O

Y /

‘ Tw® | | vIF
wv INARRAAS |
Taws [st "
Aorha KXXX X
‘ -—-1— Ten
Ny
cs PERRRANY p
|— Twp — = ToH
Dg-Dy X 4
Ty i rreasured from the latest aceurring of dy, T8 RAAL
WRITE CYCLE
SYMBOL MAME MIN TYP MAX UNITS
Tw Write Pulse Width 300 | — — ns
Twu Write Hold Time 0 — — ns
Taws Address Set-up Time 0 ns
Tan Address Hold Time 10 — — ns
Tew Chip Select Hald Time 0 = = ns
Two Valid Data 80 —_ —_— ns
Teu Date Hold Time 10 — — ns

APPENDIX © 477

EQUAL-TEMPERED MUSICAL SCALE VALUES

The tabe in Appendix E lists the numericol values which must be
stored in the SID Osdillutor frequency control registers tu produce the
notes of the equadl-tempered musical scale. The equal-tempered scale
consists of arn octave containing 12 semitones (notes): C,D,E,F,G,A,B
and C# D# F# G# A#. The trequency of each semitone is exactly the
12th root of 2 :ﬁ{‘?] times he frequency of the previous semitone. The
table is based on a @2 clock of 1.02 MHz. Refer to the equation given in
the Regisler Description fur use of other muster clock frequencies, The
scale selected is concert pitch, in which A—4 = 440 Hz. Transpositions of
this scole and scales other than the equal-tempered scale cre olso pos-
sible,

Althcugh the table in Appendix E provides o simple and guick method
for generating the equal-tempered scale, it is very memory inefficient as
it requires 192 bytes for the table alone. Memory efficiency car ke im-
proved by determining the note volue algorithmically. Using the fact that
each note in an octave is exactly half the frequency of that note in the
next nctave, the nota look-up tahla can be reducad fram 96 entries to 12
entries, as there are 12 notes per octave. If the 12 entries (24 bytes)
consist of the 16-bit values for the eighth actave (C-7 through B-7), then
notes in lower octaves can be derived by choosing the agppropriate note
in the eighth octave and dividing the 16-bit value by two for each ocrave
of difference. As divisicn by two is nothing more thar a right-shi®t of the
value, the calculotion can eosily be accomplishec by o simple software
routine. Although note B 7 is beyond the range of the oscillators, this
value should stlll ke incluced in the table for calculation purposes (the
MEB of 8-7 would recuire a special software case, such as generating
this bir in the CARRY before shifting). Each note must be specified in a
form which indicates which of the 12 cemitones is desired, cnd which of
the eight octaves the semitcne is in. 3ince four bits ore necessary ro
select 1 of 12 semitones and three bits are necessory o select 1 of 8
octaves, the information car fit in cne byte, with the lower nybble select-
ing the semitona (hy addrassing the look-up table) and rhe upper nybble
being used by the division routine to determine how many times the
tohle value must be right-shifted.

478 APPENDIX ©

SID ENVELOPE GENERATORS

The four-part ADSR (ATTACK, DECAY, SUSTAIN, RELEASE) envelope
generator has been proven In electronic music fo provide the optimum
trade off between flexibility and ease cf amplituce control. Appropriate
selection of envelope parameters allows the simulation of a wide range
of percussion and sustained instruments. The violin is a good sxample of
a sustained instrument. The violinist controls the volume by bowing the
instrument. Typically, the volume builds slowly, reaches a peck, then
drops to an intermediate level, The violinist can maintain this level for as
long as desired, then the volume is allowed to slowly die away. A
“snapshot” of this envelope is shown below:

5
+—A —= D +[~—S8USTAIN-—++— R—]
PERIOD

PEAK AMPLITUDE ———

INTERMEDIATE
LEVEL

ZERO AMPLITUDE

This velume envelope can ke easily reproduced by the ADSR as shown
below, with typical envelope rates:

ATTACK: 10 ($A) 500 ms “f'/\:—’
DECAY: g 300 ms o \¥

SUSTAIN: 10 (54)

RELEASE: ¢ 750 e J—l

Note thal the tone can be held at the intermediate SUSTAIN level for
as long as desired. The tone will not begin to die away untll GATE is
cleared, With minor clterctions, this basic envelope can be used for
bress and woodwinds as well as strings,

An entirely different form of envelope is produced by percussion in-
struments such as drums, cymbals and gongs, os well as certain
keybourds such as pianos and harpsichords. The percussion envelope s
characterized by a necrly instantonecus ottack, immediately followed
by a decay to zero volume. Percussion instruments cannot be sustained

APPENDIX O 479

ar a canstant amglitude. For example, the instant a drum is struck, the
sound reaches full volume and decays rapidly regardless of Fow it was
struck. A typical cymhal envelops is shown below:

ATTACK: 0 2ms e
S
DECAY: 2 750ms e
SUSTAIN: O
RELEASE: ¢ 750ms _1,‘""

Nete that the rone immediately kegins to decay to zero amplitude
after the peak is reached, regardless of when GATE is cleared. The
amplitude envelope of pianos and horpsichords is somewhot more
complicated, but can be generated quite easily with |he ADSR. These
instruments reach full velume when a key is first struck. The amplitude
immediately begins to die away slowly as long os the key remains de-
pressec. If the key is released befara the sound has fully died away, the
amplitude will immediately drop tc zero, This envelope is shown be ow:

ATIACK: 0 2 ms \e
DECAY: 9 750 ms L g
SUSTAIN: 0
RELEASE: 0

& ms mmm

Mote that the tone decays slowly until GATE is cleared, ar which ooint
the amplituce crops rapidly to zero.

The most simple envelupe is thal of the organ, When a key is pressed,
the tene immediately reaches full velume cnd remains there. When the
key is relecsed, the tone drops immediately 1o zerc volume. This
envelope is shown kelow:

ATTACK: O 2 ms " W
DECAY: 0 6 ms

SUSTAIN: 15 (SF)
RELEASE: O & ms cﬂ L

The real power of SID lies in the ability 1o create original sounds
rather than simulatiens of acoustic instruments. The ADSR is capable of
Ild

creating envelopes which do not correspond o any “real” instrumants. A

good example weould be the “sackward:” ervelope. This envelope is
characterized by o slow attack and rapid decay which sounds very

480 APFENDIX ©

much like an instrument that has been reccrded con tape then played
sackwards. This envelope is shown below:

&

ATTACK: 10 ($A) 500 ms 4 \n
A

DECAY: 0 6 ms _/
SUSTAIN: 15 ($F)

RELEASE: 3 77 ms I —‘
IATE

Many unique saunds can be created by applying the amplitude
envelope of one instrument to the harmonic structure of cnother. This

produces sounds similar ta fomiliar acoustic instruments, yet notably dif-
ferent. In general, sound is quite subjective and experimentation with
varinus envelape rates and harmenic contents will ne neressary in arder
tc achieve the desired sound.

-2 +5Y
10 MHz T T
0 7 o AuDio
r r Gilpy 7 o ELECTROLYTIC 2vT
2300 1 AUDIO OUT “_ _"\D\)
CLOCK RESET | mouvsTRENE | T8 g
soy | cmeU CIREIT caryy -
i UAFy aLpIO
[l | EEcTROLYTIC [
SE0LTF: 1 =
v ™ POLYSTYRENE EAT IN nli)
cc i CiPyg 1.0 pF ok
AES FES sy
e OUIT o BET % =
i ———————————— | AW ESSITJ‘ _[_ i 400 1
g I' PAJDLES
ADDNESS DECODING
OR ADBALSS LIKL o2 . 51
'\:‘ Y l
||,l| 470 ki,
[E1F Y 1060 oF
il Ty - el A, I [
fin A 1
b By 0
P I :
Fr
7=\
1: *
Veg o NTY
1 TYPICAL 6581/SID APPLICATION

AFPENDIX © 487

APPENDIX P

GLOSSARY

ADSR
attack

binary

Booleun operafors

byte

CHROMA noise

CIA
DDR
decay

decimal

e
envelope
FIFO
hexadecimal
integer
jiffy clock
NMI

octal
operand
05

pixel
queue
register
m'euse

ROM
SID

signed numbers

subscript
sustain
syntax
truncated
VIC-Il

video screen

482 APPENDIX P

Attack/Decay/Sustain/Relzase envelope.
Rate ot which musical note recches peck
valume.

Base-2 number system,

Logical operctars.

Memory location.

Color distortion.

Complex Intsrface Adapter.

Data Direction Register.

Rate at which musical note falls from peak
volume 1u sustain volume.

Bose-10 numbar system.

Mathematical constant (approx. 2.71828133).
Shape of the volume ot a note over time.
First-In/First-Out,

Base-16 number system.

Whole number (without decimal point).
Hardwoare intarval timer.

Non-Maskable Interrupt.

Bose-8 number system.

Parameter,

Operating System,

Det of resolution on the screen.
Single-file line.

Special memory storage location,

Rute ar which a musical note falls from
sustain volume to no volume.

Read-Only Memary.

Sound Interface Davice.

Plus or minus numbers.

Index variable.

Volume level for sustain of musical note.
Programming sentence structure,

Cut off, ellminated (not rounded).

Videa Interfoce Chin.

Television set.

INDEX

Abbreviatiens, BASIC Cormmands, S<ete-
me's, und Funclions, =, 29, 31-34,
374-375

ABS function, 37, 33, 374

Azcessories 335-371

Accumulator, 213

ACPTR, 272-2/4

ADC, 232, 235, 254

Addition, 2, 211, 16

Addressing, 211, 215-217, 411-413

A/D/3/R, 183-185 139, |96-199

AND, 232, 235, 254

AND operatar, 13-16, 31, 35-34, 374

Anirmotion, =i 153, o6

Applicatiane, wiil-xvi

Atithmetic expressions, 10-12

Arithmetic cperatars, 10-12, 14

Arroye, 10-12, £4-45

ASC function, 31, 37, 374

ASCH choracter vodes, 31, 38, 340, 374

ASL, 232, 236, 252

Assembler, 215, 218, 227, 310

ArcTaNgent fusction, 31, 30, 374

Attack, (see A/DVS/R)

Bank selectian, 101-102, 133

BASIC ahhravintiors, 29 31-34, 374-375

BASIC commaonds, 37-34, 41, 58-60, 62Z,
81-82, 91

BASIC miscel oneous tunctians, 31-34,
43-44, 49, 56-57, 61, &9, 70, 8C, £3-85,
BG

BASIT rumeric functions, 31-35, 37-38, 472,
45-47, 49, 83-6£4, £8-89

BASIC operaters, 3. 915, 31 35, &3-64,
&, 92

BASIC statemanls, 18-26, 31-34, 39-55, 57,
62-47, 69.7%, E6-87, 97

BASIC string functions, 31-34, 3&, 56, 61,
70, 87, 89

BASIC wariahes, 7-Z6

BCC, 232, 236, 254

BCS, 232, 234, D54

BEQ, 226-797, 732 237, 254

Biblicgraphy, 388-350

Binary, 69, 22 10E, 1712, 2715-217

Bit, 99-146, 290, 298, 300-301, 305, 343-
357, 359

EIT, 232, 237, 254

Bit mop made, |21-130

Eit mop mode, multicala, “27-13C

Bit mapping, 121 130

BMI, 232 237, 254

BNE, 226-227, 232, 238, 254

Baolean aritameric, 14

BPL, 232, 238, 254

Branches und resting, 226-227

BRK, 232 238, 254

Buffer, keyboard, 93

Business cics, xiii-xuvi

BYC, 232, 239, 254

BVS, 232, 239, 254

Byte, @, 102, 108, 117-119, 124-127, 19¢,
213, 21B-22Q, 222-137, 260-263, 2/4,
273 279 286, 202-293, 299, 307, 34%,
357-359

Cassette port, 337, 340-342

Cassefte, tane recorder, xiii, 39-41, 65:67,
81-82, 91, 187, 192, 283 293-794_ 19/,
320-321, 337-338, 34C-342

Cheracter PEEKs and POKEs, 104, 106,
109-111, 115, 118, 120-122. 12/-1:0,
134-137, 150, 154-155, 159-161, 1&5-
164

CHAREMN, 2¢0-2¢7

CHEIN, 272273, 275

CHKOQU |, 272-273, 974

CHROGET, 272-273, 307-308

CHRIN, 272.273, 277 278

CHROUI, 242-2/3, 27B-279

CHRS$ Funciun, 24, 31, 37-38, +3, 50, 535,
75-76, 93-94, 97, 120, 156, 334 342,
374, 379-381

CINT, 272-273, 2E0

ClOUT, 272-273, 279-280

CLAL, 272-273, 28)

CLC, 232, 239, 284

CLO. 732, 240, 754

CLI, 232, 24D, 234

Clock. 80, 89, 214, 329-302, 344, 404-408,
421-427, 421, 45)

Clock fiming diagram, 406-408

CLOSE, 272-273, 281-282

CLOSE staterent. 31, 39-4° 348, 354, 1374

CLR statzmeni, 31, 39-4C, 81, 109, 374

CLRCHM, 272 273, 282

CLRMHOME kay, 220

CLYV, 232, 24C, 254

CMD staterent, 31, 40-41, 374

CWP, 232, 241, 25¢

Collisinn cetect, 144-145, 00

Calor odjustment, 113

Color cambirations chart, 152

Color memory. 103

Colar registar, 117, 120, 128, 135-136, 179

Color screen, backagrourd, border, 13-
119, 128, 135137, 174, 179-"80

Tommands, BASIC, 31-92

Commedore madazine, xvii-xviii, 39C

CZammicdore &4 memory map 310

Complement, ~waos, 63-64

Constants, floa-ing-point, integer, string.
£ 7, 46, 77-73

CONT nue command, 31, 41-42, 46, 31,
&6, 374

ConTRol key, 58, 72, 9597, 171

COSine tunctinn, 31-34, 42, 374

INDEX 483

CHM, x, xiv, 365-471

CPX, 227, 232, 2471, 254

CFY, 227, 232, 241, 254

Cruncking BASIC programs, 24-27, 156
CuRScR keys, 93-97, 336

DATASSEITE™ recarder. (see cossetie,
tape recorder)

DATA statement, 26, 31, 42-43, 75-77,
111=114, 164, |69, 174, 374

DEC, 232, 242, 254

Decoy, (sea A/D/S/R)

DEFne FuNction statement, 31, 43-44, 372

DELele hey, 71-72, 95-96

DEX, 226, 232, 242, 254

DEY, 226. 232. 242, 254

DIMension siotement, 9, 31, 4d4-45, a74

Direct made, 3

Division, 3. 10-11

Edit mode, 93-97

Editor, screen, 93-97

ENC statement, 32, 46, 79, 93, 374

Frvelnpe generatar, (see AMD/SIR)

ECR, 232, 243, 254

Equal, rot-equal-to signs, 3, 9-12

Error messages, 306 400-401

Exoansion pori(s), (also user port, seriol
port, RS-232 port), 335-37]

FXPanent fuaction, 32, 44, 374

Exponentiation, 5-6, 10, 12, 16

Files (ccssere), 40, 50, 55, 59-60, 65-£6,
75, B4-85, 91, 337-338, 340-342

Files (dizk), 40, 50, 55, 59-60 ASK-664, 75,
B4-85, 91, 337-338, 342

Filtering, 183, 189, 169-202

Fire button, joystic/poddis/lightpen, 4Y8-
329, 343-348

FOR statement, 20-21, 32, 39, 47 48,
£7-63, 77-78, B4, 117, 155-156, 165-
166, 169-171, 198-"99, 309, 374

Foothall, 45

FREe tunction, 32, 49, 109, 374

FuNclion Tunclion, 32, 47, 374

Functions, 31-34, 35, 37-38, 43, 44647, 49,
56-57, @1, 69-70, 79-30, 33-8B5, B87-90,
374-375

Game controls and ports, 343-348

GET statement, 22-24 32, 37, 49-50, 93,
374-375

GETIN, 273-273, 283

GET# satement, 32, 37, 50, 55, 65, 341-
342, 34E, 574

GOSUB statement, 32, 39, 51-52, 77, 79,
B3, 374

GOTO GO TO) statemwrent,
52-53, 64, 77, 81, 86, 374

Graphics keys, =iv-xv, 70-74, 95.04, 108
114

32, 37, 48,

484 INDEX

Grophics mode, xiv-xy, 99-183
Graohics mode, kit mapped, 121-13C
Grashics symbols, (sze graphicz keys!
Greater thar, equal tn ar, 3, 12-13, 14

Hexadecimal nstation, 101, 209, 215-218
Hierarchy of aperations, 14

IEEE-4E8 interface, (see serial port)

IF . . . THEN statement, 32, 46-47, 49,
52-53, 64, 70, 86, 172-173, 1EQ, 374

INC, 232, 243, 254

Ineame/rxpense pragram, 20-21

Indexed indirec), 224-225

Indexing, 223-225

Indirect indexed, 223-224

INPUT staterment, 18-22, 32, 45, 53-55, 93,
374

INPUT## statement, 32, 55 75, 84, 88, %0,
74

INSerT key, 72, 95-94

INTeger function, 32 56, 30, 372

Integer, arrays, constants, voriables, 4-5,
7.8

INK, 226-227, 232, 243, 254

INY, 2246227, 232, 244, 254

IOBASE, 272-273, 284

/O Guice, 335-375

IOINIT, 272-273, 285

Q) Pnouts, 395-397

1#C Ports, 214, 260, 335-375

1/Q Registers, 104-106, 212-214

IfQ Stetements, 3%, o0, 5£-55, 65-67. 75

IRQ, 308

Joysticks, 343-345
JMP, 29B.230, 232, 244, 254, 270, 308
JSR, 228-230, 233, 744, 255, 2468, 270

KERNAL, 2, 4, 209, 228230, 308, 268
306, 34B-358

Keyboard, 93-58

Keyworcs, BASIC, 29 22

LDA, 218-220, 233, 245, 255

LDX, 233, 245, 255

LDY, 233, 246, 255

LEFT$ functicn, 32, 56, 375

LENgih functien, 32, 57, 375

Less than, equal 10 or, 3, 12-13, 14

LET statement, 32, 57, 375

LIST command, 327, 588, 375

LISTEN, 272-273, 285

LOAD, 272 273, 285

LOAD rommaond, 32, 39-60, 370, 3/5

Loading programs ‘rom tope. disk, 5%-60,
337-338, 340-342

LOGarithm tunction, 32, &1, 375

Lower case churaciers, 72-74, 105

LPX (LPY), 348

LR, 733, 24A, 755

Machine longuoge, 209-334, 411-413

Mnsk, 92

mMathematics formulas. 3%4

Mathematical symbuls, 3, 6-17, 394

MFMRBRCT, 272-273, 237

Memcry maps, 212, 262-267, 272-273,
310-334

Memary map, abbreviotad, 212

Memory recllocation, 107-103

MEMTOP, 272 273, 288

MIDS Furction, 33, &1, 375

Modem, xlll-xvill, 339-340

Modulation, 183, 207-208

Malkiplicotian 3. 10-11

Masic, 183-208

NEW command, 18, 33 &2, 111, 117, 188,
187, 375

NEXT command, 20-21, 33, 39, 47-<8,
62-63, 77-783, BA&, 110, 155.154, 145-
165, 169-177, 198-199, 309, 375

NOQP, 233, 246, 255

NOT operctar, 13-16, 33, A3-64, 375

MNul= Iypes, 190

Mumeric variables, 7-8, 26

ON (DN . . . GOTO/GOS5UB) slulement, 33,
&4, 375

OPEN, 272-273, 28Y

OPEN staternent, 33, 41, &5-67, 75-T6, €5,
04 337.330 240381, 3175

Qperating svstery, 210-2] |

Qperomars, arithmetic, 3, 9-12, 16

Operaters, lagicel, 13-14, 31-33, 3537,
63-64, 68 374-373

Operaters, re'ational, 3, 10-12, 16

OR operatar, 13-24, 33 A8, 101-102, 104,
106, 115, 118, 120, 122, 126-127, 129,
134, 13& 137, 375

OHRA, 233, 247, 255

Parertheses, 3, &, 30, 33, 83-34, 88, 375

PEEK function, 43, &Y. 4. 101-102, 104,
106, 108-711, 115, 118, 120-122, 126-
130, 1342137, 125, 150, 159-140, 176
177, €0, 185. 211, 361, 375

Periphera's, (see 1/Q Guide)

PHA, 533, 247, 255

PHP, 233, 247, 255

Pinouts, {(alse ses /O Piouts), 363, 395
97

PLA, 233, 248, 255

PLOT, 273, 290

PLP, 233, 248. 255

POKE slulerenl, 25, 33, 49-70, 94, 107~
102, 104, 108, 10%-111, 115-116 118,
120-123, 124-130, 134-137, 150, 153-
161, lo5-16d, 108-170, 172-173, 177-
T7E, 1EQ, 184-18&, 194, 193-197. 204-
205, 211, 220, 309, 361, 375-374

Ports, 11O, 214, 335-375, 395-397

POSition function, 33, /U, 475

Power Tlay, =vi, 150

PRINT stctement, 13-15, 18-22, 25, 33.54,
55-61, 63, 68-T5, 79-80, 83-84, 87-89,
9496, "09, 168, 171, 210, 213, 22C,
375

PRINT# stoterment, 33, 40-4| 75-/6, 85,
94, 337, 34C-341, 348, 353, 375

Printer, wv, 338-339

Pragram counter, 214

ngram made, 3

Fromaotf, 45

Quetation marks, xi, 3, 23, 72, 95, 337
Qugte moce, F2-73, 95-94

RAM, 49, 100-121, 104-105, 107-108,
TI0-1110, 177, 122, 260-262, 289, 340

RAMTAS, 273, 271

Random numbers, 53, 80

RaNCom function, 33, 43, 53, E0, 375

Raster interrupt, 131, 150-152

ROTIM, 273, 297

READST, 273, 292

READ statement, 33, 42, 7¢-77, 711, 170,
309, 375

Relecse, (see A/DISIR)

Regisser map, CIA chip, 428

Regiscer map, SID chip, 441

Register map, VIC chip, 454-455

REMerk statcment, 25-24, 33, 37-38,
4°-42, 45-46. 50, 77-78, 91-95, 1
|18, 198-19%, 338, 340, 354, 375

Raserved words, (see Kaywords, 3ASIC)

RESTOR, 273, 493

RESTORE ey, 22, 92, 126, 353

RESTORE staterment, 33, 78, 375

RETURN key, 3, 18, 22, 4|, 50-21, 74
93-37, 154-155, 166, 217, 220, 336-337,
7q

RETURN stateryent, 33, 51-52, 7Y, &5, 1/5,
375

RaVerSe ON. CFF keys, 97

RIGHT# function, 33, 79, 375

ROL, 233, 248, 255

ROM, 261, L68-269

ROM, churucier yeneraror, 103117, 34

ROR, 233, 249, 255

R53-2320. 335, 348-359

RTI, 233, 249, 255, 308

RTS, 233, 349, 255

RUN cemmand, 33, 40, 5%, EI, 113, 154,
375

RIUN/STCP key, 22, 41-42, 52, 58, 86, 92,
126, 220, 333

SAVE, 273, 293-294

SAVE commrand, 34, 81-H2, 375
5BC, 233, 250, 255

SCNEKEY, 273, 295

SCKEEN, 273. 295-294

INDEX 485

Screen editar, 2, §4-97, 211

Screen memory, 102-103

Scrolling, 128-130, 166

SEC, 233, 230, 255

SECOND, 273, 295

SED, 233, 250, 255

SO, 233, 251, 255

Serial port (IEEE-488), 262, 33|, 333, J&2-
366, 432-433

SETLFS, 271, 297

SETMMSG, 273, 298

SETNAM, 273, 299

SETTIM, 273, 299-300

SETTMO, 27%, 300-301

SGN furction, 34, 83, 109, 375

SHIFT key, £, 3C, 72, 74, 54, 96-97, 168,
220

SID ch p programming, xiv, 183-208

SID ch p specificatiors, 457-481

SID eh p memory rrop, 223-328

SINe funcrlon, 34, 83, 375

Sound waves, 186-187, 192 94

SPale function, 2/, 34, d43-H4, 336, 375

Sprites, x, xiv, 99-100, 131-149, 153-182

Sprite disslay prioritias, 124, 161, 179

Sprite positioning, 137-743, 157-161, 177

SGuare Root “unction, 34, B4, 375

STA, 221, 233, 251, 255

Stack pointer, 214, 222

STATUS lunclion, 84, 84-85, 354, 375

Statss registar, 214, 354

STEP keyword, (see FOR . . . TO), 34, 88

STOr, 273, 301-302

STOP command, 34, 41, 84 375

STOP key, (see RUN/STOP key)

String arrays, constanis, variables, 4, 6 9

String expressicns, ¥, 17

String vperalurs, 9, 1¢-17

STRS function, 34, 87, 275

STK, 233, 251, 255

5TY, 233, 252, 255

Subroutines, 222, 228-229, 270, 307

486 INDEX

Subtraction, 3. 10-11, 16
Sustain, (see A/D/S/R)
SYS statement, 34, B7, 121, 207, 375

TAB Tunciion, 27, 34, 45, 8E, 336, 373
TANgert function, 34 B8 375

TALK, 273, 30?

TAX, 233, 252, 255

TAY, 233, 252, 255

THEM kavword, (see IF .
TIME functior, 34, 89, 375
TIME$ functien, 34, 89 375
TKSA, 273, 3072-303

TO keyword, (see TO .
T8X, 233, 353, 255

TXA, 229, 233, 253, 255
TX5, 233, 253, 255

TYA, 22¢, 233, 253, 255

. THEN), 34

« TO), 34

UDTIM, 273, 303

JUIMLSM, 273, 304

UNTLE, 273, 304

Jser pert, 355, 357-362

[J3R function, 34, 90, 307, 375

Walve funciivn, 34, 90, 375
WECTOR, 273, 305-306
VERIFY command, 24, 91, 375
Vv brato, 203

VWaices, 187 91

Valume control, 513, 186

WAIT sratemant, 13-14, 34, 92 375

KOR, (see WAIT statement], 13-14
K iadex -ecister, 213, 223-224

¥ index register, 274, 273.2724

Z-80, (see CP/N)
Zero page, 221-222, 353-359

COMMODORE 54 QUICK REFERENCE CARD

EIMPLE VARIABES
Troe Name Rongs:
] Y =1 THANNEIELIE
. ¥I6T I5EBE—35
Integer XY% = 32767
Erring Y6 [1s 155 sharacien

A it o letter (&-£), ¥ 13 o lemer or nurber (0471 Yarcbls aomes
can be mare thon 2 characters, but oaly the fimt two am recog-

rized

ARRAT WSELABLES

Fpe Mams
zingle Uwmensios HOLE
Teen=Dirmenson X1(5,5)
Three-DEmanaizn (5, 5,5)

Arrms of us fo elever clemen's (subseripts 0-10) con be used
whers nesdec. Arraps with more thos sleran alamants need to
te DiMsrmioned.

ALGERZAIC OPERATORS

= Amigns roue B vanchle
- Megatar
—* L=moneniarion
* Wit plication
{ Divisina

A tian
= Subroctiar

RELATIONAL ANC LOGICAL OFERATORS

= Equal

« > Mat Bqual Tn

= Less Thon

= Greater Tras

< = Loty Thon or Eyuol To

#=— Gearer Tran or Equel To

NCT Legicel “Mot*

AND Logenl “anc

GR Legical "Or"

Exprassion squals | if tree. 0 1 folie

SYSTEM COMMANDS
H0AD “NAME' loadi o pregram frem fope
LAVE "HANE" Sava: o program an bape

LAD “MAME B Loadi o progiom from diss

SA/F “NAMFT P Saves o program fo disk

WERIFY "MAML Velfles thor program was SMEd
wirhou! efrors

LI Fxacirtes 0 program

RUN nan Txecutes pragrem disiing @ line
o

STOP Halt sxecution

EnD Erds wdeoubion

CONT Cenfinues pfogiam eaecuhos from
line ahais pragram wos boted

PEER(K) Retuine swnimits of memany
locafion K

POKE K.Y Chrngas roncants of boatios X
e L Y

5Y5 soxax Jumps T execute a mazhine 13nguoge
pagram, doetisg of ores

Wl £,7,2 Prawr st wasfa wiiil aidents of

lotadon X, when EORed with Z ord
ANTed with ¥ ix sonrens

R, Puamea valvm wi X W u machise
languoge subrowing

EJMING AND FORMAITING COMMANDS

LIAT Lists matire progrom

LIST &8 Litts fram line A to (s B

REN Messoge Corrment meszage cen b isled Lol
is igncred during program executian

TR Usad in PEINT staterrants. Spoces X
pesiions on screen

SECRO)

PRI
CLRAHOME
SHIFT CIRIMOME
SHIFT INSTIDEL
IMETIEEL

(=]

EBEE Kayr

Commoadare ey

~“KiMis & Elanks on line

Feiurns current cersor position
Tovitena cursae fe lefr ssmer of
igieen

Cleors screer ond pleces curser in
Mhome" peaiion

niens spoze gb current cursor
wnsifion

Seleres characier ab current cursar
0sifion

‘Whan usad with numeric color key
selects text colar, Moy be wied in
PRINT stofemert.

Mnues rarsar up, dawn. lefi. right
e

hen usad with SHIFT ielects
amtumsn iipgsrlmer cose ond
graphic dizploy mede.

Whe used with numeric coler key,
tal@cts optioral tewt rolar

ARRATE AMD STURCE

IR R-TE o g d |
LM (X5)
STRIA}
VL[E)
CHREK}
BzLIRY)

LEFTE(AS, %)
HILH 1 5{A3, X)

MAIDEAS X Y]

Se~e mawmam sunsoran foe A
resmives spmice fun PUE TPV 12
slamerts ssarting ot 2(0,0.0]
Ratumi aumbar of chnrctess in X5
Remw G sumeric vole of X,
sewvered o a sting

Raturnt sumasle walug of B, ap to
firsT nennumenis characier

Rerurns ASCH cheracter whose code
e X

Rejurny ASTI code for fire
character of X4

Retusms lefrmest X sharactor of 25
Katurns nghtmost & charactars

of AS

Raturma ¥ charseleis of AL

storfing 3t chorocter &

INFUT QUTAUT COMMANDS

INPUT A% OR A
IMPUT “ASC"A4
GET A% or A
LAIR AL

READ A% o A
RESIORE

PRUNT "A— ;A

FROGRAM FLOW
LOw a
IF A=3 THEN 10

FOR A=1TO 10
ETC™ 2 HLAT

KEXT A
EOSLE 2000

RETURN

Ofy X OOTO A3

Ok ¥ GOSUB A8

PRINT ' au sormen ord wmits Fo-
wsef oy envar g string or walue
PRINTE masisge osd woite for noer
1o enrer valie. Con alsa INFLT A3
Waits far wser fo rype one-
character valus; ne RETUAR readad
Ininolzes o ser cf solues thar

can be Jszd by READ sratemen:
Aszigne nost DATA velus bs A or &
Keser: coWa poime” ™ @an
READIng the DATA lig agoin

PRINT: strng ‘A= * and =aius of &
U suppresies spaces - | robs dora
fo reat feld

tranches o line A

IF asserion is tree THEN exmcute
Following sert ol siaramant.
talss, sxecute nexl line rumber

Exscute: oll staterrents betwean FOR

asd comesponding MEXT, with &
gaing fram 1 o 10 by 2. Mes sme
is 1 unbesy spectied

Befives end of booo. A s optonal
Branchas o subroutine shating of
lins 2000

Wrtha wrid of Saluipulbng. Betus. iy
sterement following most racant
FOSUR

Branches tu #ib (e nembey e
ligt, IF X = 1 buanche: t &, alc.
Branchas te sabrouting =t 95 line
rumber in it

]

ABOUT THE COMMODORE 64
PROGRAMMER’S REFERENCE
GUIDE...

Game cartridge compatibility . .. spectacular sound .. . arcade
style graphics . .. end high caliber computing capabilitles make:
the Commodore 64 the most advanced personal computer in

its class for home, business and educational use,

The COMMODORE 64 PROGRAMMER'S REFEREMCE GUIDE tells
you everything you need to know about your Commodore 64,
The perfect companion to your Commaoadore 64 User's Guide,
this manual presents detailed infarmetion en everything fram
graphics and sound to advanced machine language
techniques. This book is a must for everyone from the beginner
to the advanced prosrammer.

For the beginner; the most complicated topics are explained
with many sample programs and &n easy-to-read writing style,
For the advanced programmer, this book has been subjected
to heavy pre-testing with your needs in mind. And it's
designed so that you can easily get the most out of your
Commaodore 64's extensive capabilities.

2 commodorea

COMPUTER

Commodorz Business Machines, nc —Computer Systems Civision,
487 Devor Perk Drive, Wayne, BA 16087

DISTRIBUTED BY

Howard W. Sams & Co., Inc.

4320 W. 62nd Street, Indiarapolie, Indiana 46368 USA

$19.95/92056 ISEN 0-672-22056-3

- e A A aE - EE

+9V UNREG
T CASS MOTCR J
1P3 R CASS SENSE f2 S156 Ciemk04
o +5Y R’ CASS WRT
= .3K Q2
2 [o e & 2N3904
D0 L SRQ IN | R4
%;< DATA Lhas J_ = A INTSS
233| ° o cselosy foar % |25 |20 |6 AL A 75V
i * Iarn T co P Ry Py Ve o CASS MOTOR
|, [e
@ 2 29_HIRAM CASS SENSE e -
I 7 e g COMMODORE 64&
P, " wd
1 el P CASS WRT w
o e IS ES g o e SCHEMATIC DIAGRAM
7 Z 2 ui2
A 14 o A5 73 CASS RD ¢20
y2s Voo Atz &z
) z
4066 v, oi Ars |2 E
- + o FB
Eo Ey Ep Eg¥o Yy Ya¥s 4 ::3 G svo—{Fa3}
56 2[1]4]8 [8 c12=04
13 6 A - I
ol — L [
- Ag
818|3|8|g| & N 5
+5v o—{FBE}— RtEE v 53
EEE % [
7 ur il (2
POTEX L= STy 5v
» 9 6510A L8 5 cAto SN i
o . | Potev MPU A b p i OAN
Zs | S : o4
28, |y e A2 g TorAM golt Rl 3
S JOVB, A JUMPER
aug| 2 N c82
248 10V8, A — SELEGT
52 | ® Fiove,] IEs FIRAM _"-—l
<} a 7 30 El 01 L
8 BTNB. 05— 14 =
6 oy 31 FAHEN L2
5132
el e 04 R43 339K | R45S 3.9K 5V . rm_@ +Vg
¥ o CAN 220k
D3 =7 R44Z33K 4 skl
o 25v 0.47
bl E5 +5V csom 47 C67 == sov
4 Dy 3t 205 %
o [PoTax o |25 .[20% 20%
; 37 - =
g2 | | 397 A R
E8q » 997 N 082
g 4
2258 I I RP3 S 33K. i"a L "LEBG‘ZQN m
Es JOYA3 3 N RDY. ROY []
3 4 [emaLe {BrNALE> GND EN GND Y
6 1E] ‘ Iﬂ 8o [0
8 | =
1 4 \ w |1 s
GCASS RD - 0; =2 CaD 7
% = v, +Ve ar
06 |5 gilo PN2222A
0 CNT UP.
1 cot‘: - Ps I COLOR) 5 u30 cs6
o N e 1437878 MHz TALSIES R19S 15K
18 - I 0o [—— +Vo0—>CNT DN ol
COLy - AL}
7 [Toor, O I | GL SN Ll [o]18 r Vel)
16 or, M % -] B 6 i
& s u e ! oK Q i T
oo 6526) - =) P pase [° CHARGE
oo C cin Sy [741874 i [oerect PUMP
8 (DCOO-DCFF) e] c86 | 3 ¢
o oW, 5] e % At 39pF 5% ={° afg S CpEET) 0
gg, 2 vow, o 50V !
5;5 " I Fow,
¥g ‘5" ROV 4 5
P Lol Cexr Cexr
7 |ROMe U3t
o | FOWs 74LS629N rpeq| 2
. [Fom CIA; Y CONT ==
o |—bFee A
4 *°V Restore L | o 4BV
3 e +5V, il |
—— (KEY) +5V a| 18] |8 c3 L a6 o3
i — o Cd
R0 It
1 a.i N |
i Wi DOT CLOCI 1)
— 4 +5V K — W lme o = 20pF 31 S 47K of L
R30 DATA 21 o e 22 B1318MHz sV | 0 |14 ¥ m
i i e s - oo o0 i ST, Voo 7406 iy
kg R28 oatacur 8] 0 0, £)
"As ppa— o THR, our,
R J}K 5 Je Jr s 1K GERDLT. WE PA; D5 iz -1 l D75‘2CT J_ 1N4001 | 470 | Tz | L 2 12 1K
o o ANTOUT 6 i Dz |5 c59 0.22 CSQ Ll 470 A C24 4
SP. 51PAs G El 10 = IS,
e i i 0y b7 87 &0, = 50V i 10 6 T
o [= D07 cRe & 1N4001 26 556
s Lo 0] ONT Uz HE - = = =
5 e 6526 4 Ay ‘ < oV f— e
7T, PC cia g S 5V, TRIG,
18 DDO0-DDFF) + GND
o s [i En 1% -
M I8, PBy il B c10:
S o 0 0
8, = L % I35 |
L - P, 45V
E = 12 g |
o PBy) R 3
o F £ e RES |-
- I 7] PR e - ‘
W B, h VA, 4]
Sug el i 15, pag |2 co1 L 15V _L
222 PBy PBg 0 VA,
=33 s 0 i 15 co2oj22
uz K. [7e8; 7178 ; 3 ClAy I
- FIAG os | = =
3 : FLAG, 57| FA TOD GND 23 0 i
3 I
L e P —t5 3 e shoudbevesd 1o e only deices inuated
GopEEi i 022 2.7 = 1431818 MHz— NTSC,
£ 2 | T Wiz PAL
RESET = | +5V e i1 | 3 Al o e Ut wall - 5% urles alherwis spacid
‘ﬂ“ SVAC N [! L5 (2 Al canacilor values e In 14F unless olherwise specifie
i | 1.2uH
P XY 45V -5V RP3 Zh (B i | } [
| i
1 5 | |
1 R33 S 47K 4 g, 2 R39 S 3900 ! |
12 ST +5 " i
" THR, RS 9 VAC ol co7 |
15K A -—“—4
i DIS; U2 ol 022 [o Nos] oz SHIELD GND
5 556 1NAGT1 FB21 2| woov |2 l of 2v U |
27V ; 9 + o
Ra1 5 LED CONNECTOR
+5V 1t TRIG, L cnito 123 (= commodore
™M sipF s
RI5Y 470K SOWER INPUT © 1982
+5V

CARTRIDGE EXPANSION
CNB

(7-PIN MALE DIN)
oNT

\
UB +V
7406N AEC = 8 REE)
o R31 REC 5] & (S cle== 0.1 MODULATOR
+5VO—AN—19 - ' + 3
" T T 5V = A T I i
| ol = VIDEO AUDID
caz= o022 |cesmz o2z |cormk o2z [oa2z= 022 |c2smm022 [c4rmmoz |cesmm o2z |ciommozz | ok 2)| 2 U1 X 2
T T T T iR I T 1 azss
16 33 e & L By = |5 i B o= s "8 8 - 7
Vee Y
Ya | A49
1 |
7alSds7 [
A Y1 Q4 R48 3 300
5] M PN2222
[3 By
e Yo | | RO LUM
8
5‘: > BTy us2 uz4 Cun u23 uto u22 uy uz1 s
¥ + 0
o4 e l 41642 4164-2 14164-2 4164-2 41642 4164-2 41642 41642 e Lo "
[!‘ e RAM RAM RAM RAM RAM RAM RAM RAM o L EOMRVID
E‘ 5 | A
0.47 o1 J f R 4 ©78 = 220pF
oOF RP2 | s Tsov
An a8 i =
A e I 1 2 12 b L]
An s v 2 . 510pF on +Vyp
)
o Ma, 1
= u2s Yz i) 8 & 0.1
Ag 6], 74LS257 7 AEC R13 3 1K
Ay 11 B‘ v i 8 7 L 20
A 0], s 58K Uy
7 1a] O T M) ke
v 5 CoLoR FB1e 200F
1| % L 0) o, 7 e (B T o il 6
GND SELA o = B %] o, PN2222
| - ,
I8 1 & v =)] %] A1 3 100
= © 7] 2 . utg
Bl & 5 z 1o 667 4 L
R4z i [vic g
a3 4|2 16 14{2 16 1412 16 14] 2 16 14] 2 16 14] 2 I 3 (DO00-D3FFF)
i T T T J T T [TF e e o)
Pz 7 Y
o s © & 5 E Dy Dg
\ o
20
o o
1 7] =8
1 1 e R R D3
o CAs Dz
79 A5 7
® 1 7] P
e I
F523] 2G0UT
17[16{15[14[13]11]10]9 17[18[15 |12 13]11|10] o 71615 [1413]11]10| 9 i —— porx
rs 047 tad 154 Rkd 2 24
D7 Do Os Dy D3 Dp Dy Dg D7 D Ds Dy Dg Dz Dy D7 Dy D Dy D3 D; D1 Dp [HL ikd e 2eor yig
T P —aw gl L5 6581
F a 9 | i T Th sip
2 iz T I J e 75] Voo 2. ©a0-07eF) Y
21 4 2] 4, = A AW
78| At 18 i3 AN EX) IO
Ao At T Ato
1) 0 19 3
2] i 7] w —| us 5] 3] %
3
R 2364A 1" 2364A =] % 2332A TEIe 32")
[L e o N (e e H A e e our
N ho0-BrER) [7], ‘eoo-rrem) e s) T a 2114301 S cn_[£
AEC 2 78 i COLOR ROM 3 G 2200pF
— 3| ™ = 3% 2| % (0sco-osFR) % 0 POLY 7] EAPZB .
vz =] ™ ™ % g [
741508 [s —— % 2 2 e [
6 5 owR l——1 — M 712 Ak e i)
—1 ~ % —=s]% =1 40 51 %
Ve TS GND s Voo G5 GND b Vee CSp C5; GND uar CS WE GND 2
c4 = o |z e Jor |20 |2 741508 T T]9 I o 250
5 — T AEC_10 L 3 o G ELECTROLYTIC
47 = L 1o = i | e 2 >
= svo|2 < So A8l = 0 Bl = i
[< COLOR 9 c 9
I == o
(> ; VIG and €10 should haye sepatits giound relum.
o
3 c106
L} (1.02MHz—NTSC)
£l 150pF P
_] S Iy 50V I 0.98MHz—PAL)
I
— 8 2 15 GRW
Vit 51 K e
u27 s Fs
740 %08 7 ui7 12_ROML
T BA 5] s2stoo i Rown
3 —
wic
5
W COLOR
CIAS
| b e G (o COMMODORE 64X
G 12 CiA; 171730472MH2— PAL)
; s Llif
n 5 25 e > SCHEMATIC DIAGRAM
e 8.18MHz—NT5C)
AESET = 7] 2 Vs M (7.86MHz—PAL)
15V -5V el [
AP4 g ﬁ zl e
1 E— & |- el |®
39K i 3| [& wl |
257 | |= il |8
TEAN HEE gl |z 3
A & HEE gl 4
E| fw E3d S| |e 2
2| |z | [& 5
=4 < o2 o I© a
5| e £=| |2 g
(= commodore
5 CE 4112 13 14 15 18 17 18 19 20 21 FHJKLMNPRSTUVWXY 98 Z A 22 32 B8 1 10 7 6
l ©1982

CARTRIDGE/EXPANSION
[44-PIN FEMALE)
CN6

AUDIG/VIDEO
(5-PIN FEMALE DIN)
CON5

	_01
	_02
	_03
	_04
	_05
	_06
	_07
	_08
	_09
	_10
	_11
	_12
	_13
	_14
	_15
	_16
	_17
	_18
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	459
	460
	461
	462
	463
	464
	465
	466
	467
	468
	469
	470
	471
	472
	473
	474
	475
	476
	477
	478
	479
	480
	481
	482
	483
	484
	485
	486
	487
	488
	schematics_01
	schematics_02

